Космический лифт: современные идеи и состояние их развития. Будут ли различные объекты задевать ленту

В 21 веке лифты перестают быть просто механизмами, поднимающими грузы на определенную высоту. С увеличением скорости и грузоподъемности, лифты превращаются скорее в транспортные средства.

В пример можно предложить автомобильного гиганта из Японии, компанию Mitsubishi. Ее инженеры разработали лифт, способный подниматься на скорости в 60 км/ч. Но как вы сейчас убедитесь – и это не предел.

Безусловно, такие лифты предназначены для самых высоких зданий мира – небоскребов. И не имеет значения, в какой стране находится здание, главное, чтобы лифт работал. А каким еще образом можно поднять людей на высоту в 50 этажей? А в 100? Если скорость подъема останется прежней – то время будет течь невероятно медленно. Поэтому мощность лифтов увеличивается с каждым днем.

Лучшие в этом деле – японцы. Компания Obayashi Corporation, поразмыслив, объявила, что для нее небоскребы – далеко не предел. Инженеры компании создают лифт в космос. Время создания – около 40 лет. Скорее всего, к 2050-му году грандиозная постройка будет завершена.

Планируется сделать кабину в лифте максимально вместительной, дабы поднимать несколько десятков человек. Люди будут подниматься до того момента, пока не окажутся в космосе. Технологически это возможно. Ведь инженеры из Японии разработали специальный трос, сделанный из углеродных нанотрубок. Материал этот почти в два десятка раз крепче и прочнее, чем самая прочная в мире сталь, об этом можно посмотреть документальные фильмы онлайн. Причем лифт будет подниматься на скорости в 200 км/ч, что означает достижение высоты в 36 тыс. километров уже через неделю.

Сложно сказать, кто выделит деньги на подобный проект. Ведь разработки космического лифта ведутся уже долгие годы, начиная с теорий по этому поводу – в начале 20-го века.

Обычно столь амбициозные проекты берут в свои руки работники НАСА, однако у них сейчас, как и у США в целом, огромные проблемы в экономической сфере.

Потянут ли японцы такой мегапроект? Сможет ли он окупить себя и принести реальную прибыль? На эти вопросы мы ответить не сумеем. Однако сам факт, что японцы думают категориями в десятки лет вперед, в очередной раз напоминает нам о том, что планирование – это не самая сильная черта русского менталитета.

Пока в Японии так популяризируют науку – можно не опасаться за их технологический сектор, тесно связанный с маркетингом и экономикой, что в свою очередь питает науку.

Японцы построят лифт в космос к 2050 году

Это устройство будет способно доставлять людей и груз к космической станции, которая также появится в будущем

Японская компания Obayashi рассказала о своих планах построить лифт в космос к 2050 году. Японцы обещают, что он сможет подниматься на высоту 60 000 миль и доставлять людей и груз на космическую станцию, которая также появится в далеком будущем. Об этом сообщает ABC News.

Строители также гарантируют, что новый лифт будет безопаснее и дешевле космических шаттлов. В настоящее время отправка одного килограмма груза шаттлом стоит примерно 22 тысячи долларов. А научно-фантастическое устройство Obayashi сможет за эти же деньги перевезти до 200 килограммов.

Руководство строительной фирмы считает, что появление данной транспортной системы станет возможным с появлением углеродных наноматериалов. По словам одного из руководителей Obayashi Йожи Ишикавы, тросы лифта будет представлять собой футуристические нанотрубки, которые в сто раз прочнее тех, которые делаются из стали. Прямо сейчас мы не способны создавать длинные тросы. Мы пока можем делать 3-сантиметровые нанотрубки, но к 2030 году у нас все получится, сказал он, добавив, что лифт сможет всего за неделю доставлять до 30 человек к космической станции.

Obayashi полагает, что ее лифт произведет революцию в космических путешествиях. Компания привлекает к работе над этим проектом студентов со всех университетов Японии. Она также надеется на сотрудничество с иностранными учеными.

Японские лифты считаются одними из лучших в мире. Созданием самого скоростного лифта на Земле сейчас занимается также японская компания. Hitachi предоставит его одному из китайских небоскребов. Этот лифт будет способен развивать скорость до 72 километров в час и подниматься на высоту 440 метров, то есть до 95 этажа.

Лет пятьдесят назад люди считали, что к нашему времени космические полеты будут такими же доступными, как в их года поездки на общественном транспорте. К сожалению, эти надежды не сбылись. Но, возможно, уже в 2050-му году в космос можно будет добраться на лифте – концепт этого транспортного средства представила японская компания Obayashi Corporation.

Лифты бывают разные! Есть обычный лифт, есть лифт в ванной, есть лифт внутри аквариума, а компания Obayashi Corporation обещает через несколько десятилетий запустить лифт в космос! На самом деле, созданием подобных технологий занимается сразу несколько научных и инженерских групп по всему миру, курируемых космическим агентством NASA. Однако, по мнению японцев, процесс этот происходит очень медленно, поэтому в Obayashi Corporation решили заняться независимой от других разработкой космического лифта.

Главное достижение конкурсов от NASA заключается в том, что они доказали саму возможность создания космического лифта. Obayashi Corporation же обещает запустить это необычное транспортное средство уже к 2050-му году!

Этот лифт будет вести с Земли на космическую станцию, находящуюся на высоте 36 тысяч километров. А вот длина троса составит 96 тысяч километров. Нужно это для того, чтобы создать орбитальный противовес. В дальнейшем он может быть использован для продления маршрута лифта.

Новость Ученые готовы построить алмазный лифт в космос вы можете читать на ваших телефонах, iPad, iPhone и Android и других устройствах.

Ученые из Университета штата Пенсильвания обнаружили способ создания сверхтонких нанонитей из алмазов, которые идеально могли бы подойти для подъема космического лифта до Луны. Эксперты и ранее предполагали, что алмазные нанонити могут оказаться идеальным материалом для создания троса для лифта в космос.

Команда ученых, которой руководит профессор химии Джон Бэддинг, создавала для изолированных молекул бензола чередующиеся циклы давления в жидкой среде. Специалисты были поражены полученным результатом, когда атомы углерода собрались в упорядоченную и аккуратно построенную цепочку. Ученые создали нанонити в 20 тысяч раз меньше, чем человеческий волос. Однако именно алмазные цепочки могут являться самым прочным материалом на Земле.

Совсем недавно команда из Университета технологий Квинсленда в Австралии смоделировала макет алмазных нанонитей с помощью широкомасштабных молекулярно-динамических исследований. Физики пришли к выводу, что подобный материал в перспективе гораздо более гибкий, чем считалось ранее, если правильно подобрать молекулярную структуру.

Ученые предполагали, что удлинение алмазной нити может в итоге сделать получаемый материал весьма хрупким, но исследования доказали обратное. Поэтому нанонити из углерода имеют большие шансы для космического использования, в том числе и в качестве троса для лифта на Луну, концепция которого впервые была предложена еще в 1895 году.

Источники: spaceon.ru, www.bfm.ru, dlux.ru, news.ifresh.ws, mirkosmosa.ru

Хижина Прейзера – аномальная зона

Стражи подземного мира – проклятие гробниц

Скачки во времени

Ассасины: убийцы-смертники

Тиауанако

Станция с искусственной гравитацией

В России решено создать частную космическую станцию, которая будет иметь отсеки на основе искусственной гравитации. Все этапы ее строительства планируется...

Нло на иконах и фресках

В южной Югославии, в Косовской Метохии, между городками Печ и Джаковицы, стоит монастырь Дечаны. С помощью телеобъектива сделали фотографические снимки...

Игуасу – большая вода

Игуасу - один из великолепнейших водопадов мира. Находится он между Аргентиной и Бразилией. Основная его часть расположена со стороны...

Наблюдение НЛО

Попытки понять сущность НЛО предпринимаются постоянно, и среди различных направлений анализа неопознанных объектов особое место занимает время, в которое...

Кольская сверхглубокая скважина. Звуки из недр Земли

Кольская сверхглубокая скважина является самой глубокой в мире и достигает отметки 12262 м. Следующей по глубине должна была идти...

Дом с мансардой – мечта городского жителя

Практически каждый современный человек мечтает иметь свой собственный деревянный дом. Ведь натуральный материал, как никогда ценится в наше время. ...

Солнечный Таиланд

Отдых в Таиланде выбирает множество туристов из самых различных стран. Интереснейшим курортным городом является Паттайя. Он любим российским туристами, поэтому сервис...

Поверхностное натяжение воды

Удивительна схожесть структуры протоплазмы клетки и льда. Структура последнего иде­ально интегрируется со структурой биомолекул. Живые молекулы настолько органично вписываются в...

Забавно, но хвост у человека есть. До определенного периода. Известно, ...

По тросу поднимается , несущий полезный груз . При подъёме груз будет ускоряться за счёт вращения Земли, что позволит на достаточно большой высоте отправлять его за пределы тяготения Земли.

От троса требуется чрезвычайно большая прочность на разрыв в сочетании с низкой плотностью. Углеродные нанотрубки по теоретическим расчётам представляются подходящим материалом. Если допустить пригодность их для изготовления троса, то создание космического лифта является решаемой инженерной задачей, хотя и требует использования передовых разработок и . Создание лифта оценивается в 7-12 млрд долларов США. НАСА уже финансирует соответствующие разработки американского Института научных исследований, включая разработку подъёмника, способного самостоятельно двигаться по тросу .

Конструкция

Есть несколько вариантов конструкции. Почти все они включают основание (базу), трос (кабель), подъёмники и противовес.

Основание

Основание космического лифта - это место на поверхности планеты, где прикреплён трос и начинается подъём груза. Оно может быть подвижным, размещённым на океанском судне.

Преимущество подвижного основания - возможность совершения маневров для уклонения от ураганов и бурь. Преимущества стационарной базы - более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту.

Трос

Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом , и прочностью около 65-120 гигапаскалей .

Для сравнения, прочность большинства видов стали - около 1 ГПа, и даже у прочнейших её видов - не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6-4,1 ГПа, а у кварцевого волокна - до 20 ГПа и выше. Теоретическая прочность алмазных волокон может быть немногим [на сколько? ] выше.

Технология плетения таких волокон ещё только зарождается.

По заявлениям некоторых учёных , даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.

Эксперименты учёных из Технологического университета Сиднея позволили создать графеновую бумагу. Испытания образцов внушают оптимизм: плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъёмнику, в качестве контактной шины.

Утолщение троса

Космический лифт должен выдерживать по крайней мере свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой - прибавляет его вес, а следовательно и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других - выдерживать центробежную силу , удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.

Можно показать, что с учётом гравитации Земли и центробежной силы (но не учитывая меньшее влияние Луны и Солнца), сечение троса в зависимости от высоты будет описываться следующей формулой:

Здесь - площадь сечения троса как функция расстояния от центра Земли.

В формуле используются следующие константы:

Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув в конце концов геостационарной орбиты. После этого толщина снова начинает уменьшаться.

Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:

Подставив сюда плотность и прочность стали и диаметр троса на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.

Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:

Ещё способ - сделать основание лифта подвижным. Движение даже со скоростью 100 м / с уже даст выигрыш в круговой скорости на 20 % и сократит длину кабеля на 20-25 %, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха).

Противовес

Противовес может быть создан двумя способами - путём привязки тяжёлого объекта (например, астероида , космического поселения или космического дока) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант пользуется большей популярностью в последнее время, поскольку его легче осуществить, а кроме того, с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.

Угловой момент, скорость и наклон

Горизонтальная скорость каждого участка троса растёт с высотой пропорционально расстоянию до центра Земли, достигая на геостационарной орбите первой космической скорости . Поэтому при подъёме груза ему нужно получить дополнительный угловой момент (горизонтальную скорость).

Угловой момент приобретается за счёт вращения Земли. Сначала подъёмник движется чуть медленнее троса (эффект Кориолиса), тем самым «замедляя» трос и слегка отклоняя его к западу. При скорости подъёма 200 км/ч трос будет наклоняться на 1 градус. Горизонтальная компонента натяжения в невертикальном тросе тянет груз в сторону, ускоряя его в восточном направлении (см. диаграмму) - за счёт этого лифт приобретает дополнительную скорость. По третьему закону Ньютона трос замедляет Землю на небольшую величину.

В то же время влияние центробежной силы заставляет трос вернуться в энергетически выгодное вертикальное положение, так что он будет находиться в состоянии устойчивого равновесия. Если центр тяжести лифта будет всегда выше геостационарной орбиты независимо от скорости подъёмников, он не упадёт.

К моменту достижения грузом ГСО его угловой момент (горизонтальная скорость) достаточна для вывода груза на орбиту.

При спуске груза будет происходить обратный процесс, наклоняя трос на восток.

Запуск в космос

На конце троса высотой в 144 000 км тангенциальная составляющая скорости составит 10,93 км/с, что более чем достаточно, чтобы покинуть гравитационное поле Земли и запустить корабли к Сатурну . Если объекту позволить свободно скользить по верхней части троса, его скорости хватит, чтобы покинуть Солнечную систему . Это произойдёт за счёт перехода суммарного углового момента троса (и Земли) в скорость запущенного объекта.

Для достижения ещё больших скоростей можно удлинить трос или ускорить груз за счёт электромагнетизма.

Строительство

Строительство ведётся с геостационарной станции. Это единственное место, где может причалить космический аппарат. Один конец опускается к поверхности Земли, натягиваясь силой притяжения. Другой, для уравновешивания, - в противоположную сторону, натягиваясь центробежной силой. Это означает, что все материалы для строительства должны быть подняты на геостационарную орбиту традиционным способом, независимо от места назначения груза. То есть, стоимость подъёма всего космического лифта на геостационарную орбиту - минимальная цена проекта.

Экономия от использования космического лифта

Предположительно, космический лифт позволит намного снизить затраты на посылку грузов в космос. Строительство космических лифтов обойдётся дорого, но их операционные расходы невелики, поэтому их разумнее всего использовать в течение длительного времени для очень больших объёмов груза. В настоящее время рынок запуска грузов может быть недостаточно велик, чтобы оправдать строительство лифта, но резкое уменьшение цены должно привести к большему разнообразию грузов. Таким же образом оправдывает себя прочая транспортная инфраструктура - шоссе и железные дороги.

Пока ещё нет ответа на вопрос, вернёт ли космический лифт вложенные в него деньги или лучше будет вложить их в дальнейшее развитие ракетной техники.

Не следует забывать о лимите количества спутников-ретрансляторов на геостационарной орбите: в настоящее время международными соглашениями допускается 360 спутников - один ретранслятор на угловой градус, во избежание помех при трансляции в полосе K u -частот. Для C-частот число спутников ограничено 180.

Данное обстоятельство объясняет настоящую коммерческую несостоятельность проекта, так как основные финансовые затраты негосударственных организаций ориентированы на спутники-ретрансляторы, занимающие либо геостационарную орбиту (телевидение, связь), либо более низкие орбиты (системы глобального позиционирования, наблюдения за природными ресурсами и т. п.).

Однако лифт может быть гибридным проектом и помимо функции доставки груза на орбиту оставаться базой для других научно-исследовательских и коммерческих программ, не связанных с транспортом.

Достижения

В США с 2005 года проводятся ежегодные соревнования Space Elevator Games, организованные фондом Spaceward при поддержке NASA . В этих состязаниях существуют две номинации: «лучший трос» и «лучший робот (подъёмник)».

В конкурсе подъёмников робот должен преодолеть установленное расстояние, поднимаясь по вертикальному тросу со скоростью не ниже установленной правилами (в соревнованиях 2007 года нормативы были следующими: длина троса - 100 м, минимальная скорость - 2 м/с). Лучший результат 2007 года - преодолённое расстояние в 100 м со средней скоростью 1,8 м/с.

Общий призовой фонд соревнований Space Elevator Games в 2009 году составлял 4 миллиона долларов.

В конкурсе на прочность троса участникам необходимо предоставить двухметровое кольцо из сверхпрочного материала массой не более 2 грамм, которое специальная установка проверяет на разрыв. Для победы в конкурсе прочность троса должна минимум на 50 % превосходить по этому показателю образец, уже имеющийся в распоряжении у NASA. Пока лучший результат принадлежит тросу, выдержавшему нагрузку вплоть до 0,72 тонны.

В этих соревнованиях не принимает участие компания Liftport Group, получившая известность благодаря своим заявлениям запустить космический лифт в 2018 году (позднее этот срок был перенесён на 2031 год). Liftport проводит собственные эксперименты, так в 2006 году роботизированный подъёмник взбирался по прочному канату, натянутому с помощью воздушных шаров. Из полутора километров подъёмнику удалось пройти путь лишь в 460 метров. В августе-сентябре 2012 г компания запустила проект по сбору средств на новые эксперименты с подъемником на сайте Kickstarter . В зависимости от собранной суммы планируется подъем робота на 2 или более километров .

На соревнованиях Space Elevator Games с 4 по 6 ноября 2009 года прошло состязание, организованное Spaceward Foundation и NASA, в Южной Калифорнии, на территории центра Драйдена (Dryden Flight Research Center), в границах знаменитой авиабазы Эдвардс . Зачётная длина троса составила 900 метров, трос был поднят при помощи вертолёта. Лидерство заняла компания LaserMotive представившая подъёмник со скоростью 3,95 м/с, что очень близко к требуемой скорости. Всю длину троса лифт преодолел за 3 минуты 49 секунд, на себе лифт нес полезную нагрузку 0,4 кг. .

Схожие проекты

Космический лифт является не единственным из проектов, который использует тросы для вывода спутников на орбиту. Одним из таких проектов является Orbital Skyhook (орбитальный крюк). Skyhook использует не очень длинный, в сравнении с космическим лифтом, трос, который находится на околоземной орбите, и быстро вращается вокруг своей средней части. За счет этого один конец троса движется относительно Земли с относительно невысокой скоростью, и на него можно подвешивать грузы с гиперзвуковых самолётов. При этом конструкция Skyhook работает как гигантский маховик - накопитель вращательного момента и кинетический энергии. Достоинством проекта Skyhook является её реализуемость уже при существующих технологиях. Недостатком является то, что на запуск спутников Skyhook расходует энергию своего движения, и эту энергию будет необходимо как-то восполнять.

Космический лифт в различных произведениях

  • В фильме СССР 1972 года Петька в космосе главный герой изобретает космический лифт.
  • Одно из знаменитых произведений Артура Кларка , Фонтаны рая , основано на идее космического лифта. Кроме того, космический лифт фигурирует и в заключительной части его знаменитой тетралогии Космическая Одиссея (3001: Последняя одиссея).
  • В сериале «Звёздный путь: Вояджер » в эпизоде 3x19 «Rise» (Подъем) космический лифт помогает экипажу вырваться с планеты с опасной атмосферой.
  • В игре Civilization IV есть космический лифт. Там он - одно из поздних «Больших чудес».
  • В фантастическом романе Тимоти Зана «Шелкопряд» («Spinneret», 1985) упоминается планета способная производить суперволокно. Одна из рас заинтересовавшаяся планетой хотела получить это волокно именно для строительства космического лифта.
  • В фантастическом романе Франка Шетцинга «Limit» космический лифт действует как основное звено политической интриги в ближайшем будущем.
  • В дилогии Сергея Лукьяненко «Звёзды - холодные игрушки » одна из внеземных цивилизаций в процессе межзвёздной торговли поставила на Землю сверхпрочные нити, которые могли бы быть использованы для строительства космического лифта. Но внеземные цивилизации настаивали исключительно на использовании их по прямому назначению - для помощи при проведении родов.
  • В фантастическом романе Дж. Скальци «Обреченные на победу» (англ. Scalzi, John. Old Man’s War ) системы космических лифтов активно используются на Земле, многочисленных земных колониях и некоторых планетах других высокоразвитых разумных рас для сообщения с причалами межзвёздных кораблей.
  • В фантастическом романе Александра Громова «Завтра наступит вечность» сюжет построен вокруг факта существования космического лифта. Существует два устройства - источник и приемник, которые посредством «энергетического луча» способны поднимать «кабину» лифта на орбиту.
  • В фантастическом романе Аластера Рейнольдса «Город Бездны» дается подробное описание строения и функционирования космического лифта, описан процесс его разрушения (в результате теракта).
  • В фантастическом романе Терри Пратчетта «Страта» присутствует «Линия» - сверхдлинная искусственная молекула, используемая в качестве космического лифта.
  • Упоминается в песне группы Звуки Му «Лифт на небо».
  • В самом начале игры Sonic Colors, можно видеть, как Соник и Теилз поднимаются на космическом лифте, чтобы попасть в Парк Доктора Эггмана.
  • В книге Александра Зорича «Сомнамбула 2» из серии Этногенез , главный герой Матвей Гумилев (после подсадки суррогатной личности-Маским Верховцев, личный пилот товарища Альфы, главы «Звездных борцов») путешествует на орбитальном лифте.
  • В повести «Змееныш» писателя-фантаста Александра Громова герои пользуются космическим лифтом «по дороге» с Луны на землю.
  • В цикле фантастических романов Джорджа Мартина «Путешествия Тафа» на планете «С"атлем» орбитальный лифт ведет к планетоиду, обустроенному, как космопорт.

В манге и аниме

  • В третьем эпизоде аниме Кибер-город Эдо с помощью космического лифта можно было подняться на орбитальный криогенный банк.
  • В Battle Angel фигурирует циклопический космический лифт, на одном конце которого находится Небесный Город Салем (для граждан) вместе с нижним городом (для не-граждан), а на другом конце находится космический город Йеру. Аналогичная конструкция находится и на другой стороне Земли.
  • В аниме Mobile Suit Gundam 00 присутствуют три космических лифта, на них также крепится кольцо из солнечных батарей, что позволяет использовать космический лифт ещё и для добычи электроэнергии.
  • В аниме Z.O.E. Dolores присутствует космический лифт, а также показано что может быть в случае теракта.
  • Космический лифт упоминается в аниме-сериале Кровь Триединства , в нём противовесом служит космический корабль «Arc».

См. также

  • Космический лифт: 2010 (англ.) русск.

Примечания

Литература

  • Юрий Арцутанов «В космос - на электровозе», газета «Комсомольская правда » от 31 июля 1960 года.
  • Александр Болонкин «Non-Rocket Space Launch and Flight», Elsevier, 2006, 488 pgs.

IV Межрегиональная конференция школьников

«Дорога к звездам»

Космический лифт – фантастика или реальность?

Выполнил:

____________________

Руководитель:

___________________

Ярославль

    Введение

    Идеи космического лифта К.Э. Циолковского, Ю.Н. Арцутанова, Г.Г. Полякова

    Конструкция космического лифта

    Описание современных проектов

    Заключение

Введение

В 1978 году выходит в свет научно – фантастический роман Артура Кларка «Фонтаны рая» (The Fountains of Paradise), посвященный идее строительства космического лифта. Действия происходят в XXII веке на несуществующем острове Тапробан, который, как указывает автор в предисловии, на 90% соответствует острову Цейлон (Шри-Ланка).

Нередко фантасты предсказывают появление изобретения не своего века, а намного более позднего времени.

Что же такое космический лифт?

Космический лифт - концепция инженерного сооружения для безракетного запуска грузов в космос. Данная гипотетическая конструкция основана на применении троса, протянутого от поверхности планеты к орбитальной станции, находящейся на ГСО. Впервые подобную мысль высказал Константин Циолковский в 1895 году, детальную разработку идея получила в трудах Юрия Арцутанова.

Целью данной работы является изучение возможности построения космического лифта.

Идеи космического лифта К.Э. Циолковского, Ю.Н. Арцутанова и Г.Г. Полякова

Константин Циолковский - русский и советский ученый-самоучка, и изобретатель, школьный учитель. Основоположник теоретической космонавтики. Обосновал использование ракет для полётов в космос, пришёл к выводу о необходимости использования «ракетных поездов» - прототипов многоступенчатых ракет. Основные научные труды относятся к аэронавтике, ракетодинамике и космонавтике.

Представитель русского космизма, член Русского общества любителей мироведения. Автор научно-фантастических произведений, сторонник и пропагандист идей освоения космического пространства. Циолковский предлагал заселить космическое пространство с использованием орбитальных станций. Считал, что развитие жизни на одной из планет Вселенной достигнет такого могущества и совершенства, что это позволит преодолевать силы тяготения и распространять жизнь по Вселенной.

В 1895 году русский ученый Константин Эдуардович Циолковский первым сформулировал понятие и концепцию космического лифта. Он описал отдельно стоящее сооружение, уходящее от уровня земли до геостационарной орбиты. Возвышаясь на 36 тысяч километров над экватором и следуя в направлении вращения Земли, в конечной точке с орбитальным периодом ровно в один день эта конструкция сохранялась бы в фиксированном положении.

Ю
рий Николаевич Арцутанов - русский инженер, родившийся в Ленинграде. Выпускник Ленинградского

технологического института, известен как один из пионеров идеи космического лифта. В 1960 году он написал статью «В Космос - на электровозе», где он обсудил концепцию космического лифта как экономически выгодный, безопасный и удобный способ доступа к орбите для облегчения освоения космоса.

Юрий Николаевич развил идею Константина Циолковского. Концепция Арцутанова была основана на связывании геосинхронных спутников кабелем с Землей. Он предложил использовать спутник в качестве базы, с которой можно построить башню, так как геосинхронный спутник останется над неподвижной точкой на экваторе. С помощью противовеса кабель будет спущен с геосинхронной орбиты на поверхность Земли, в то время как противовес будет отдаляться от Земли, удерживая центр масс кабеля неподвижно относительно Земли.

Арцутанов предложил закрепить один конец такой «веревки» на земном экваторе, а ко второму концу, находящемуся далеко за пределами планетной атмосферы, - подвесить уравновешивающий груз. При достаточной длине «веревки» центробежная сила превысила бы силу притяжения и не позволила грузу упасть на Землю. Из приведенных Арцутановым расчетов, следует, что сила притяжения и центробежная сила оказываются равны на высоте около 42 000 километров. Равная нулю равнодействующая этих сил надежно закрепляет «камень» в зените.

Теперь герметичные электровозы побегут вертикально вверх – к орбите. Плавное наращивание скорости и плавное же торможение помогут избежать перегрузок, характерных для отрыва ракеты. После нескольких часов путешествия со скоростью 10 – 20 километров в секунду, последует первая остановка – в точке равноденствия сил, где раскинувшаяся в невесомости перевалочная станция откроет гостям двери баров, ресторанчиков, комнат отдыха – и замечательный вид на Землю из иллюминаторов.

После остановки кабина не только сможет двигаться без затрат энергии, так как её будет отбрасывать от Земли центробежная сила, - но и, вдобавок, генерировать двигателем, переключенным в режим динамо-машины, необходимое для возвращения электричество.

Вторую – и конечную остановку предлагалось сделать на расстоянии 60 000 километров от Земли, где равнодействующая сил сравняется с силой тяжести на земной поверхности, и позволит создать на «конечной станции» искусственную гравитацию. Здесь же, на краю длиннейшей канатной дороги будет располагаться настоящий орбитальный космодром. Он, как и полагается, станет запускать по Солнечной системе космические корабли, придавая им солидную скорость и назначая траекторию.

Не желая ограничиваться примитивным канатом, Юрий Арцутанов навешал на него гелиоэлектростанций, перерабатывающих солнечную энергию в электрический ток, и соленоидов, генерирующих электромагнитное поле. В этом поле должен двигаться «электровоз».

Если оценить вес такого магнитодорожного полотна, учитывая протяженность в 60 000 километров, то получается - сотни миллионов тонн? Гораздо больше. Не одна тысяча ракет потребуется, чтобы отбуксировать эту тяжесть к орбите! В то время это казалось невозможным.

Однако ученый и на этот раз подкинул верную идею: лифт не обязательно строить снизу вверх, как огромную циклопическую башню – достаточно запустить на геостационарную орбиту искусственный спутник, с которого будет спущена первая нить. В сечении эта нить окажется тоньше человеческого волоса, так чтобы вес ее не превосходил тысячу тонн. После того, как свободный конец нити закрепят на земной поверхности, сверху вниз по нити побежит «паук» – легкое устройство, плетущее вторую, параллельную нить. Он будет работать до тех пор, пока канат не станет достаточно толстым, чтобы выдержать «электровоз», электромагнитное полотно, гелиоэлектростанции, комнаты отдыха и рестораны.

Вполне объяснимо, почему в эпоху космических гонок идея Юрия Валерьевича Арцутанова осталась никем не замеченной. Тогда не было ни одного материала способного выдержать столь высокое давление разрыва троса.

В развитие идей Арцутанова свой проект космического лифта в 1977 году предложил Георгий Поляков из Астраханского педагогического института.

Принципиально этот лифт почти ничем не отличается от вышеописанного. Поляков лишь указывает: реальный космический лифт будет устроен куда сложнее, чем описанный Арцутановым. Фактически он будет состоять из ряда простых лифтов с последовательно уменьшающимися длинами. Каждый представляет собой самоуравновешенную систему, но лишь благодаря одному из них, что достигает Земли, обеспечивается устойчивость всей конструкции.

Длина лифта (примерно 4 диаметра Земли) выбрана с таким расчетом, чтобы аппарат, отделившийся от его верхушки, сумел бы уйти по инерции в открытый космос. В верхней точке будет смонтирован стартовый пункт для межпланетных кораблей. А возвращающиеся из полета корабли, предварительно выйдя на стационарную орбиту, «прилифтуются» в районе базы.

С конструкторской точки зрения космический лифт представляет собой две параллельные трубы или шахты прямоугольного сечения, толщина стенок которых изменяется по определенному закону. По одной из них кабины движутся вверх, а по другой - вниз. Конечно, ничто не мешает соорудить несколько таких пар. Труба может быть не сплошной, а состоящей из множества параллельных тросов, положение которых фиксируется серией поперечных прямоугольных рамок. Это облегчает монтаж и ремонт лифта.

Кабины лифта - просто площадки, приводимые в движение индивидуальными электродвигателями. На них крепятся грузы или жилые модули - ведь путешествие в лифте может продолжаться неделю, а то и больше.

В целях экономии энергии можно создать систему, напоминающую канатную дорогу. Она состоит из ряда шкивов, через которые перекинуты замкнутые тросы с подвешенными на них кабинами. Оси шкивов, где смонтированы электродвигатели, закреплены на несущей лифта. Здесь вес поднимающихся и опускающихся кабин взаимно уравновешен, и, следовательно, энергия расходуется лишь на преодоление трения.

Для соединительных «нитей», из которых собственно и образуется лифт, необходимо использовать материал, у которого отношение разрывного напряжения к плотности в 50 раз больше, чем у стали. Это могут быть разнообразные «композиты», пеностали, бериллиевые сплавы или кристаллические усы...

Впрочем, Георгий Поляков не останавливается на уточнении характеристик космического лифта. Он указывает на то обстоятельство, что уже до конца XX века геосинхронная орбита будет густо «усеяна» космическими аппаратами самых различных типов и назначений. А поскольку все они будут практически неподвижны относительно нашей планеты, представляется весьма заманчивым связать их с Землей и между собой с помощью космических лифтов и кольцевой транспортной магистрали.

На основании этого соображения Поляков выдвигает идею космического «ожерелья» Земли. Ожерелье послужит своеобразной канатной (или рельсовой) дорогой между орбитальными станциями, а также обеспечит им устойчивое равновесие на геосинхронной орбите.

Так как длина «ожерелья» весьма велика (260 000 километров), на нем можно разместить очень много станций. Если, скажем, поселения отстоят друг от друга на 100 километров, то их число составит 2600. При населении каждой станции в 10 тысяч на кольце будут обитать 26 миллионов человек. Если же размеры и количество таких «астрогородов» увеличить, эта цифра резко возрастет.

Конструкция космического лифта

Основание

Основание космического лифта - это место на поверхности планеты, где прикреплён трос и начинается подъём груза. Оно может быть подвижным, размещённым на океанском судне. Преимущество подвижного основания - возможность совершения маневров для уклонения от ураганов и бурь. Преимущества стационарной базы - более дешёвые и доступные источники энергии, и возможность уменьшить длину троса. Разница в несколько километров троса сравнительно невелика, но может помочь уменьшить требуемую толщину его средней части и длину части, выходящей за геостационарную орбиту. Дополнительно к основанию может быть размещена площадка на стратостатах, для уменьшения веса нижней части троса с возможностью изменения высоты для избегания наиболее бурных потоков воздуха, а также гашения излишних колебаний по всей длине троса.

Трос

Трос должен быть изготовлен из материала с чрезвычайно высоким отношением предела прочности к удельной плотности. Космический лифт будет экономически оправдан, если можно будет производить в промышленных масштабах за разумную цену трос плотности, сравнимой с графитом, и прочностью около 65-120 гигапаскалей. Для сравнения, прочность большинства видов стали - около 1 ГПа, и даже у прочнейших её видов - не более 5 ГПа, причём сталь тяжела. У гораздо более лёгкого кевлара прочность в пределах 2,6-4,1 ГПа, а у кварцевого волокна - до 20 ГПа и выше. Углеродные нанотрубки должны, согласно теории, иметь растяжимость гораздо выше, чем требуется для космического лифта. Однако технология их получения в промышленных количествах и сплетения их в кабель только начинает разрабатываться. Теоретически их прочность должна быть более 120 ГПа, но на практике самая высокая растяжимость однослойной нанотрубки была 52 ГПа, а в среднем они ломались в диапазоне 30-50 ГПа. Самая прочная нить, сплетённая из нанотрубок, будет менее прочной, чем её компоненты.

В эксперименте учёных из Университета Южной Калифорнии (США) однослойные углеродные нанотрубки продемонстрировали удельную прочность, в 117 раз превышающую показатели стали и в 30 - кевлар. Удалось выйти на показатель в 98,9 ГПа, максимальное значение длины нанотрубки составило 195 мкм. По заявлениям некоторых учёных, даже углеродные нанотрубки никогда не будут достаточно прочны для изготовления троса космического лифта.

Эксперименты учёных из Технологического университета Сиднея позволили создать графеновую бумагу. Испытания образцов внушают оптимизм: плотность материала в пять-шесть раз ниже, чем у стали, при этом прочность на разрыв в десять раз выше, чем у углеродистой стали. При этом графен является хорошим проводником электрического тока, что позволяет использовать его для передачи мощности подъёмнику в качестве контактной шины.

В июне 2013 года инженеры из Колумбийского университета США сообщили о новом прорыве: благодаря новой технологии получения графена удается получать листы, с размером по диагонали в несколько десятков сантиметров и прочностью лишь на 10% меньше теоретической.

Утолщение троса

Космический лифт должен выдерживать, по крайней мере, свой вес, весьма немалый из-за длины троса. Утолщение с одной стороны повышает прочность троса, с другой - прибавляет его вес, а, следовательно, и требуемую прочность. Нагрузка на него будет различаться в разных местах: в одних случаях участок троса должен выдерживать вес сегментов, находящихся ниже, в других - выдерживать центробежную силу, удерживающую верхние части троса на орбите. Для удовлетворения этому условию и для достижения оптимальности троса в каждой его точке, толщина его будет непостоянной.

Можно показать, что с учётом гравитации Земли и центробежной силы, НО, не учитывая меньшее влияние Луны и Солнца, сечение троса в зависимости от высоты будет описываться следующей формулой:

Где - площадь сечения троса как функция расстояния r от центра Земли.

В формуле используются следующие константы:

- площадь сечения троса на уровне поверхности Земли.

- плотность материала троса.

- предел прочности материала троса.

- круговая частота вращения Земли вокруг своей оси, 7,292·10−5 радиан в секунду.

- расстояние между центром Земли и основанием троса. Оно приблизительно равно радиусу Земли, 6 378 км.

- ускорение свободного падения у основания троса, 9,780 м/с².

Это уравнение описывает трос, толщина которого сначала экспоненциально увеличивается, потом её рост замедляется на высоте нескольких земных радиусов, а потом она становится постоянной, достигнув, в конце концов, геостационарной орбиты. После этого толщина снова начинает уменьшаться.

Таким образом, отношение площадей сечений троса у основания и на ГСО (r = 42 164 км) есть:

П
одставив сюда плотность и прочность стали, и диаметр троса на уровне Земли в 1 см, мы получим диаметр на уровне ГСО в несколько сот километров, что означает, что сталь и прочие привычные нам материалы непригодны для строительства лифта.

Отсюда следует, что есть четыре способа добиться более разумной толщины троса на уровне ГСО:

    Использовать менее плотный материал. Поскольку плотность большинства твёрдых тел лежит в относительно небольшом диапазоне от 1000 до 5000 кг/м³, здесь вряд ли получится чего-то добиться.

    Использовать более прочный материал. В этом направлении в основном и идут исследования. Углеродные нанотрубки в десятки раз прочнее лучшей стали, и они позволят значительно уменьшить толщину троса на уровне ГСО. Тот же расчет, выполненный из предположения, что плотность троса равна плотности углеволокна ρ = 1,9 г/см3 (1900 кг/м3), с предельной прочностью σ = 90 ГПА (90·109 Па) и диаметром троса у основания 1 см (0.01 м), позволяет получить диаметр троса на ГСО всего 9 см.

    Поднять повыше основание троса. Из-за наличия экспоненты в уравнении даже небольшое поднятие основания позволит сильно понизить толщину троса. Предлагаются башни высотой до 100 км, которые, кроме экономии на тросе, позволят избежать влияния атмосферных процессов.

    Сделать основание троса как можно тоньше. Он все равно должен быть достаточно толстым, чтобы выдержать подъёмник с грузом, так что минимальная толщина у основания также зависит от прочности материала. Тросу из углеродных нанотрубок достаточно иметь у основания толщину всего в один миллиметр.

    Ещё способ - сделать основание лифта подвижным. Движение даже со скоростью 100 м/с уже даст выигрыш в круговой скорости на 20 % и сократит длину кабеля на 20-25 %, что облегчит его на 50 и более процентов. Если же «заякорить» кабель на сверхзвуковом самолёте, или поезде, то выигрыш в массе кабеля уже будет измеряться не процентами, а десятками раз (но не учтены потери на сопротивление воздуха). Также есть идея вместо троса из нанотрубок использовать условные силовые линии магнитного поля Земли.

Противовес

Противовес может быть создан двумя способами - путём привязки тяжёлого объекта (например, астероида, космического поселения или космического дока) за геостационарной орбитой или продолжения самого троса на значительное расстояние за геостационарную орбиту. Второй вариант интересен тем, что с конца удлинённого троса проще запускать грузы на другие планеты, поскольку он обладает значительной скоростью относительно Земли.

Угловой момент, скорость и наклон

Горизонтальная скорость каждого участка троса растёт с высотой пропорционально расстоянию до центра Земли, достигая на геостационарной орбите первой космической скорости. Поэтому при подъёме груза ему нужно получить дополнительный угловой момент (горизонтальную скорость). Угловой момент приобретается за счёт вращения Земли. Сначала подъёмник движется чуть медленнее троса (эффект Кориолиса), тем самым «замедляя» трос и слегка отклоняя его к западу. При скорости подъёма 200 км/ч трос будет наклоняться на 1 градус. Горизонтальная компонента натяжения в невертикальном тросе тянет груз в сторону, ускоряя его в восточном направлении - за счёт этого лифт приобретает дополнительную скорость. По третьему закону Ньютона трос замедляет Землю на небольшую величину, и противовес на большую величину, в результате замедления вращения противовеса трос начнет наматываться на землю. В то же время влияние центробежной силы заставляет трос вернуться в энергетически выгодное вертикальное положение, так что он будет находиться в состоянии устойчивого равновесия. Если центр тяжести лифта будет всегда выше геостационарной орбиты независимо от скорости подъёмников, он не упадёт. К моменту достижения грузом геостационарной орбиты (ГСО) его угловой момент достаточен для вывода груза на орбиту. Если груз не высвободить с троса, то остановившись вертикально на уровне ГСО, он будет находиться в состоянии неустойчивого равновесия, а при бесконечно малом толчке вниз, сойдет с ГСО и начнет опускаться на Землю с вертикальным ускорением, при этом замедляясь в горизонтальном направлении. Потеря кинетической энергии от горизонтальной составляющей при спуске будет передаваться через трос, угловому моменту вращения Земли, ускоряя её вращение. При толчке вверх груз также сойдет с ГСО, но в противоположном направлении, то есть начнет подниматься по тросу с ускорением от Земли, достигнув конечной скорости на конце троса. Поскольку конечная скорость зависит от длины троса, её величина, таким образом, может быть задана произвольно. Следует отметить, что ускорение и прирост кинетической энергии груза при подъеме, то есть его раскручивание по спирали, будут происходить за счет вращения Земли, которое при этом замедлится. Данный процесс полностью обратим, то есть если на конец троса надеть груз и начать его опускать, сжимая по спирали, то угловой момент вращения Земли соответственно увеличится. При спуске груза будет происходить обратный процесс, наклоняя трос на восток.

Запуск в космос

На конце троса высотой в 144 000 км тангенциальная составляющая скорости составит 10,93 км/с, что более чем достаточно, чтобы покинуть гравитационное поле Земли и запустить корабли к Сатурну. Если объекту позволить свободно скользить по верхней части троса, его скорости хватит, чтобы покинуть Солнечную систему. Это произойдёт за счёт перехода суммарного углового момента троса (и Земли) в скорость запущенного объекта. Для достижения ещё больших скоростей можно удлинить трос или ускорить груз за счёт электромагнетизма.

Описание современных проектов

В середине и в конце 20-го века появились более подробные предложения. Возлагались надежды, что космический лифт сделает революцию в доступе к околоземному космическому пространству, к Луне, Марсу и даже далее. Данное сооружение смогло бы раз и навсегда решить проблему, связанную с отправкой человека в космос. Лифт очень помог бы многим космическим агентствам в доставке астронавтов на орбиту нашей планеты. Его создание может означать конец загрязняющим пространство ракетам. Однако стартовые инвестиции и уровень необходимых технологий ясно давали понять, что такой проект нецелесообразен и отводили ему место в области научной фантастики.

Возможно ли решить проблему такого строительства в данный момент? Сторонники космических лифтов считают, что в настоящее время достаточно возможностей для решения данной технической задачи. Они считают, что космические ракеты устарели и наносят непоправимый вред природе и слишком дороги для современного общества.

Камень преткновения лежит в том, как построить такую систему. «Для начала она должна быть создана из пока не существующего, но прочного и гибкого материала с нужной массой и характеристиками плотности, чтобы поддерживать транспорт и выдержать невероятное воздействие внешних сил, - говорит Фонг. - Думаю, все это потребует серии самых амбициозных орбитальных миссий и космических прогулок на низкой и высокой околоземной орбитах в истории нашего вида».

Есть также проблемы безопасности, добавляет он. «Даже если бы мы могли решить существенные технические трудности, связанные со строительством такой штуки, вырисовывается страшная картина гигантского сыра с дырками, пробитыми всем этим космическим мусором и обломками наверху».

Учёные всего мира разрабатывают идею космического лифта. Японцы в начале 2012 года объявили о том, что они планируют построить космический лифт. Американцы об этом же сообщили в конце 2012-го. В 2013-м СМИ вспомнили о русских корнях "космического лифта". Так, когда же данные идеи станут реальностью?

Концепция Японской корпорации Obayashi

Корпорация предлагает следующий способ постройки: один конец троса очень высокой прочности удерживается массивной платформой в океане, а второй - закрепляется на орбитальной станции. По канату перемещается специально спроектированная кабинка, которая может доставлять грузы, астронавтов или, скажем, космических туристов.

В качестве материала для троса Obayashi рассматривает углеродные нанотрубки, которые в десятки раз прочнее стали. Но проблема заключается в том, что в настоящее время длина таких нанотрубок ограничивается примерно 3 см, в то время как для космического лифта потребуется трос общей протяжённостью в 96 000 км. Ожидается, что преодолеть существующие трудности станет возможно ориентировочно в 2030-х годах, после чего начнётся практическая реализация концепции космического лифта.

Obayashi уже рассматривает возможность создания особых туристических кабинок, рассчитанных на перевозку до 30 пассажиров. Кстати, путь на орбиту по тросу из углеродных нанотрубок будет занимать семь дней, поэтому придётся предусмотреть необходимые системы обеспечения жизнедеятельности, запас еды и воды.

Запустить космический лифт Obayashi рассчитывает только к 2050 году.

Космический лифт компании LiftPort Group

Не только Земля станет объектом, где будет сооружен такой лифт. По мнению группы экспертов из компании LiftPort Group в качестве такого объекта вполне может выступить и Луна.

Основой лунного космического лифта является плоский ленточный кабель, изготовленный из высокопрочного материала. По этому кабелю на поверхность Луны и назад будут ходить транспортные гондолы, доставляющие людей, различные материалы, механизмы и роботов.

«Космический» конец кабеля будет удерживаться космической станцией PicoGravity Laboratory (PGL), находящейся в точке Лагранжа L1 системы Луна-Земля, в точке, где гравитация Луны и Земли взаимно уравновешивают друг друга. На Луне конец кабеля будет присоединен к якорной станции Anchor Station, находящейся в районе Sinus Medi (приблизительно в середине «лица» Луны, смотрящего на Землю) и входящей в состав инфраструктуры космического лифта Lunar Space Elevator Infrastructure.

Натяжение кабеля космического лифта будет осуществляться противовесом, который будет удерживаться более тонким кабелем длиной в 250 тысяч километров, и который будет находиться уже во власти земной гравитации. Космическая станция PicoGravity Laboratory будет иметь модульную структуру, наподобие структуры существующей Международной космической станции, что позволит без особого труда производить ее расширение и добавлять стыковочные узлы, позволяющие стыковаться со станцией космическим кораблям различных типов.

Основной целью данного проекта является отнюдь не строительство самого космического лифта. Этот лифт станет лишь средством доставки на Луну автоматических аппаратов, которые в автономном режиме будут вести добычу различных полезных ископаемых, в том числе редкоземельных металлов и гелия-3, который является перспективным топливом для будущих реакторов термоядерного синтеза и, возможно, топливом для космических кораблей будущего.

«К сожалению, данный проект пока практически невыполним в связи с отсутствием у людей множества ключевых технологий. Но исследования большинства таких технологий уже ведутся некоторое время, и обязательно наступит тот момент, когда строительство космического лифта перейдет из разряда научной фантастики в область практически выполнимых вещей».

Специалисты компании LiftPort Group обещают сделать рабочий детализированный проект сооружения к концу 2019 года.

«Общепланетное транспортное средство»

Рассмотрим проект, получивший название «Общепланетное транспортное средство» (ОТС). Его выдвинул и обосновал инженер Анатолий Юницкий из Гомеля.

В 1982 году в журнале «Техника молодежи» была опубликована статья, в которой автор утверждает, что у человечества в скором времени появится потребность в принципиально новом транспортном средстве, способном обеспечивать перевозки на трассе «Земля – космос – Земля».

По мнению А. Юницкого ОТС представляет собой замкнутое колесо поперечным диаметром порядка 10 метров, которое покоится на специальной эстакаде, установленной вдоль экватора. Высота эстакады в зависимости от рельефа колеблется в пределах от нескольких десятков до нескольких сотен метров. Эстакада размещена на плавучих опорах в океанских просторах.

В герметичном канале, расположенном по оси корпуса ОТС, находится бесконечная лента, имеющая магнитную подвеску и являющаяся своеобразным ротором двигателя. В нее наводится ток, который будет взаимодействовать с породившим его магнитным полем, и лента, не испытывающая никакого сопротивления (она размещена в вакууме), придет в движение. Точнее, во вращение вокруг Земли. При достижении первой космической скорости лента станет невесомой. При дальнейшем разгоне ее центробежная сила через магнитную подвеску станет оказывать на корпус ОТС всевозрастающую вертикальную подъемную силу, пока не уравновесит каждый его погонный метр (транспортное средство как бы станет невесомым - чем не антигравитационный корабль?).

В удерживаемое на эстакаде транспортное средство с предварительно раскрученной до скорости 16 км/с верхней лентой, имеющей массу 9 тонн на метр, и точно такой же, но лежащей неподвижно нижней лентой размещают груз и пассажиров. Это делается в основном внутри, а частично и снаружи корпуса ОТС, но так, чтобы нагрузка в целом была равномерно распределена. После освобождения от захватов, удерживающих ОТС на эстакаде, его диаметр под действием подъемной силы начнет медленно расти, а каждый его погонный метр - подниматься над Землей. Поскольку форма окружности отвечает минимуму энергии, то транспортное средство, до этого копировавшее профиль эстакады, примет после подъема форму идеального кольца.

Скорость подъема ОТС на любом из участков пути может быть задана в широких пределах: от скорости пешехода до скорости самолета. Атмосферный участок транспортное средство проходит на минимальных скоростях.

По оценке Анатолия Юницкого, общая масса ОТС составит 1,6 миллиона тонн, грузоподъемность - 200 миллионов тонн, пассажировместимость - 200 миллионов человек. Расчетное число выходов ОТС в космос за пятидесятилетний срок службы - 10 тысяч рейсов.

Заключение

Существует множество проектов космического лифта, и все они мало отличаются от того, что предлагал Арцупанов, но теперь учёные исходят из того, что материалы из нанотрубок станут доступны.

Космический лифт изменит космическую индустрию: люди и груз будут доставляться на орбиту со значительно более низкими затратами по сравнению с традиционными запусками ракет-носителей.

Будем надеяться, что во второй половине 21 – го века космические лифты станут функционировать за пределами Земли: на Луне, Марсе и других уголках Солнечной Системы. С развитием технологий стоимость строительства будет постепенно снижаться.

Несмотря на то, что это время кажется далеким и недосягаемым, именно от нас зависит, каким будет будущее и как быстро оно наступит.

Просматривал сейчас научные задачи, за которые предлагают большое вознаграждение и наткнулся на такую, странную - протянуть трос в космос.

Впервые гипотетическая идея постройки такой конструкции, которая будет основана на применении троса, протянутого от поверхности планеты к орбитальной станции, была высказана ещё в 1895 году Константином Циолковским. С тех пор, не смотря на все достижения науки и техники, проект остаётся только на стадии идеи.

Сколько же призовой фонд этого проекта?

С 2005 года в США проходят ежегодные соревнования Space Elevator Games, организованные фондом Spaceward при поддержке NASA. В этих состязаниях существуют две номинации: «лучший трос» и «лучший робот (подъёмник)».

То есть для того, чтобы получить премию, вам совсем не нужно строить полностью рабочий космический лифт. Достаточно разработать идею подходящего троса или подходящего подъёмника и соорудить их прототипы. В 2009 году общий призовой фонд Space Elevator Games составлял $4 000 000.

А в чем такой интерес именно к этому методу подъема в космос? Можно подумать о дешевизне? Но обслуживать настолько сложную инфраструктуру, поднимать трос, ликвидировать обрыв - может статься дороже чем запустить ракету. А какую массу можно будет поднять по такому тросу? Не думаю что много, да и затраты энергии тоже надо учесть.

Вот какие идеи сейчас бродят в умах исследователей и конструкторов по поводу ЛИФТА В КОСМОС.

Лифты, которые могут перевозить людей и груз с поверхности планеты в космос, могут означать конец загрязняющим пространство ракетам. Но сделать такой лифт крайне сложно. Концепция космических лифтов была известна давным-давно и введена еще Константином Эдуардовичем Циолковским, но с тех пор мы даже ни на йоту не приблизились к практическому воплощению такого механизма. Элон Маск в твиттере недавно написал: «И, пожалуйста, не задавайте мне вопросы по поводу космических лифтов, пока мы не вырастим материал из углеродных нанотрубок длиной хотя бы в метр».

Элон Маск, по мнению многих, визионер нашего времени — пионер частного освоения космоса и человек, стоящий за идеей транспортной системы Hyperloop, способной перевозить людей из Лос-Анджелеса в Сан-Франциско по металлической трубе всего за 35 минут. Но есть некоторые идеи, которые даже он считает слишком надуманными. В том числе и космический лифт.

«Это невероятно сложно. Я не думаю, что построить космический лифт — реалистичная идея», — заявил Маск в ходе конференции в MIT в прошлом октябре, добавив, что проще было бы построить мост из Лос-Анджелеса в Токио, чем лифт, который сможет вывозить материалы в космос.

Отправка людей и полезных грузов в космос в капсулах, которые тянутся вдоль гигантского кабеля, удерживаемого на месте вращением Земли, была показана в работах научных фантастов вроде Артура Кларка, но едва ли представлялась целесообразной в реальном мире. Получается, мы обманываем сами себя, и наших способностей недостаточно, чтобы решить эту сложнейшую техническую задачу?

Сторонники космических лифтов считают, что достаточно. Они считают химические ракеты устаревшими, рискованными, наносящими вред окружающей среде и пожирающими финансы. Их альтернатива — это, по существу, железнодорожная линия в космос: работающий на электричестве космический аппарат, движущийся от якоря на Земле по сверхпрочному тросу, связанному с противовесом на геостационарной орбите вокруг планеты. После ввода в эксплуатацию космические лифты могли бы доставлять полезный груз в космос всего за 500 долларов за килограмм, что несравнимо с 20 000 долларов за килограмм по нынешним расценкам.

«Эта феноменально эффективная технология могла бы открыть Солнечную систему для человечества, — говорит Питер Свон, президент Международного консорциума космического лифта. — Я думаю, первые лифты будут роботизированными, а уже через 10-15 лет мы сделаем от шести до восьми лифтов, которые будут достаточно безопасными и для того, чтобы возить людей».

К сожалению, такая структура должна быть не только в 100 000 километров длиной — больше чем окружность Земли в два раза, — ей также нужно поддерживать свой собственный вес. Пока на Земле нет никакого материала с такими свойствами.

Но некоторые ученые считают, что его можно сделать — и оно станет реальностью уже в течение этого века. Крупная японская строительная компания пообещала создать его к 2050 году. Американские исследователи, недавно разработавшие алмазоподобный материал из нановолокон, тоже полагают, что трос для космического лифта появится уже до конца века.

Конструкция такого невероятного сооружения будет основана на специальном тросе, сделанном из тонких и сверхпрочных углеродных нанотрубок. Этот трос будет иметь длину 96 тысяч километров.

По законам физики, центробежная сила вращения не даст упасть такому тросу, растягивая его по всей длине. В случае успеха, подъемник сможет перемещаться со скоростью 200 км/час, поднимая до 30 человек в кабине. На высоте 36 тысяч километров, которой лифт будет достигать за неделю, планируется остановка. На такую высоту лифт будет поднимать туристов, а исследователи и специалисты смогут подняться до самого верха.

Современные идеи космического лифта уходят корнями в 1895 год, когда Константин Циолковский вдохновился недавно построенной Эйфелевой башней в Париже и рассчитал физику постройки здания, уходящего в космос, чтобы космические аппараты можно было запускать с орбиты без ракет. В романе Артура Кларка 1979 года «Фонтаны рая» главный герой строит космический лифт с аналогичной конструкцией, представляемой сегодня.

Но как воплотить ее в реальность? «Мне нравится эпатажность этой идеи, — говорит Кевин Фонг, основатель Центра высотной, космической и экстремальной медицины при Университетском колледже Лондона. — Я понимаю, почему людям нравится эта идея, ведь если бы вы могли добраться до низкой околоземной орбиты дешево и безопасно, очень скоро внутренняя Солнечная система стала бы в вашем распоряжении».

Вопросы безопасности

Камень преткновения лежит в том, как построить такую систему. «Для начала она должна быть создана из пока не существующего, но прочного и гибкого материала с нужной массой и характеристиками плотности, чтобы поддерживать транспорт и выдержать невероятное воздействие внешних сил, — говорит Фонг. — Думаю, все это потребует серии самых амбициозных орбитальных миссий и космических прогулок на низкой и высокой околоземной орбитах в истории нашего вида».

Есть также проблемы безопасности, добавляет он. «Даже если бы мы могли решить существенные технические трудности, связанные со строительством такой штуки, вырисовывается страшная картина гигантского сыра с дырками, пробитыми всем этим космическим мусором и обломками наверху».

За последние 12 лет было представлено три детализированных рабочих проекта. Первый, опубликованный Брэдом Эдвардсом и Эриком Вестлингом в книге 2003 года «Космические лифты», предвидел перевозку 20 тонн полезного груза с питанием на основе земных лазеров по цене 150 долларов за килограмм и с ценой общего строительства в 6 миллиардов долларов.

Взяв эту концепцию за основу, дизайн Международной ассоциации астронавтов 2013 года уже обеспечил кабину защитой от погодных условий на первые 40 километров, а затем оснастил ее солнечными батареями. Транспортировка по этому плану стоит 500 долларов за килограмм, а строительство всей конструкции — 13 миллиардов долларов за первый проект (дальше всегда дешевле).

Эти предложения включают противовес в виде захваченного астероида на орбите Земли. Доклад МАА обозначает, что однажды этот пункт может стать возможным, но не в ближайшем будущем.

Плавающий якорь

Вместо этого, часть весом в 1900 тонн, которая должна поддерживать трос весом в 6300 тонн, может быть собрана из космических аппаратов и транспорта, которые доставляли трос в космос. Также она будет дополняться захваченными спутниками, которые перестали функционировать и остались болтаться на орбите в качестве космического мусора.

Они также предложили представить якорь на Земле плавучей платформой размером с большой танкер или авианосец рядом с экватором, поскольку это увеличило бы его пропускную способность. Предпочтительным местом является точка в 1000 километрах к западу от Галапагосских островов: ураганы, тайфуны и торнадо там считаются редкостью.

Корпорация «Обаяши», одна из пяти крупных строительных компаний Японии, в прошлом году представила планы на обустройство еще более надежного космического лифта, перевозящего роботизированные кары, оснащенные маглевными двигателями вроде тех, что используются на высокоскоростных железнодорожных путях. Они могли бы перевозить людей с необходимой прочностью троса. Такой дизайн обойдется в 100 миллиардов долларов по предварительным расчетам, но транспортировка будет стоить 50-100 долларов за килограмм.

Хотя препятствий, безусловно, много, единственный компонент, без которого строительство космического лифта будет невозможным сегодня, является сам трос, говорит Свон.

«Найти материал, из которого можно сделать трос, это основная технологическая проблема, — говорит он. — Все остальное ерунда. Мы уже можем все это сделать».

Алмазные тросы

Ведущим претендентом является трос, сделанный из углеродных нанотрубок, которые были созданы в лаборатории с пределом прочности на растяжение в 63 гигапаскаль — в 13 раз прочнее самой лучшей стали.

Максимальная длина углеродных нанотрубок неуклонно растет с момента их открытия в 1991 году. В 2013 году китайские ученые достигли уже полуметровой длины. Авторы доклада МАА предвещают длину троса из углеродных нанотрубок в километр к 2022 году, а к 2030 — необходимую для производства космического лифта.

Между тем в сентябре был представлен новый претендент на космический трос. Команда под руководством Джона Баддинга, профессора химии из Университета штата Пенсильвания, опубликовала работу в Nature, в которой рассказала, что создала сверхтонкие алмазные нановолокна, которые могут быть прочнее и жестче углеродных нанотрубок.

Команда начала со сжатия бензола атмосферным давлением в 200 000 атмосфер. Когда после этого давление медленно отпускали, атомы пересобирались в новую, чрезвычайно упорядоченную структуру, подобную тетраэдру.

Эти формы связались вместе, чтобы образовать сверхтонкие нановолокна, чрезвычайно похожие по структуре на алмаз. Хотя пока невозможно замерить их прочность напрямую из-за их размера, теоретические расчеты показали, что волокна могут быть прочнее и жестче, чем самые прочные синтетические материалы современности.

Снижение рисков

«Если бы мы могли научиться делать материалы на основе алмазных нановолокон или углеродных нанотрубок достаточно длинными и качественными, наука подсказывает, что мы могли бы начать строительство космического лифта сразу же», — говорит Баддинг.

Но даже если бы один из таких материалов оказался достаточно прочным, сборка и монтаж отдельных элементов космического лифта остается весьма проблемным мероприятием. Другие головные боли будут включать безопасность, сборку средств, удовлетворение интересов конкурирующих сторон и т. п. Свона, по крайней мере, это не пугает.

«Конечно, будут серьезные проблемы, как и у тех, кто строил первую трансконтинентальную железную дорогу, Панамский и Суэцкий каналы, — говорит он. — Потребуется много времени и денег, но, как и в случае со всеми великими предприятиями, справиться с препятствиями придется лишь однажды».

Даже Маск не может заставить себя дискредитировать эту идею. «Это явно не то, о чем можно говорить сейчас, — сказал он. — Но если бы кто-то переубедил меня, было бы здорово».

А некоторые ученые высказывают такие пять причин, из за которых такой лифт никогда не будет построен:

1. Нет достаточно прочного материала для троса

Нагрузка на трос может превышать 100 000 кг/м., так что материал для его изготовления должен обладать чрезвычайно высокой прочностью для устойчивости к растяжениям, и при этом очень низкой плотностью. Пока такого материала нет — не подходят даже углеродные нанотрубки, считающиеся сейчас самыми прочными и упругими материалами на планете.

К сожалению, технология их получения только начинает разрабатываться. Пока что удаётся получить крошечные кусочки материала: самая длинная нанотрубка, которую удалось создать — пара сантиметров в длину и несколько нанометров в ширину. Удастся ли когда-нибудь сделать из этого достаточно длинный трос, пока неизвестно.

2. Восприимчивость к опасным вибрациям

Трос будет восприимчив к непредсказуемым порывам солнечного ветра — под его воздействием он будет изгибаться, и это отрицательно скажется на стабильности лифта. В качестве стабилизаторов к тросу можно прикрепить микродвигатели, но эта мера создаст дополнительные трудности в плане технического обслуживания сооружения. Кроме того, это затруднит продвижение по тросу специальных кабинок, так называемых «альпинистов». Трос, скорее всего, вступит с ними в резонанс.

3. Сила Кориолиса

Трос и «альпинисты» неподвижны относительно поверхности Земли. А вот по отношению к центру Земли объект будет двигаться со скоростью 1 700 км/ч на поверхности и 10 000 км/ч на орбите. Соответственно, «альпинистам» при запуске надо придать эту скорость. «Альпинист» разгоняется в перпендикулярном тросу направлении, и из-за этого трос будет раскачиваться подобно маятнику. Одновременно с этим возникает сила, пытающаяся оторвать наш трос от Земли. Сила обратно пропорциональна величине прогиба троса и прямо пропорциональна скорости подъема груза и его массе. Таким образом, сила Кориолиса мешает быстро поднимать грузы на геостационарную орбиту.
С силой Кориолиса можно бороться, просто запуская одновременно двух «альпинистов» — с Земли и с орбиты, но тогда сила между двумя грузами будет растягивать трос ещё сильнее. Как вариант — мучительно медленный подъём на гусеничном ходу.

4. Спутники и космический мусор

За последние 50 лет человечество запустило в космос множество объектов — полезных и не очень. Или строителям лифта придётся всё это найти и убрать (что невозможно, учитывая количество полезных спутников или орбитальные телескопы), или предусмотреть систему, защищающую объект от столкновений. Трос — теоретически неподвижен, поэтому любое вращающееся вокруг Земли тело рано или поздно с ним столкнётся. Кроме того, скорость при столкновении будет практически равна скорости вращения этого тела, так что тросу будет причинён большой ущерб. Маневрировать трос не может, а протяжённостью обладает большой, поэтому столкновения будут частыми.
Как с этим бороться, пока не ясно. Учёные говорят о постройке орбитального космического лазера для сжигания мусора, но это уж совсем из области научной фантастики.

5. Социальные и экологические риски

Космический лифт вполне может стать объектом террористической атаки. Успешная подрывная операция нанесёт огромный ущерб и может вообще похоронить весь проект, так что одновременно с лифтом придётся выстраивать вокруг него и круглосуточную оборону.

Экологи же считают, что кабель, как ни парадоксально, может сместить земную ось. Трос будет жёстко закреплён на орбите, и любое его смещение наверху отразится на Земле. Кстати, представляете, что случится, если он вдруг оборвётся?

Таким образом, реализовать такой проект на Земле очень сложно. А теперь хорошая новость: это будет работать на Луне. Сила притяжения на спутнике куда меньше, а атмосфера фактически отсутствует. Якорь можно создать в поле силы тяжести Земли, и трос с Луны будет проходить через точку Лагранжа — таким образом, мы получаем канал связь между планетой и её естественным спутником. Такой трос при благоприятных условиях сможет переправлять на орбиту земли около 1000 тонн груза в сутки. Материал, конечно, потребуется сверхпрочный, но ничего принципиально нового изобретать не придётся. Правда, длина «лунного» лифта должна будет составить около 190 000 км из-за эффекта, названного Гомановской траекторией.


источники


Какой же мальчишка не мечтает стать космонавтом? Однако осуществить эту мечту удается лишь единицам людей во всем мире, а отправиться в частный космический полет могут только очень богатые люди. Но в 2050 году на орбиту сможет попасть практически любой желающий. Ведь Япония обещает к этому времени запустить первый в мире лифт в Космос .




Среди множества по освоению космического пространства можно отдельно выделить инициативу японской строительной корпорации Obayashi по созданию орбитального лифта. Это транспортное средство, по замыслу авторов, должно появиться уже к 2050 году. Оно обещает стать самым дешевым способом доставлять в Космос людей и грузы.



Лифт будет передвигаться со скоростью 200 километров в час по сверхкрепкому и сверхлегкому тросу, ведущему от земной поверхности на отдаленную орбитальную стацию, где будет расположена не только научная лаборатория, но также отель для космических туристов, коих с появлением этого вида транспорта станет в сотни или даже тысячи раз больше, чем существует в наше время.



Делать столь смелые обещания корпорации Obayashi позволяет разработка новых материалов, позволяющих создавать волокна, которые являются в сто раз более крепкими, чем сталь. И технологии эти развиваются с каждым новым годом, с каждым новым месяцем.

Существуют также ежегодные международные технические конкурсы, участники которых работают над идеями по реализации космического лифта. Они разрабатывают новые материалы и инновационные технологии по доставке грузов на орбиту. При этом с каждым годом идеи становятся все более четкими и перспективными.



Сочетание описанных выше факторов как раз и позволяет корпорации Obayashi делать ошеломляющие заявления о возможности запуска орбитального лифта к 2050 году.