Как считать проценты. Калькулятор онлайн.Найти число, зная чему равен указанный процент от него

В этом коротком видеоуроке мы научимся решать задачи на проценты с помощью специальной формулы, которая так и называется: формула простого процента. Давайте оформим эту формулу в виде теоремы.

Теорема о простом проценте. Предположим, что есть некая исходная величина x , которая затем меняется на k %, и получается новая величина y . Тогда все три числа связаны формулой:

Плюс или минус перед коэффициентом k ставится в зависимости от условия задачи. Если по условию величина x возрастает, то перед k стоит плюс. Если же величина уменьшается, то перед коэффициентом k стоит минус.

Несмотря на кажущуюся мудреность этой формулы, многие задачи с ее помощью решаются очень быстро и красиво. Давайте попробуем.

Задача. Цена на товар была повышена на 10% и составила 2970 рублей. Сколько рублей стоил товар до повышения цены?

Чтобы решить эту задачу с помощью формулы простых процентов, нам необходимы три числа: исходное значение x , проценты k и итоговое значение y . Из всех трех чисел нам известны проценты k = 10 и итоговое значение y = 2970. Обратите внимание: 2970 — это именно итоговая цена, т.е. y . Потому что по условию задачи исходная цена на товар неизвестна (ее как раз требуется найти). Но затем она была повышена, и только тогда составила 2970 рублей.

Итак, нам нужно найти x , т.е. исходное значение. Что ж, подставляем наши числа в формулу и получаем:

Складываем числа в числителе и получаем:

Сокращаем по одному нулю в числителе и знаменателе, а затем умножаем обе части уравнения на 10. Получим:

11x = 29 700

Чтобы найти x из этого простейшего линейного уравнения, нужно разделить обе стороны на 11:

x = 29 700: 11 = 2700

Как видите, это довольно большие числа, поэтому в уме такие вычисления не провести. В случае, если такая задача встретится вам на ЕГЭ, придется делить уголком. При этом все разделилось без остатка, и мы получили значение x :

x = 2700

Именно столько стоил товар до повышения цены. И именно это число нам требовалось найти по условию задачи. Поэтому все: задача решена. Причем решена не «напролом», а с помощью формулы простого процента — быстро, красиво и наглядно.

Разумеется, эту задачу можно было решать по-другому. Например, через пропорции. Или экзотическим методом коэффициентов. Но будет гораздо лучше и надежнее, если у вас на вооружении будет несколько приемов для решения любой задачи на проценты. Так что обязательно попрактикуйтесь в использовании данной формулы.

Проценты - одно из понятий прикладной математики, которые часто встречаются в повседневной жизни. Так, часто можно прочитать или услышать, что, например, в выборах приняли участие 56,3% избирателей, рейтинг победителя конкурса равен 74%, промышленное производство увеличилось на 3,2%, банк начисляет 8% годовых, молоко содержит 1,5% жира, ткань содержит 100% хлопка и т.д. Ясно, что понимание такой информации необходимо в современном обществе.

Одним процентом от любой величины - денежной суммы, числа учащихся школы и т.д. - называется одна сотая ее часть. Обозначается процент знаком %, Таким образом,
1% - это 0,01, или \(\frac{1}{100} \) часть величины

Приведем примеры:
- 1% от минимальной заработной платы 2300 р. (сентябрь 2007 г.) - это 2300/100 = 23 рубля;
- 1% от населения России, равного примерно 145 млн. человек (2007 г.), - это 1,45 млн. человек;
- 3%-я концентрация раствора соли - это 3 г соли в 100 г раствора (напомним, что концентрация раствора - это часть, которую составляет масса растворенного вещества от массы всего раствора).

Понятно, что вся рассматриваемая величина составляет 100 сотых, или 100% от самой себя. Поэтому, например, надпись на этикетке "хлопок 100%" означает, что ткань состоит из чистого хлопка, а стопроцентная успеваемость означает, что в классе нет неуспевающих учеников.

Слово "процент" происходит от латинского pro centum, означающего "от сотни" или "на 100". Это словосочетание можно встретить и в современной речи. Например, говорят: "Из каждых 100 участников лотереи 7 участников получили призы". Если понимать это выражение буквально, то это утверждение, разумеется, неверно: ясно, что можно выбрать 100 человек, участвующих в лотерее и не получивших призы. В действительности точный смысл этого выражения состоит в том, что призы получили 7% участников лотереи, и именно такое понимание соответствует происхождению слова "процент": 7% - это 7 из 100, 7 человек из 100 человек.

Знак "%" получил распространение в конце XVII века. В 1685 году в Париже была издана книга "Руководство по коммерческой арифметике" Матье де ла Порта. В одном месте речь шла о процентах, которые тогда обозначали "cto" (сокращенно от cento). Однако наборщик принял это "с/о" за дробь и напечатал "%". Так из-за опечатки этот знак вошел в обиход.

Любое число процентов можно записать в виде десятичной дроби, выражающей часть величины.

Чтобы выразить проценты числом, нужно количество процентов разделить на 100. Например:

\(58\% = \frac{58}{100} = 0,58; \;\;\; 4,5\% = \frac{4,5}{100} = 0,045; \;\;\; 200\% = \frac{200}{100} = 2 \)

Для обратного перехода выполняется обратное действие. Таким образом, чтобы выразить число в процентах, надо его умножить на 100:

\(0,58 = (0,58 \cdot 100)\% = 58\% \) \(0,045 = (0,045 \cdot 100)\% = 4,5\% \)

В практической жизни полезно понимать связь между простейшими значениями процентов и соответствующими дробями: половина - 50%, четверть - 25%, три четверти - 75%, пятая часть - 20%, три пятых - 60% и т.д.

Полезно также понимать разные формы выражения одного и того же изменения величины, сформулированные без процентов и с помощью процентов. Например, в сообщениях "Минимальная заработная плата повышена с февраля на 50%" и "Минимальная заработная плата повышена с февраля в 1,5 раз" говорится об одном и том же. Точно так же увеличить в 2 раза - это значит увеличить на 100%, увеличить в 3 раза - это значит увеличить на 200%, уменьшить в 2 раза - это значит уменьшить на 50%.

Аналогично
- увеличить на 300% - это значит увеличить в 4 раза,
- уменьшить на 80% - это значит уменьшить в 5 раз.

Задачи на проценты

Поскольку проценты можно выразить дробями, то задачи на проценты являются, по существу, теми же задачами на дроби. В простейших задачах на проценты некоторая величина а принимается за 100% ("целое"), а ее часть b выражается числом p%.

В зависимости от того, что неизвестно - а, b или р, выделяются три типа задач на проценты. Эти задачи решаются так же, как и соответствующие задачи на дроби, но перед их решением число р% выражается дробью.

1. Нахождение процента от числа.
Чтобы найти \(\frac{p}{100} \) от a, надо a умножить на \(\frac{p}{100} \):

\(b = a \cdot \frac{p}{100} \)

Итак, чтобы найти р% от числа, надо это число умножить на дробь \(\frac{p}{100} \). Например, 20% от 45 кг равны 45 0,2 = 9 кг, а 118% от х равны 1,18x

2. Нахождение числа по его проценту.
Чтобы найти число по его части b, выраженной дробью \(\frac{p}{100} , \; (p \neq 0) \), надо b разделить на \(\frac{p}{100} \):
\(a = b: \frac{p}{100} \)

Таким образом, чтобы найти число по его части, составляющей р% этого числа, надо эту часть разделить на \(\frac{p}{100} \). Например, если 8% длины отрезка составляют 2,4 см, то длина всего отрезка равна 2,4:0,08 = 240:8 = 30 см.

3. Нахождение процентного отношения двух чисел.
Чтобы найти, сколько процентов число b составляет от а \((a \neq 0) \), надо сначала узнать, какую часть b составляет от а, а затем эту часть выразить в процентах:

\(p = \frac{b}{a} \cdot 100\% \) Значит, чтобы узнать, сколько процентов первое число составляет от второго, надо первое число разделить на второе и результат умножить на 100.
Например, 9 г соли в растворе массой 180 г составляют \(\frac{9 \cdot 100}{180} = 5\% \) раствора.

Частное двух чисел, выраженное в процентах, называется процентным отношением этих чисел. Поэтому последнее правило называют правилом нахождения процентного отношения двух чисел.

Нетрудно заметить, что формулы

\(b = a \cdot \frac{p}{100}, \;\; a = b: \frac{p}{100}, \;\; p = \frac{b}{a} \cdot 100\% \;\; (a,b,p \neq 0) \) взаимосвязаны, а именно, две последние формулы получаются из первой, если выразить из нее значения a и p. Поэтому первую формулу считают основной и называют формулой процентов. Формула процентов объединяет все три типа задач на дроби, и, при желании, можно ею пользоваться, чтобы найти любую из неизвестных величин a, b и p.

Составные задачи на проценты решаются аналогично задачам на дроби.

Простой процентный рост

Когда человек не вносит своевременную плату за квартиру, на него налагается штраф, который называется "пеня" (от латинского роеnа - наказание). Так, если пеня составляет 0,1% от суммы квартплаты за каждый день просрочки, то, например, за 19 дней просрочки сумма составит 1,9% от суммы квартплаты. Поэтому вместе, скажем, с 1000 р. квартплаты человек должен будет внести пеню 1000 0,019 = 19 р., а всего 1019 р.

Ясно, что в разных городах и у разных людей квартплата, размер пени и время просрочки разные. Поэтому имеет смысл составить общую формулу квартплаты для неаккуратных плательщиков, применимую при любых обстоятельствах.

Пусть S - ежемесячная квартплата, пеня составляет р% квартплаты за каждый день просрочки, а n - число просроченных дней. Сумму, которую должен заплатить человек после n дней просрочки, обозначим S n .
Тогда за n дней просрочки пеня составит рn% от S, или \(\frac{pn}{100}S \), а всего придется заплатить \(S + \frac{pn}{100}S = \left(1+ \frac{pn}{100} \right) S \)
Таким образом:
\(S_n = \left(1+ \frac{pn}{100} \right) S \)

Эта формула описывает многие конкретные ситуации и имеет специальное название: формула простого процентного роста.

Аналогичная формула получится, если некоторая величина уменьшается за данный период времени на определенное число процентов. Как и выше, нетрудно убедиться, что в этом случае
\(S_n = \left(1- \frac{pn}{100} \right) S \)

Эта формула также называется формулой простого процентного роста, хотя заданная величина в действительности убывает. Рост в этом случае "отрицательный".

Сложный процентный рост

В банках России для некоторых видов вкладов (так называемых срочных вкладов, которые нельзя взять раньше, чем через определенный договором срок, например, через год) принята следующая система выплаты доходов: за первый год нахождения внесенной суммы на счете доход составляет, например, 10% от нее. В конце года вкладчик может забрать из банка вложенные деньги и заработанный доход - "проценты", как его обычно называют.

Если же вкладчик этого не сделал, то проценты присоединяются к начальному вкладу (капитализируются), и поэтому в конце следующего года 10% начисляются банком уже на новую, увеличенную сумму. Иначе говоря, при такой системе начисляются "проценты на проценты", или, как их обычно называют, сложные проценты.

Подсчитаем, сколько денег получит вкладчик через 3 года, если он положил на срочный счет в банк 1000 р. и ни разу в течение трех лет не будет брать деньги со счета.

10% от 1000 р. составляют 0,1 1000 = 100 р., следовательно, через год на его счете будет
1000 + 100 = 1100 (р.)

10% от новой суммы 1100 р. составляют 0,1 1100 = 110 р., следовательно, через 2 года на его счете будет
1100 + 110 = 1210 (р.)

10% от новой суммы 1210 р. составляют 0,1 1210 = 121 р., следовательно, через 3 года на его счете будет
1210 + 121 = 1331 (р.)

Нетрудно представить себе, сколько при таком непосредственном, "лобовом" подсчете понадобилось бы времени для нахождения суммы вклада через 20 лет. Между тем подсчет можно вести значительно проще.

А именно, через год начальная сумма увеличится на 10%, то есть составит 110% от начальной, или, другими словами, увеличится в 1,1 раза. В следующем году новая, уже увеличенная сумма тоже увеличится на те же 10%. Следовательно, через 2 года начальная сумма увеличится в 1,1 1,1 = 1,1 2 раз.

Еще через один год и эта сумма увеличится в 1,1 раза, так что начальная сумма увеличится в 1,1 1,1 2 = 1,1 3 раз. При таком способе рассуждений получаем решение нашей задачи значительно более простое: 1,1 3 1000 = 1,331 1000 - 1331 (р.)

Решим теперь эту задачу в общем виде. Пусть банк начисляет доход в размере р% годовых, внесенная сумма равна S р., а сумма, которая будет на счете через n лет, равна S n р.

Величина p% от S составляет \(\frac{p}{100}S \) р., и через год на счете окажется сумма
\(S_1 = S+ \frac{p}{100}S = \left(1+ \frac{p}{100} \right)S \)
то есть начальная сумма увеличится в \(1+ \frac{p}{100} \) раз.

За следующий год сумма S 1 увеличится во столько же раз, и поэтому через два года на счете будет сумма
\(S_2 = \left(1+ \frac{p}{100} \right)S_1 = \left(1+ \frac{p}{100} \right) \left(1+ \frac{p}{100} \right)S = \left(1+ \frac{p}{100} \right)^2 S \)

Аналогично \(S_3 = \left(1+ \frac{p}{100} \right)^3 S \) и т.д. Другими словами, справедливо равенство
\(S_n = \left(1+ \frac{p}{100} \right)^n S \)

Эту формулу называют формулой сложного процентного роста , или просто формулой сложных процентов.

Анонимный Число А на 56% меньше числа В, которое в 2,2 раза меньше числа С. Какой процент числа С относительно числа А? NMitra A = B - 0,56 ⋅ B = B ⋅ (1 - 0,56) = 0,44 ⋅ B B = A: 0,44 С = 2,2 ⋅ B = 2,2 ⋅ A: 0,44 = 5 ⋅ A C в 5 раз больше A C на 400% больше A Анонимный Помогите. В 2001 выручка возросла по сравнению с 2000 на 2 процента, хотя планировали в 2 раза. На сколько процентов недовыполнен план? NMitra А - 2000 год Б - 2001 год Б = A + 0,02A = A ⋅ (1 + 0,02) = 1,02 ⋅ A Б = 2 ⋅ А (план) 2 - 100% 1,02 - х% х = 1,02 ⋅ 100: 2 = 51% (выполнен план) 100 - 51 = 49% (недовыполнен план) Анонимный Помогите ответить на вопрос. Арбуз содержит 99% влажность, но после усушки (положить на солнышко на несколько дней) влажность его составляет 98%. На сколько % изменится ВЕС арбуза после усушки? Если рассчитывать математическим путем, то получается, что у меня арбуз совсем усох. Например: при весе в 20 кг вода составляет 99% массы, то есть сухой вес равен 1% = 0,2 кг. Тут арбуз теряет жидкость, и состоит уже на 98%, следовательно, сухой вес равен 2%. Но сухой вес не может измениться из-за потери воды, поэтому он как и прежде равен 0,2 кг. 2%=0,2 => 100%=10 кг. Анонимный Подскажите, пожалуйста, как вычислить сам процент в диапазоне 2-ух значений? Скажем, какой процент у числа 37 в диапазоне значений 22-63? Мне нужна формула для приложения, раньше решал такие задачи за пару минут, а сейчас мозг усох). Выручайте. NMitra У меня так выходит: процент = (число - z0) ⋅ 100: (z1-z0) z0 - начальное значение диапазона z1 - конечное значение диапазона Например, х = (37-22) ⋅ 100: (63-22) = 1500: 41 = 37% Для примера ниже сходится

0 10 20 30 40 50 60 70 80 90 100
2 3 4 5 6 7 8 9 10 11 12
Анонимный a - текущая дата b - начало срока c - конец срока (a-b) ⋅ 100: (c-b) Анонимный Стол и стул стоят вместе 650 руб. После того как стол стал дешевле на 20%, а стул - дороже на 20%, они стали стоить вместе 568 руб. Найти начальную цену стола, нач. цену стула. NMitra цена стола - х цена стула - у 0,8x + 1,2y = 568 0,8x = 568 - 1,2y x = (568 - 1,2y) : 0,8 = 710 - 1,5y x + y = 650 y = 650 - x y = 650 - (710 - 1,5y) = -60 + 1,5y y - 1,5y = -60 0,5y = 60 y = 120 x = 710 - 1,5 ⋅ 120 = 530 Анонимный Вопрос. На автостоянке стояли легковые и грузовые машины. Легковых машин больше на 1,15 раза. На сколько процентов легковых машин больше, чем грузовых? NMitra На 15%. Кеша Помогите, пожалуйста. Уже голова опухла… Привезли товар на 70 000. Товары разные. 23 вида. Конечно, закупочные цены у них разные от 210 руб. до 900 руб. Всего расход на транспорт и т. п. = 28 000 руб. Как мне посчитать теперь себестоимость на эти разные товары? Количество 67 шт. И хочу им 50 процентов добавить и продавать. Как мне тогда вычислить на каждого вида товара накрутку 50%? Заранее благодарю. С уважением, КЕША. NMitra Предположим, привезли 4-ре товара (35 руб, 16 руб, 18 руб, 1 руб) на общую сумму 70 руб. На транспортные расходы и т. п. потратили 20 руб. Процент каждого товара в общей сумме 70 руб - 100% 35 руб - х% х = 35 ⋅ 100: 70 = 50% Себестоимость 35 руб + 10 руб = 45 руб
35 50% 10 45
16 23% 4,6 20,6
18 26% 5,2 23,2
1 1% 0,2 1,2
70 100% 20 90
Накрутка 50% на себестоимость 45 руб - 100% х руб - 150% х = 45 ⋅ 150: 100 = 45 ⋅ 1,5 = 67,5 руб
35 50% 10 45 67,5
16 23% 4,6 20,6 30,9
18 26% 5,2 23,2 34,8
1 1% 0,2 1,2 1,8
70 100% 20 90 135
Tigran Hovhannisyan Кеша, есть два способа. Первый способ описан в верхнем комментарии. Второй способ - берёте сумму транспорта и делите на количественную сумму товаров (в Вашем случае 67), то есть 28 000: 67 = 417,91 рублей на одно изделие Вот 418 (417.91) прибавьте на себестоимость товара (тут есть много нюансов, которые можно учесть, но в общем-то всё выглядит так). Анонимный А мне помогите, пожалуйста, сосчитать. Один человек дал на общее развитие дел 1 тыс. евро, другой - 3600. За несколько месяцев работы сумма получилась 14500. Как поделить??? Кому сколько)) Я не математик, объяснила просто. Сумма от первоначальной выросла в три раза с хвостиком. Это легко считать: 14 500 делим на 4600, получаем 3,152. Вот это и есть число на которое надо умножать вложенную сумму: 1 тыс - 3 152 3600 умножаем на 3,152 = 11 347 Всё просто) Без всяких формул. NMitra Верно мыслите! 100% - 1000 + 3600 х% - 1000 х = 1000 ⋅ 100: 4600 = 21,73913% (доля в процентах в первоначальном капитале того, кто дал 1000€) 100% - 14500 21,73913% - х х = 14500 ⋅ 21,73913: 100 = 3152,17€ (тот, кто дал 1000€) 14500 - 3152,17 = 11347,83€ (тот, кто дал 3600€)

Как найти число по его доле? 5 – это 1/3 часть какого числа? 5. 5. 5.

Картинка 17 из презентации «Нахождение числа по доле» к урокам математики на тему «Доли»

Размеры: 960 х 720 пикселей, формат: jpg. Чтобы бесплатно скачать картинку для урока математики, щёлкните по изображению правой кнопкой мышки и нажмите «Сохранить изображение как...». Для показа картинок на уроке Вы также можете бесплатно скачать презентацию «Нахождение числа по доле.ppt» целиком со всеми картинками в zip-архиве. Размер архива - 160 КБ.

Скачать презентацию

Доли

«Урок Доли» - Запомните: Например: ….. Читают: “одна вторая”, “одна двадцать первая”, “одна сто пятая”. Людям часто приходится делить целое на доли. ……А если разделить на пять частей, то “пятерть“, на шесть – “шестерть“ ? Материалы к уроку: Для записи любой доли используют горизонтальную черточку. Урок математики в 5 классе.

«Доли и дроби» - Таких смешных слов в русском языке нет. Все ль внимательно глядят? Обыкновенные дроби. Цели и задачи: Как называются другие доли? Что показывают числитель и знаменатель дроби? Разгадайте ребус и узнаете с чем мы сейчас познакомимся. «Дроби». Числитель дроби Черта дроби (дробная черта) Знаменатель дроби.

«Нахождение числа по доле» - Задачи на нахождение числа. Математика – царица всех наук. Часть умножить на данную долю. Немецкий математик. Найти сумму чисел. Число разделить на данную долю. Подсказка. Как найти число по его доле. Решение задач на нахождение доли числа. Сравни задачи. Памятник Гауссу в Брауншвейге. Дата рождения.

«Доли» - Так как отрезок разделили на 7 долей, то одна доля «одна седьмая отрезка». Решение. Знаменатель дроби показывает на сколько долей делят, а числитель дроби показывает – сколько таких долей взято. Доли. Как разрезать головку сыра на 8 равных долей, сделав только три разреза? Найдите координаты точек. Подумай!

«Задачи на части» - Сколько орехов было у мальчика и девочки в отдельности? Где есть желание, найдется путь» Д. Пойа. Если возможно, решите задачу несколькими способами. Учитель: Белова Светлана Владимировна. Сплав содержит олова в 3 раза больше, чем свинца. Для компота взяли 6 частей яблок, 5 частей груш и 3 части слив.

«Задачи на доли» - 5 класс. Запишите цифрами доли: На соревнованиях команда школы, составленная из учеников 5-11-х классов, должна преодолеть дистанцию в 1 км. 1мм – 1/1000м 1 см – 1/100 м 1 дм – 1/10 м Сколько сантиметров составляет: 1/2 м 1/4 м 1/5 м Образец: 1/10 м =10 см 1/20 м 1/25м? Сколько метров нужно преодолеть каждому ученику?

Всего в теме 13 презентаций