Транслит переводчик. Транслитерация и транслит переводчики онлайн, включая сервисы с правилами яндекса и гугла

Серьезный интерес к вопросу скорости интернет соединения обычно возникает после или блога в процессе их Обусловлено это необходимостью узнать и, как правило, повысить скорость загрузки сайта, зависящей, помимо других факторов, в большой степени именно от скорости интернета. В данной статье коротко рассмотрим, что такое входящая скорость, исходящая скорость, а главное, разберемся с единицами измерения скорости передачи данных , понятие о которых у многих начинающих пользователей весьма расплывчатое. Кроме того, приведем простые методы измерения скорости интернет соединения посредством наиболее распространенных онлайн сервисов.

Что же такое, скорость интернет соединения? Под скоростью интернет соединения понимают объём передаваемой информации в единицу времени. Различают входящую скорость (скорость получения) – скорость передачи данных из интернета к нам на компьютер; исходящую скорость (скорость передачи) – скорость передачи данных от нашего компьютера в интернет.

Основные единицы измерения скорости интернета

Базовой единицей измерения количества передаваемой информации является бит (bit ). В качестве единицы времени принята секунда. Значит, скорость передачи будет измеряться бит/сек. Обычно оперируют единицами«килобит в секунду» (Кбит/сек), «мегабит в секунду» (Мбит/сек), «гигабит в секунду» (Гбит/сек).

1 Гбит/сек = 1000 Мбит/сек = 1 000 000 Кбит/сек = 1 000 000 000 бит/сек.

На английском языке базовая единица для измерения скорости передачи информации, используемая в вычислительной технике — бит в секунду или бит/с будет bits per second или bps.

Килобиты в секунду и, в большинстве случаев, Мегабиты в секунду (Кбит/с; Кб/с; Kb/s; Kbps, Мбит/с; Мб/с; Мb/s; Мbps - буква «б» маленькая ) используются в технических спецификациях и договорах на оказание услуг интернет провайдерами.Именно в приведенных единицах определяется скорость интернет соединения в нашем тарифном плане. Обычно, эта обещанная провайдером скорость, называется заявленной скоростью.

И так, количество передаваемой информации измеряется в битах. Размер же передаваемого или располагающегося на жестком диске компьютера файла, измеряется в байтах (Килобайтах, Мегабайтах, Гигабайтах).Байт (byte) – это также единица количества информации. Один байт равен восьми битам (1 Байт = 8 бит).

Чтобы было проще понимать различие между битом и байтом, можно сказать другими словами. Информация в сети передается «бит за битом», поэтому и скорость передачи измеряется в бит в секунду. Объем же хранимых данных измеряется в байтах. Поэтому и скорость закачки определенного объема измеряется в байтах в секунду.

Скорость передаваемого файла, использующаяся многими пользовательскими программами (программы-загрузчики, интернет браузеры, файлообменники) измеряется в Килобайтах, Мегабайтахи Гигабайтах в секунду.

Другими словами, при подключении к интернету, в тарифных планах указана скорость передачи данных в Мегабитах в секунду. А прискачивании файлов из интернета показывается скорость в Мегабайтах в секунду.

1 ГБайт = 1024 МБайта = 1 048 576 КБайта = 1 073 741 824 Байта;

1 МБайт = 1024 КБайта;

1 КБайт = 1024 Байта.

На английском языке базовая единица для измерения скорости передачи информации — Байт в секунду или Байт/с будет byte per second или Byte/s.

Килобайты в секунду обозначаются, как КБайт/с, КБ/с, KB/s или KBps.

Мегабайты в секунду - МБайт/с, МБ/с, МB/s или МBps.

Килобайты и Мегабайты в секунду всегда пишутся с большой буквой «Б», как в латинской транскрипции, так и в русском варианте написания: МБайт/с, МБ/с, МB/s, МBps.

Как определить, сколько мегабит в мегабайте и наоборот?!

1 МБайт/с = 8Мбит/с.

Например, если скорость передачи данных, отображаемая браузером, равна 2 МБ/с (2 Мегабайта в секунду), то в Мегабитах это будет в восемь раз больше - 16 Мбит/с (16 Мегабит в секунду).

16 Мегабит в секунду = 16 / 8 = 2,0 Мегабайт в секунду.

Т.е, чтобы получить величину скорости в «Мегабайтах в секунду», нужно значение в «Мегабитах в секунду» разделить на восемь и наоборот.

Кроме скорости передачи данных, важным измеряемым параметром является время реакции нашего компьютера, обозначаемое Ping. Другими словами, пинг – это время ответа нашего компьютера на посланный запрос. Чем меньше ping, тем меньше, например, время ожидания, необходимое для открытия интернет страницы. Понятно, что чем меньше пинг, тем лучше. При измерении пинга определяется время, затрачиваемое для прохождения пакета от сервера измеряющего онлайн сервиса к нашему компьютеру и обратно.

Определение скорости интернет соединения

Для определения скорости интернет соединения существует несколько методов. Одни более точные, другие менее точные. В нашем же случае, для практических нужд, считаю, достаточно использования некоторых наиболее распространенных и неплохо себя зарекомендовавших онлайн сервисов. Почти все они, кроме проверки скорости интернета содержат многие другие функции, среди которых наше местоположение, провайдер, время реакции нашего компьютера (пинг) и др.

При желании можно много экспериментировать, сопоставляя результаты измерений различных сервисов и выбирая понравившиеся. Меня, например, устраивают такие сервисы, как известный Яндекс интернетометр, а также еще два – SPEED . IO и SPEEDTEST . NET .

Страница измерения скорости интернетавЯндекс интернетометре открывается по адресу ipinf.ru/speedtest.php (рисунок 1). Для повышения точности измерения выбираем меткой на карте свое местоположение и нажимаем левой кнопкой мыши. Процесс измерения начинается. Результаты измеренных входящей (download ) и исходящей (upload ) скоростей отражаются во всплывающей таблице и слева в панели.

Рисунок 1. Страница измерения скорости интернета в Яндекс интернетометре

Сервисами SPEED.IO и SPEEDTEST.NET, процесс измерения в которых анимируется в панели приборов, подобной автомобильной (рисунки 2, 3), пользоваться просто приятно.

Рисунок 2. Измерение скорости интернет соединения в сервисе SPEED.IO

Рисунок 3. Измерение скорости интернет соединения в сервисе SPEEDTEST.NET

Пользование приведенными сервисами интуитивно понятно и обычно не вызывает никаких затруднений. Опять же определяются входящая (download), исходящая (upload) скорости, ping . Speed.io измеряет текущую скорость интернета до ближайшего от нас сервера компании.

Кроме того в сервисе SPEEDTEST.NET можно протестировать качество сети, сравнить свои предыдущие результаты измерений с настоящими, узнать результаты других пользователей, сравнить свои результаты с обещанной провайдером скоростью.

Наряду с указанными, широко используются сервисы: CY - PR . com , SPEED . YOIP

Для оценки качества каналов передачи данных можно использовать следующие характеристики:

    скорость передачи данных по каналу связи;

    пропускную способность канала связи;

    достоверность передачи информации;

    надежность канала связи.

Скорость передачи данных . Различают бодовую (модуляционную) и информационную скорости (bit rate). Информационная скорость - определяется количеством битов, передаваемых по каналу связи за одну секунду бит/с, что в англоязычном варианте обозначается как bps.

Бодовая скорость измеряется в бодах (baud). Эта единица скорости получила свое название по фамилии французского изобретателя телеграфного аппарата Emilie Baudot – Э. Бодо. Бод – это число изменений состояния среды передачи в секунду (или числом изменений сигнала в единицу времени). Именно бодовая скорость определяется полосой пропускания линии. Скорость передачи информации 2400 бод означает, что состояние передаваемого сигнала изменялось 2400 раз в секунду, что эквивалентно частоте 2400 Гц.

Для иллюстрации этих понятий обратимся к передаче цифровых данных по обычным телефонным каналам связи. В самых ранних моделях модемов, эти две скорости совпадали. Современные модемы кодируют несколько битов данных в одном изменении состояния аналогового сигнала и очевидно, что скорость передачи данных и скорость работы канала в этом случае не совпадают. Если на бодовом интервале (между соседними изменениями сигнала) передается N бит, то число значений модулируемого параметра несущей (переносчика) равно 2 N . Например, при числе градаций 16 и скорости 1200 бод одному боду соответствует 4 бит/с и информационная скорость составит 4800 бит/с, т.е. скорость в битах в секунду превышает скорость в бодах. В частности, модемы на 2 400 и 1 200 бит/с передают 600 бод, а модемы на 9 600 и 14 400 бит/с- 2 400 бод.

В аналоговых телефонных сетях скорость передачи данных определяется типом протокола который поддерживают оба модема, участвующие в соединении. Так, современные модемы работают по протоколам V.34+ со скоростью до 33600 бит/с или по протоколу асимметричного обмена данными V.90 со скоростью передачи до 56 Kbps.

Стандарт V.34+ позволяет работать по телефонным линиям практически любого качества. Первоначальное соединение модемов происходит по асинхронному интерфейсу на минимальной скорости 300 бит/с, что позволяет работать на самых плохих линиях. После тестирования линии выбираются основные параметры передачи (частота несущей 1,6-2,0 КГц, способ модуляции, переход в синхронный режим) которые в последствии могут динамически изменяться без разрыва связи, адаптируясь к изменению качества линии.

Протокол V.90 был принят Международным Союзом Электросвязи (МСЭ) в феврале 1998 г. В соответствии с этим стандартом модемы, установленные у пользователя, могут принимать данные от провайдера сети (входящий поток – Downstream) на скорости 56 Kbps, а посылать (исходящий поток – Upstream) – на скорости до 33,6 Kbps. Достигается это за счет того, что данные на узле сети, подключенному к цифровому каналу, подвергаются только цифровому кодированию, а не аналого-цифровому преобразованию, которое всегда вносит шум дискретизации и квантования. На стороне пользователя из-за "последней аналоговой мили" происходит и цифро-аналоговое (в модеме) и аналого-цифровое преобразование (на АТС), поэтому увеличение скорости невозможно. Очевидно, что применить такую схему удается только там, где один из модемов имеет доступ к цифровому каналу. Практически только провайдер сети Интернет может быть связан с АТС пользователя цифровым каналом.

Для соединений типа абонент-абонент по коммутируемой телефонной сети общего пользования новая технология непригодна и работа возможна только на скорости не выше 33,6 Kbps.

Скорости передачи цифровой информации для ЛВС различных типов приведены в таблице 2.1, а для глобальных сетей в таблице 2.2.

Таблица 2.1

Тип сети (протокол канального уровня)

Вид линии передачи данных

Толстый коаксиальный кабель (10Base-5)

Тонкий коаксиальный кабель (10base-2)

Неэкранированная витая пара UTP категории 3 (10Base-T)

Оптоволокно (10Base-F)

Оптоволокно (100Base-FX)

Gigabit Ethernet

Многомодовое оптоволокно (1000Base-SX)

Одномодовое оптоволокно (1000Base-LX)

Твинаксиальный кабель(1000Base-СX)

Token Ring (High Speed Token Ring)

Оптоволокно

FDDI (Fiber Distributed Data Interface)

Оптоволокно

Таблица 2.2

Иерархия скоростей цифровых каналов глобальных сетей

Тип сети

Тип интерфейса и линии передачи данных

Скорость передачи данных, Мбит/с

T1/E1, кабель из 2-ух витых пар

T2/E2,коаксиальный кабель

T3/E3, коаксиальный и оптический кабель или радиолинии СВЧ

STS-3, OC-3/STM-1

STS-9, OC-9/STM-3

STS-12, OC-12/STM-4

STS-18, OC-18/STM-6

STS-24, OC-24/STM-8

STS-36, OC-36/STM-12

STS-48, OC-48/STM-16

BRI (базовый)

PRI (специальный)

Абонент-сеть (Upstream)

Сеть-абонент (Downstream)

На ВОЛС достигнуты рекордные скорости передачи информации. В экспериментальной аппаратуре с использованием метода мультиплексирования с разделением каналов по длинам волн (WDM - Wavelengths Division Multiplexing) достигнута скорость 1100 Гбит/с на расстоянии 150 км. В одной из действующих систем на основе WDM передача идет со скоростью 40 Гбит/с на расстояния до 320 км. В методе WDM выделяется несколько несущих частот (каналов). Так, в последней упомянутой системе имеются 16 таких каналов вблизи частоты 4*10 5 ГГц, отстоящих друг от друга на 10 3 ГГц, в каждом канале достигается скорость 2,5 Гбит/с.

Максимально возможная информационная скорость, пропускная способность C (bandwidth ) связана с полосой пропускания F (точнее с верхней частотой полосы пропускания) канала связи формулой Хартли-Шеннона. Пусть N – число возможных дискретных значений сигнала, например число различных значений модулируемого параметра. Тогда на одно изменение величины сигнала, в соответствии с формулой Хартли, приходится не более I=log 2 N бит информации.

Максимальную информационную скорость передачи можно определить как

С = log 2 N / t,

где t - длительность переходных процессов, приблизительно равная (3-4)Т В, а Т В = 1/(2πF). Тогда

бит/с, (2.1)

В случае канала с помехами количество различимых значений модулированного сигнала N должно быть ≤ 1+A, где A - отношение мощностей сигнала и помехи.

Для пользователей вычислительных сетей значение имеют не абстрактные биты в секунду, а информация, единицей измерения которой служат байты или знаки. Поэтому более удобной характеристикой канала является его реальная или эффективная скорость , которая оценивается количеством знаков (символов), передаваемых по каналу за секунду (cps, character per second), не включая служебную (например, биты начала и конца блока, заголовки блоков и контрольные суммы).

Эффективная скорость зависит от ряда факторов, среди которых не только скорость передачи данных, но и способ передачи, и качество канала связи, и условия его эксплуатации, и структура сообщений. Например, так как в среднем, при асинхронном методе передачи данных через модем каждым 10 переданным битам соответствует 1 байт или 1 символ сообщения, то 1 cps=10 bps. Для повышения эффективной скорости передачи используются различные методы сжатия информации, реализуемые как самими модемами, так и коммуникационным ПО.

Существенной характеристикой любой коммуникационной системы является достоверность передаваемой информации. Достоверность передачи информации или уровень ошибок (error ratio) оценивают либо как вероятность безошибочной передачи блока данных, либо как отношение количества ошибочно переданных битов к общему числу переданных битов (единица измерения: количество ошибок на знак - ошибок/знак) Например, вероятность 0,999 соответствует 1 ошибке на 1000 бит (очень плохой канал). Требуемый уровень достоверности должны обеспечивать как аппаратура канала, так и состояние линии связи. Нецелесообразно использовать дорогостоящую аппаратуру, если линия связи не обеспечивает необходимых требований по помехоустойчивости.

При передаче данных в вычислительных сетях этот показатель должен лежать в пределах 10 -8 -10 -12 ошибок/знак, т.е. допускается не более одной ошибка на 100 миллионов переданных битов. Для сравнения, допустимое количество ошибок при телеграфной связи составляет примерно 3·10 -5 на знак.

Наконец, надежность коммуникационной системы определяется либо долей времени исправного состояния в общем времени работы, либо средним временем безотказной работы в часах. Вторая характеристика позволяет более эффективно оценить надежность системы.

Для вычислительных сетей среднее время безотказной работы должно быть достаточно большим и составлять, как минимум, несколько тысяч часов

В случае со скоростью передачи информации эти “красивые цифры” запутывают. Конечно, тут ситуация всё-таки другая- это путаница между стандартом (где скорость названа по тому, какова она на канальном уровне) и реальностью, но смысл очень похож: цифра на наклейке не соответствует тому, что вы видите глазами, включив компьютер. Вот с этой путаницей и попытаемся разобраться.

Существуют два типа подключения- с помощью кабеля, и по воздуху, беспроводным способом.

Подключение кабелем.

В этом случае проблем с цифрами меньше всего. Подключение происходит на скорости 10, 100 или 1000 мегабит (1 гигабит) в секунду. Это – не “скорость интернета”, не скорость открытия страниц или скачки файлов. Это только скорость между двумя точками, которые соединяет такой кабель. Из вашего компьютера кабель может идти в рутер (модем), в другой компьютер или в подъезд, к аппаратуре провайдера, но в любом случае эта скорость говорит только о том, что соединение между этими двумя точками произошло на указанной скорости.

Скорость передачи данных ограничена не только типом кабеля, но в и довольно сильно– скоростью вашего жёсткого диска. На гигабитном подключении скорость передачи файла упрётся именно в это, и достичь реальных 120 мегабайт в секунду можно только в некоторых случаях.

Скорость подключения выбирается автоматически в зависимости от того, как “договорятся” ваши соединяемые устройства, по самому медленному из них. Если у вас гигабитная сетевая карта (а их сейчас большинство в компьютерах), а с другого конца- 100 мегабитная аппаратура, то скорость подключения будет установлена в 100mbit. Никаких дополнительных установок скорости делать не надо, если это требуется-это показатель того, что есть проблема с кабелем, или с аппаратурой у вас или на другом конце, и потому максимальная скорость автоматически не выставляется.

Беспроводное подключение.

А вот с этим типом подключения проблем и путаницы намного больше. Дело в том, что при беспроводном подключении скорость передачи данных- примерно в два раза меньше, чем говорит цифра стандарта. Как это выглядит в реальных данных- смотрим таблицу.

Стандарт Частота и ширина полосы пропускания Скорость по стандарту Реальная скорость передачи файлов Дополнительная информация
Wi-Fi 802.11a 5Ghz. (20Mhz) 54 mbit/s В настоящее время в бытовой аппаратуре используется редко, встречается в сетях провайдеров.
Wi-Fi 802.11b 2,4Ghz(20Mhz) 11 mbit/s ок. 0.6 мегабайт (4,8 мегабита) в секунду В настоящее время используется только для связи “компьютер-компьютер” (Ad-Hoc)
Wi-Fi 802.11g 2,4Ghz(20Mhz) 54 mbit/s ок. 3 мегабайт (24 мегабита) в секунду Пока что самый распространённый тип подключения.
Wi-Fi 802.11n 2,4Ghz/5Ghz(20Mhz/40Mhz) 150, 300, 600 mbit/s 5-10 мегабайт в секунду. Условно 1 поток (антенна) – 150 мегабит, рутер (сетевая) с 4мя антеннами поддерживает 600mbps

Как видите, все очень печально и некрасиво, а хвалёный “N” вообще и близко не показывает тех цифр, которые хотелось бы увидеть. Кроме того, такая скорость обеспечивается при условиях окружающей среды, близких к идеальным: нет помех, нет стен с металлом между рутером и компьютером (лучше-прямая видимость), и чем меньше расстояние, тем лучше. В типовой трёхкомнатной квартире железобетонного дома беспроводная точка доступа, установленная в дальней части квартиры, может быть практически неуловима из противоположной части. Стандарт “N” обеспечивает лучшее покрытие, и это его преимущество лично для меня важнее, чем скорость; да и на скорости качественное покрытие сказывается хорошо: там, где скорость передачи данных при использовании аппаратуры с “G” равна 1 мегабиту, только лишь использование “N” способно увеличить её в несколько раз. Однако совершенно не факт, что так будет всегда- дело в диапазонах, в некоторых случаях такое переключение не даёт результата.

На скорость влияет так же производительность устройства, раздающего интернет (рутера, точки доступа) При активном использовании торрентов, например, скорость передачи данных через рутер может существенно упасть- его процессор просто не справится с потоком данных.

Ещё на скорость влияет выбранный тип шифрования. Из самого названия понятно, что “шифрование” –это обработка данных с целью их закодировать. Могут использоваться разные методы шифрования, а отсюда-разная производительность устройства, которое это шифрование-дешифрование выполняет. Поэтому рекомендуется выставлять в параметрах беспроводной сети тип шифрования WPA2 – это максимально быстрый и наиболее защищённый на данный момент тип шифрования. Собственно говоря, по стандарту любой другой тип шифрования и не даст включиться “N” на “полную мощность”, но некоторые китайские рутеры плюют на стандарты.

Ещё один момент. Для того, чтоб получить все преимущества стандарта N (особенно для аппаратуры, поддерживающей MIMO), точка доступа должна обязательно быть выставлена в режим “N Only”.

Если вы выбрали “G+N Mixed” (любой “смешанный” режим), велика вероятность того, что ваши устройства будут стараться связаться не на на максимальной скорости. Это плата за совместимость стандартов. Если ваши устройства поддерживают “N”, забудьте об остальных режимах- зачем терять предлагаемые преимущества? Использование в одной сети одновременно и G, и N аппаратуры лишит вас их. Однако существуют рутеры, имеющие два передатчика, и позволяющие работать в двух разных частотных диапазонах одновременно, но это скорее редкость, а цена их гораздо выше (пример- Asus RT-N56U).

Другие типы подключения.

Помимо описанных, конечно, существуют и другие типы подключения. Устаревший вариант– подключение по коаксиальному кабелю, необычный вариант подключения через электросеть здания, множество вариантов подключения с использованием сетей мобильной связи- 3G, новый LTE, относительно малораспространённый WiMAX. Любой из этих типов подключения имеет характеристики скорости, и любой из них оперирует понятием “скорость ДО”. Вас не обманывают (ну формально не обманывают), но обращать внимание на эти цифры имеет смысл, понимая, что в реальности они значат.

Единицы измерения.

Существует путаница, вызванная неправильным использованием единиц измерения. Наверно, это тема для другой статьи (по сетям и подключениям, которую я в скором времени напишу), но всё-таки и тут (сжато) будет к месту.

В компьютерном мире принята двоичная система счисления. Наименьшая единица измерения- бит. Следующая- байт.

По возрастающей:

1 байт = 8 бит

1024 бит = 1 килобит (kb)

8 килобит = 1 килобайт (KB)

128 килобайт = 1 мегабит (mb)

8 мегабит = 1 мегабайт (MB)

1024 килобайт = 1 мегабайт (MB)

128 мегабайта = 1 гигабит (gb)

8 гигабит = 1 гигабайт (GB)

1024 мегабайт = 1 гигабайт (GB)

Вроде бы всё понятно. Но! Вдруг оказывается, что и тут есть путаница. Вот что говорит википедия :

При обозначении скоростей телекоммуникационных соединений, например, 100 Мбит/с в стандарте 100BASE-TX («медный» Fast Ethernet) соответствует скорости передачи именно 100 000 000 бит/с, а 10 Гбит/с в стандарте 10GBASE-X (Ten Gigabit Ethernet) — 10 000 000 000 бит/с.

Кому верить? Решайте сами, как вам удобнее, почитайте ту же википедию. Дело в том,что написанное в википедии –не является истиной в последней инстанции, её пишут люди (фактически-любой человек может там что-то написать). А вот в учебниках (в частности,в учебнике “Компьютерные сети” от Олифер В.Г., Олифер Н.А.) – исчисление нормальное, двоичное, и в 100 мегабитах –12.5 мегабайт, и именно 12 мегабайт вы увидите, скачивая файл по 100-мегабитной локалке, практически в любой программе.

Разные программы отображают скорость по-разному –какие-то в килобайтах, какие-то в килобитах. Формально, если речь идёт о *байтах, ставится большая буква, о *битах-маленькая (обозначение КB (КБ, иногда kB или кБ, или Кбайт)) –обозначает “килобайт”, kb (кб, или кбит)- “килобит”, и т.д.), но это не закреплённое железно правило.

Ключевые слова:

· скорость передачи данных

· биты в секунду

Скорость передачи данных – важнейшая характеристика линии связи. Изучив этот параграф, вы научитесь решать задачи, связанные с передачей данных по сети.

Единицы измерения

Вспомним, в каких единицах измеряется скорость в уже знакомых нам ситуациях. Для автомобиля скорость – это расстояние, пройденное за единицу времени; скорость измеряется в километрах в час или метрах в секунду. В задачах перекачки жидкости скорость измеряется в литрах в минуту (или в секунду, в час).

Неудивительно, что в задачах передачи данных скоростью будем называть количество данных, переданное по сети за единицу времени (чаще всего – за секунду).

Количество данных можно измерить в любых единицах количества информации: битах, байтах, Кбайтах и др. Но на практике скорость передачи данных чаще всего измеряют в битах в секунду (бит/с).

В скоростных сетях скорость обмена данными может составлять миллионы и миллиарды битов в секунду, поэтому используются кратные единицы: 1 кбит/c (килобит в секунду), 1 Мбит/c (мегабит в секунду) и 1 Гбит/c (гигабит в секунду).

1 кбит/с = 1 000 бит/с 1 Мбит/с = 1 000 000 бит/с 1 Гбит/с = 1 000 000 000 бит/с

Обратите внимание, что здесь приставки «кило-», «мега-» и «гига-» обозначают (как и в международной системе единиц СИ) увеличение ровно в тысячу, миллион и миллиард раз. Напомним, что в традиционных единицах измерения количества информации «кило-» означает увеличение в 1024 раза, «мега-» – в 1024 2 и «гига-» – в 1024 3 .

Задачи

Пусть скорость передачи данных по некоторой сети равна v бит/с. Это значит, что за одну секунду передаётся v битов, а за t секунд – v× t битов.

Задача 1 . Скорость передачи данных по линии связи 80 бит/с. Сколько байтов будет передано за 5 минут?

Решение . Как вы знаете, количество информации рассчитывается по формуле I = v× t . В данном случае v = 80 бит/с и t = 5 мин. Но скорость задана в битах в секунду , а время – в минутах , поэтому для получения правильного ответа нужно минуты перевести в секунды:

t = 5 × 60 = 300 с

и только потом выполнить умножение. Сначала получаем количество информации в битах:

I = 80 бит/c × 300 с = 24000 битов

Затем переводим его в байты:

I = 24000: 8 байтов = 3000 байтов

Ответ: 3000 байт.

Задача 2 . Скорость передачи данных по линии связи 100 бит/с. Сколько секунд потребуется на передачу файла размером 125 байтов?

Решение . Нам известна скорость передачи данных (v = 100 бит/с) и количество информации (I = 125 байтов). Из формулы I = v× t получаем

t = I : v.

Но скорость задана в битах в секунду, а количество информации – в байтах . Поэтому для того, чтобы «состыковать» единицы измерения, нужно сначала перевести количество информации в биты (или скорость в байты в секунду!):

I = 125 × 8 битов = 1000 битов.

Теперь находим время передачи:

t = 1000 : 100 = 10 с.

Ответ: 10 секунд.

Задача 3 . Какова средняя скорость передачи данных (в битах в секунду), если файл размером 200 байтов был передан за 16 с?

Решение . Нам известно количество информации (I = 200 байтов) и время передачи данных (t = 16 с). Из формулы I = v× t получаем

v = I : t.

Но объём файла задан в байтах , а скорость передачи нужно получить в битах в секунду. Поэтому сначала переведём количество информации в биты:

I = 200 × 8 битов = 1600 битов.

Теперь находим среднюю скорость

v = 1600 : 16 = 100 бит/с.

Обратите внимание, что речь идёт именно о средней скорости передачи, потому что во время обмена данными она могла изменяться.

Ответ: 100 бит/с.

1. В каких единицах измеряется скорость передачи данных в компьютерных сетях?

2. Что означают приставки «кило-», «мега-» и «гига-» в единицах измерения скорости передачи данных? Как вы думаете, почему эти приставки не такие, как в единицах измерения количества информации?

3. Какая формула используется для решения задач на скорость передачи данных?

4. Как вы думаете, в чём заключается главная причина ошибок в решении таких задач?

1. Сколько байтов информации будет передано за 24 секунды по линии связи со скоростью 1500 бит в секунду?

2. Сколько байтов информации будет передано за 15 секунд по линии связи со скоростью 9600 бит/c?

3. Сколько байтов информации передается за 16 секунд по линии связи со скоростью 256000 бит в секунду?

4. Сколько секунд потребуется на передачу файла размером 5 Кбайт по линии связи со скоростью 1024 бит/с?

5. Сколько секунд потребуется на передачу файла размером 800 байт по линии связи со скоростью 200 бит/с?

6. Сколько секунд потребуется на передачу файла размером 256 Кбайт по линии связи со скоростью 64 байта в секунду?

7. Книжка, в которой 400 страниц текста (каждая страница содержит 30 строк по 60 символов в каждой), закодирована в 8-битной кодировке. Сколько секунд потребуется для передачи этой книжки по линии связи со скоростью 5 кбит/c?



8. Сколько бит в секунду передается по линии связи, если файл размером 400 байт был передан за 5 с?

9. Сколько бит в секунду передается по линии связи, если файл размером 2 Кбайта был передан за 8 с?

10. Сколько байтов в секунду передается по линии связи, если файл размером 100 Кбайт был передан за 16 с?

Самое важное в главе 1: · Информатика изучает широкий круг вопросов, связанных с автоматической обработкой данных. · Человек получает информацию об окружающем мире с помощью органов чувств. · Данные – это зафиксированная (закодированная) информация. Компьютеры работают только с данными. · Сигнал – это изменение свойств носителя информации. Сообщение – это последовательности сигналов. · Основные информационные процессы – это передача и обработка информации (данных). · Минимальная единица измерения количества информации – это бит. Так называется количество информации, которое можно закодировать с помощью одной двоичной цифры («0» или «1»). · С помощью i битов можно закодировать 2 i разных вариантов. · 1 байт содержит 8 битов. · В единицах измерения количества информации используются двоичные приставки: 1 Кбайт = 2 10 байтов = 1024 байтов 1 Мбайт = 2 20 байтов 1 Гбайт = 2 30 байтов · Информационный объем текста определяется длиной текста и мощностью алфавита. Чем больше символов содержит алфавит, тем больше будет информационный объём одного символа (и текста в целом). · Большинство рисунков кодируется в компьютерах в растровом формате, то есть, в виде набора точек разного цвета (пикселей). Пиксель – это наименьший элемент рисунка, для которого можно задать свой цвет. · Информационный объем рисунка определяется количеством пикселей и количеством используемых цветов. Чем больше цветов используется в рисунке, тем больше будет информационный объём одного пикселя (и рисунка в целом). · Скорость передачи данных обычно измеряется в битах в секунду (бит/с). · В единицах измерения скорости передачи данных используются десятичные приставки: 1 кбит/с = 1 000 бит/c 1 Мбит/с = 1 000 000 бит/c 1 Гбит/с = 1 000 000 000 бит/c

Конечно, вместо 0 и 1 можно использовать два любых знака.

Английское слово bit – это сокращение от выражения binary digit , «двоичная цифра».

Существует и другой тип языков, к которому относятся китайский, корейский, японский языки. В них используются иероглифы , каждый из которых обозначает отдельное слово или понятие.

Английское слово pixel – это сокращение от picture element , элемент рисунка.