Действие магнита. Магниты и магнитные свойства вещества

Резкое усиление внешнего магнитного поля - например, при магнитной буре - отрицательно сказывается на самочувствии. Но гораздо хуже, как показывают испытания, хронический дефицит магнитного поля.


Впервые этот синдром исследовал японский ученый Накагава. Главными его проявлениями являются слабость, утомляемость, сниженная работоспособность, нарушения сна, головные боли, боль в и позвоночнике, патология сердечно-сосудистой системы, гипертония, нарушения пищеварения, гинекологические дисфункции и др.


Так, у первых после возвращения на Землю обнаружили остеопороз . Как только на космических начали применять искусственные магнитные поля, то подобные явления практически исчезли.

Намного истории

Магниты в лечебных целях использовались в Китае еще в ХХ веке до н.э. Авиценна лечил магнитом заболевания печени и селезенки. Парацельс использовал магниты при кровотечениях и переломах. Говорят, что Клеопатра для сохранения молодости носила магнитный браслет. Также магнитную терапию применяли личный врач королевы Елизаветы І Уильям Джилберт и известный врач 18 века Франц Месмер для лечения хронических болей, колик, подагры, психических расстройств.

Современный подход

В России магнитотерапевтические методы лечения признаны медицинскими. Магнитотерапия сегодня - это область медицины, которая использует влияние магнитного поля для лечения болезней. В медицинских заведениях есть множество приборов с магнитными свойствами. В зависимости от целей и задач на человека в лечебных целях воздействуют разными магнитными полями: постоянным, переменным, пульсирующим, вращающимся.

Спектр применения

Магнитное поле влияет на процессы торможения в спинном и головном мозге. Проходят головные боли и депрессия, улучшается поступление кислорода к тканям, функционирование всех органов.


Наиболее чувствительны к магнитному полю кровь, нервная и эндокринная системы, сердце и сосуды. Магнитотерпапия улучшает эластичность сосудов, увеличивает скорость кровотока и расширяет систему капилляров. Происходит нормализация сна и самочувствия в целом.


С помощью магнитотерапии лечат заболевания опорно-двигательного аппарата (в частности, артриты). Наблюдается более быстрое купирование воспалительного и болевого синдрома, уменьшение отека, восстановление подвижности. Этот метод может применяться и . Магнитотерапия активно используется для заживления ран. Также помогает при мигрени, головной боли, быстрой утомляемости, депрессии.

Масс-маркет

Магнитная бижутерия совмещает в себе красоту и здоровье. Она оказывает постоянный терапевтический эффект на организм в целом.


На теле человека есть зоны, где действие магнитов наиболее эффективно - это запястья, шея, ступни.


Популярностью также пользуется заряженная магнитами структурированная вода. Она оздаравливает организм, выводит токсины, . Самостоятельно ее можно приготовить с помощью магнитной палочки.

Противопоказания

Самолечение магнитами может вызвать негативные реакции в организме. Следите за своим самочувствием и обязательно советуйтесь с врачом, тем более что лечение магнитами подходит не всем. Ведь у каждого человека организм индивидуален.

Магнит содержит в себе миллионы частиц, обладающих крохотной магнитной силой. Эти частицы, выстраиваясь в определенном порядке, создают однонаправленную силу, способную притягивать либо отталкивать некоторые металлы, оказавшиеся в пределах досягаемости магнита или магнитного поля.

Лишь немногие металлы, такие как железо, содержат магнитные частицы. В железе эти частицы легко можно выстроить в нужном порядке, создав, таким образом, магнит. Если вы ударите его молотком, «строй» магнитных частиц нарушится, и железо утратит свою магнитную силу, то есть размагнитится.

Частицы внутри железного магнита
Размагниченные частицы
Гвозди, притянутые к магниту

Как работает магнит на свалке?

Мощные магниты, которые можно включать и выключать, используют на свалках для переноски тяжелых металлических предметов. Эти магниты, именуемые электромагнитами, работают благодаря электрическому току, который, .протекая по проволоке, создает магнитное поле. Это явление называется электромагнетизмом. По такому же принципу устроены многие машины, работающие на предприятиях и в ваших домах.

Чтобы изготовить электромагнит, достаточно обмотать электрический провод вокруг бруска легко намагничивающегося металла, например, железа. При пропускании электрического тока магнетизм металлического бруска и обмотанной вокруг него проволоки соединяется, создавая мощное магнитное поле.

Таким образом, когда оператор работающего на свалке магнита хочет поднять с земли кусок металла, он включает ток. Затем оператор приводит в движение подвешенный гигантский магнит и перемещает груз. Чтобы опустить груз оператор отключает ток, и кусок металла падает на землю.

Как работает электромотор?

Если катушку проволоки поместить внутрь магнитного поля и пропустить через нее электрический ток, то магнитное поле, окружающее катушку, будет притягивать ее, заставляя вращаться. Вращательное движение проволочной катушки может передаваться машине, то есть заводить ее. Такое устройство называется электромотором. Электромоторы применяются во многих приборах, таких, как, к примеру, электрический вентилятор или миксер.

В электромагните магнитное поле порождается изменением электрического поля, либо за счёт движения проводника с постоянным током, либо за счёт протекания по проводнику переменного тока. В любом случае, при отключении тока магнитный эффект пропадает. Совсем другое дело - постоянный магнит. Никакого тока здесь и в помине нет. А магнитное поле есть.

Строгое объяснение принципа действия постоянного магнита невозможно без привлечения аппарата квантовой физики. Если же объяснять «на пальцах», то наиболее адекватное объяснение звучит следующим образом. Каждый электрон сам по себе является магнитом, обладает магнитным моментом - это его неотъемлемое физическое свойство. Если атомы, которым «принадлежат» электроны, в веществе ориентированы хаотично, то магнитные моменты электронов друг друга компенсируют и вещество магнитных свойств не проявляет. Если по какой-то причине атомы (хотя бы какая-то их часть) ориентируются в каком-то одном направлении, то магнитные свойства электронов складываются и вещество становится магнитом. Получается, что сильный магнит - это такой магнит, в котором много атомов ориентированы в одном направлении, и чем меньше атомов имеют одинаковую ориентацию, тем слабее получается магнит. Понятно также, что жидкости и газы магнитами в принципе быть не могут - ведь сохранять ориентацию атомы могут только в твёрдых телах.

Со временем магниты теряют свои свойства, но это происходит под действием внешних причин: внешнего магнитного поля, высокой температуры, механических повреждений. Притягивая какое-то тело, магнит затрачивает часть своей энергии на это притяжение и становится чуть-чуть менее сильным. Но когда вы отрываете это тело от магнита, он полностью возвращает себе потраченную энергию. Таким образом, суммарная механическая работа постоянного магнита остаётся нулевой, и теоретически магнит может сохранять свои свойства сколь угодно долгое время.

Производство и использование постоянных магнитов

Не смотря на то, что магниты были известны людям тысячи лет назад, их промышленное производство стало возможным только в двадцатом веке. Причём самые сильные постоянные магниты на основе неодимовых сплавов были изобретены только в 80-х годах прошлого века. А наиболее дешёвые и популярные из производимых сегодня магнитов - полимерные магнитные материалы, к числу которых относится, например, магнитный винил , так и вовсе были разработаны на рубеже второго и третьего тысячелетий.

Первое практическое использование постоянных магнитов относится к 12 веку и не потеряло актуальности до сих пор. Это использование магнитной стрелки в компасе. До начала массового производства магнитных материалов ни для чего другого магниты и не использовались (применение их в качестве игрушек или «лечебных» амулетов - не в счёт).

В современной же технике постоянные магниты используются повсеместно. Достаточно перечислить магнитные носители информации (от дисковых накопителей в вашем компьютере, до магнитной полосы в вашей пластиковой карте), микрофоны и динамики (постоянные магнитики есть и в звуковых колонках на вашем столе, и в вашем мобильном телефоне), в электродвигателях и генераторах (не во всех типах электродвигателей используются постоянные магниты, но, например, в вентиляторах в вашем компьютере они точно есть), в многочисленных электронных датчиках (задумывались ли вы, что именно такого типа датчик, например, не позволяет лифту начать движение при незакрытых дверях) и во множестве других устройств. Некоторые виды применения магнитов постепенно устаревают: так сегодня уже мало актуальны электронно-лучевые трубки, на основе которых ещё недавно выпускалось 100 % телевизоров и мониторов; постепенно сходят со сцены магнитные носители информации. Но в целом производство и применение постоянных магнитов растёт с каждым годом.

Магнит

Магниты, такие, как игрушки, прилепленные к вашему домашнему холодильнику, или подковы, которые вам показывали в школе, имеют несколько необычных черт. Прежде всего, магниты, притягиваются к железным и стальным предметам, например к двери холодильника. Кроме того, у них есть полюса.

Приблизьте друг к другу два магнита. Южный полюс одного магнита притянется к северному полюсу другого. Северный полюс одного магнита отталкивает северный полюс другого.

Магнитное и электрический ток

Магнитное поле генерируется электрическим током, то есть движущимися электронами. Электроны, движущиеся вокруг атомного ядра, несут отрицательный заряд. Направленное перемещение зарядов с одного места на другое называется электрическим током. Электрический ток формирует около себя магнитное поле.


Это поле своими силовыми линиями, как петлей, охватывает путь электрического тока, подобно арке, которая стоит над дорогой. Например, когда включают настольную лампу и по медным проводам течет ток, то есть электроны в проводе перескакивают от атома к атому и вокруг провода создается слабое магнитное поле. В линиях высоковольтных передач ток намного сильнее, чем в настольной лампе, поэтому вокруг проводов таких линий формируется очень сильное магнитное поле. Таким образом, электричество и магнетизм - это две стороны одной и той же медали - электромагнетизма.

Материалы по теме:

Почему бывает радуга?

Движение электронов и магнитное поле

Движение электронов внутри каждого атома создает вокруг него крошечное магнитное поле. Движущийся по орбите электрон образует вихреобразное магнитное поле. Но большая часть магнитного поля создается не движением электрона по орбите вокруг ядра, а движением атома вокруг своей оси, так называемым спином электрона. Спин характеризует вращение электрона вокруг оси, как движение планеты вокруг своей оси.

Почему материалы магнитятся и не магнитятся

В большинстве материалов, таких, как пластмассы, магнитные поля отдельных атомов ориентированы беспорядочно и взаимно гасят друг друга. Но в таких материалах, как железо, атомы можно сориентировать так, что их магнитные поля сложатся, поэтому кусок стали намагничивается. Атомы в материалах соединены в группы, которые называются магнитными доменами. Магнитные поля одного отдельного домена сориентированы в одну сторону. То есть каждый домен - это маленький магнитик.

Каждый держал в руках магнит и забавлялся им в детстве. Магниты могут быть самыми разными по форме, размерам, но все магниты имеют общее свойство - они притягивают железо. Похоже, что они и сами сделаны из железа, во всяком случае, из какого-то металла точно. Есть, однако, и «черные магниты» или «камни», они тоже сильно притягивают железки, и особенно друг друга.

Но на металл они не похожи, легко бьются, как стеклянные. В хозяйстве магнитам находится множество полезных дел, например, удобно с их помощью «пришпиливать» бумажные листы к железным поверхностям. Магнитом удобно собирать потерянные иголки, так что, как мы видим, это совсем небесполезная вещь.

Наука 2.0 - Большой скачок - Магниты

Магнит в прошлом

Ещё древние китайцы более 2000 лет назад знали о магнитах, по крайней мере то, что это явление можно использовать для выбора направления при путешествиях. То есть придумали компас. Философы в древней Греции, люди любопытные, собирая различные удивительные факты, столкнулись с магнитами в окрестностях города Магнесса в Малой Азии. Там и обнаружили странные камни, которые могли притягивать железо. По тем временам, это было не менее удивительным, чем могли бы стать в наше время инопланетяне.

Еще более удивительным казалось, что магниты притягивают далеко не все металлы, а только железо, и само железо способно становиться магнитом, хотя и не таким сильным. Можно сказать, что магнит притягивал не только железо, но и любопытство ученых, и сильно двигал вперед такую науку, как физика. Фалес из Милета писал о «душе магнита», а римлянин Тит Лукреций Кар – о «бушующем движении железных опилок и колец», в своем сочинении «О природе вещей». Уже он мог заметить наличие двух полюсов у магнита, которые потом, когда компасом начали пользоваться моряки, получили названия в честь сторон света.

Что такое магнит. Простыми словами. Магнитное поле

За магнит взялись всерьез

Природу магнитов долгое время не могли объяснить. С помощью магнитов открывали новые континенты (моряки до сих пор относятся к компасу с огромным уважением), но о самой природе магнетизма по прежнему никто ничего не знал. Работы велись только по усовершенствованию компаса, чем занимался еще географ и мореплаватель Христофор Колумб.

В 1820 году датский ученый Ганс Христиан Эрстед сделал важнейшее открытие. Он установил действие провода с электрическим током на магнитную стрелку, и как ученый, выяснил опытами как это происходит в разных условиях. В том же году французский физик Анри Ампер выступил с гипотезой об элементарных круговых токах, протекающих в молекулах магнитного вещества. В 1831-ом году англичанин Майкл Фарадей с помощью катушки из изолированного провода и магнита проводит опыты, показывающие, что механическую работу можно превратить в электрический ток. Он же устанавливает закон электромагнитной индукции и вводит в обращение понятие «магнитное поле».

Закон Фарадея устанавливает правило: для замкнутого контура электродвижущая сила равна скорости изменения магнитного потока, проходящего через этот контур. На этом принципе работают все электрические машины - генераторы, электродвигатели, трансформаторы.

В 1873 году шотландский ученый Джеймс К. Максвелл сводит магнитные и электрические явления в одну теорию, классическую электродинамику.

Вещества, способные намагничиваться, получили название ферромагнетиков. Это название связывает магниты с железом, но кроме него, способность к намагничиванию обнаруживается еще у никеля, кобальта, и некоторых других металлов. Поскольку магнитное поле уже перешло в область практического использования, то и магнитные материалы стали предметом большого внимания.

Начались эксперименты со сплавами из магнитных металлов и различными добавками в них. Стоили получаемые материалы очень дорого, и если бы Вернеру Сименсу не пришла в голову идея заменить магнит сталью, намагничиваемой сравнительно небольшим током, то мир так бы и не увидел электрического трамвая и компании Siemens. Сименс занимался еще телеграфными аппаратами, но тут у него было много конкурентов, а электрический трамвай дал фирме много денег, и в конечном счете, потянул за собой все остальное.

Электромагнитная индукция

Основные величины, связанные с магнитами в технике

Мы будем интересоваться в основном магнитами, то есть ферромагнетиками, и оставим немного в стороне остальную, очень обширную область магнитных (лучше сказать, электромагнитных, в память о Максвелле) явлений. Единицами измерений у нас будут те, которые приняты в СИ (килограмм, метр, секунда, ампер) и их производные:

l Напряженность поля , H, А/м (ампер на метр).

Эта величина характеризует напряженность поля между параллельными проводниками, расстояние между которыми 1 м, и протекающий по ним ток 1 А. Напряженность поля является векторной величиной.

l Магнитная индукция , B, Тесла, плотность магнитного потока (Вебер/м.кв.)

Эта отношение тока через проводник к длине окружности, на том радиусе, на котором нас интересует величина индукции. Окружность лежит в плоскости, которую провод пересекает перпендикулярно. Сюда входит еще множитель, называемый магнитной проницаемостью. Это векторная величина. Если мысленно смотреть в торец провода и считать, что ток течет в направлении от нас, то магнитные силовые окружности «вращаются» по часовой стрелке, а вектор индукции приложен к касательной и совпадает с ними по направлению.

l Магнитная проницаемость , μ (относительная величина)

Если принять магнитную проницаемость вакуума за 1, то для остальных материалов мы получим соответствующие величины. Так, например, для воздуха мы получим величину, практически такую же как и для вакуума. Для железа мы получим существенно большие величины, так что можно образно (и весьма точно) говорить, что железо «втягивает» в себя силовые магнитные линии. Если напряженность поля в катушке без сердечника будет равняться H, то с сердечником мы получаем μH.

l Коэрцитивная сила , А/м.

Коэрцитивная сила показывает, насколько магнитный материал сопротивляется размагничиванию и перемагничиванию. Если ток в катушке совсем убрать, то в сердечнике будет остаточная индукция. Чтобы сделать ее равной нулю, нужно создать поле некоторой напряженности, но обратной, то есть пустить ток в обратном направлении. Эта напряженность и называется коэрцитивной силой.

Поскольку магниты на практике всегда используются в какой-то связи с электричеством, то не стоит удивляться тому, что для описания их свойств используется такая электрическая величина, как ампер.

Из сказанного следует возможность, например, гвоздю, на который подействовали магнитом, самому стать магнитом, хотя и более слабым. На практике выходит, что даже дети, забавляющиеся магнитами, об этом знают.

К магнитам в технике предъявляют разные требования, в зависимости от того, куда идут эти материалы. Ферромагнитные материалы делятся на «мягкие» и «жесткие». Первые идут на изготовление сердечников для приборов, где магнитный поток постоянный или переменный. Хорошего самостоятельного магнита из мягких материалов не сделаешь. Они слишком легко размагничиваются и здесь это как раз их ценное свойство, поскольку реле должно «отпустить» если ток выключен, а электрический мотор не должен греться - на перемагничивание расходуется лишняя энергия, которая выделяется в форме тепла.

КАК ВЫГЛЯДИТ МАГНИТНОЕ ПОЛЕ НА САМОМ ДЕЛЕ? Игорь Белецкий

Постоянные магниты, то есть те, которые магнитами и называют, требуют для своего изготовления жестких материалов. Жесткость имеется в виду магнитная, то есть большая остаточная индукция и большая коэрцитивная сила, поскольку, как мы видели, эти величины тесно связаны между собой. На такие магниты идут углеродистые, вольфрамовые, хромистые и кобальтовые стали. Их коэрцитивная сила достигает значений около 6500 А/м.

Есть особые сплавы, которые называются альни, альниси, альнико и множество других, как можно догадаться в них входят алюминий, никель, кремний, кобальт в разных сочетаниях, которые обладают большей коэрцитивной силой - до 20000…60000 А/м. Такой магнит не так-то просто оторвать от железа.

Есть магниты, специально предназначенные для работы на повышенной частоте. Это многим известный «круглый магнит». Его «добывают» из негодного динамика из колонки музыкального центра, или автомагнитолы или даже телевизора прошлых лет. Этот магнит изготовлен путем спекания окислов железа и специальных добавок. Такой материал называется ферритом, но не каждый феррит специально так намагничивается. А в динамиках его применяют из соображений уменьшения бесполезных потерь.

Магниты. Discovery. Как это работает?

Что происходит внутри магнита?

Благодаря тому, что атомы вещества являются своеобразными «сгустками» электричества, они могут создавать свое магнитное поле, но только у некоторых металлов, имеющих сходное атомное строение, эта способность выражена очень сильно. И железо, и кобальт, и никель стоят в периодической системе Менделеева рядом, и имеют похожие строения электронных оболочек, которое превращает атомы этих элементов в микроскопические магниты.

Поскольку металлы можно назвать застывшей смесью различных кристаллов очень маленького размера, то понятно, что магнитных свойств у таких сплавов может быть очень много. Многие группы атомов могут «разворачивать» свои собственные магниты под влиянием соседей и внешних полей. Такие «сообщества» называются магнитными доменами, и образуют весьма причудливые структуры, которые до сих пор с интересом изучаются физиками. Это имеет большое практическое значение.

Как уже говорилось, магниты могут иметь почти атомные размеры, поэтому наименьший размер магнитного домена ограничивается размером кристалла, в который встроены атомы магнитного металла. Этим объясняется, например, почти фантастическая плотность записи на современные жесткие диски компьютеров, которая, видимо, еще будет расти, пока у дисков не появятся конкуренты посерьезнее.

Гравитация, магнетизм и электричество

Где применяются магниты?

Сердечники которых являются магнитами из магнитов, хотя обычно их называют просто сердечниками, магниты находят еще множество применений. Есть канцелярские магниты, магниты для защелкивания мебельных дверей, магниты в шахматах для путешественников. Это известные всем магниты.

К более редким видам относятся магниты для ускорителей заряженных частиц, это очень внушительные сооружения, которые могут весить десятки тонн и больше. Хотя сейчас экспериментальная физика поросла травой, за исключением той части, которая тут же приносит сверхприбыли на рынке, а сама почти ничего не стоит.

Еще один любопытный магнит установлен в медицинском навороченном приборе, который называется магнитно-резонансным томографом. (Вообще-то метод называется ЯМР, ядерный магнитный резонанс, но чтобы не пугать народ, который в массе не силен в физике, его переименовали.) Для прибора требуется помещение наблюдаемого объекта (пациента) в сильное магнитное поле, и соответствующий магнит имеет устрашающие размеры и форму дьявольского гроба.

Человека кладут на кушетку, и прокатывают через тоннель в этом магните, пока датчики сканируют место, интересующее врачей. В общем, ничего страшного, но у некоторых клаустрофобия доходит до степени паники. Такие охотно дадут себя резать живьем, но не согласятся на обследование МРТ. Впрочем, кто знает, как человек чувствует себя в необычно сильном магнитном поле с индукцией до 3 Тесла, после того, как заплатил за это хорошие деньги.

Чтобы получить такое сильное поле, часто используют сверхпроводимость, охлаждая катушку магнита жидким водородом. Это дает возможность «накачивать» поле без опасений, что нагрев проводов сильным током ограничит возможности магнита. Это совсем недешевая установка. Но магниты из специальных сплавов, которые не требуют подмагничивания током, стоят значительно дороже.

Наша Земля тоже является большим, хотя и не очень сильным магнитом. Он помогает не только владельцам магнитного компаса, но и спасает нас от гибели. Без него мы были бы убиты солнечной радиацией. Картина магнитного поля Земли, смоделированная компьютерами по данным наблюдений из космоса выглядит очень внушительно.

Вот небольшой ответ на вопрос, о том, что такое магнит в физике и технике.