Какой химический элемент связан с японией.

28 ноября Международный союз теоретической и прикладной химии (International Union of Pure and Applied Chemistry - IUPAC) утвердил имена и символы для четырех элементов, открытых в XXI веке. Имен удостоились элементы с порядковыми номерами 113, 115, 117 и 118. Сразу два из названий имеют непосредственное отношение к России. Теперь седьмой период таблицы окончательно заполнен именами.


Седьмой период таблицы Менделеева полностью заполнен, на очереди синтез первых двух элементов восьмого периода - 119-го и 120-го

Согласно правилам IUPAC, с которыми согласились все химики мира, предлагать названия для новых элементов могут только их первооткрыватели. Поэтому название элемента 113 предложили сотрудники японского Института физико-химических исследований RIKEN, в состав которого входит главный японский ускоритель частиц. А названия остальных трех элементов предложили первооткрыватели из Объединенного института ядерных исследований (ОИЯИ) в Дубне (Россия) и трех американских исследовательских центров: Окриджской национальной лаборатории (Oak Ridge National Laboratory), Университета Вандербильта (Vanderbilt University) и Ливерморской национальной лаборатории имени Лоуренса (Lawrence Livermore National Laboratory).

Варианты названий обсуждались почти полгода. Многие предложения сопровождались петициями и выступлениями больших научных групп. Например, тот же 113-й элемент в России синтезировали на год раньше, чем в Японии. Однако полученные российским методом атомы 113-го элемента оказалось сложнее идентифицировать, потому что они распадались "как попало". А созданные японцами атомы, обладая меньшей энергией, распадались по небольшому числу механизмов, и продукты распада оказалось легче идентифицировать. Приоритет IUPAC был отдан японцам. Так что большая часть предложений осталась без внимания именно потому, что они высказывались не авторами открытия. В итоге бюро IUPAC присвоило следующие названия и символы:

Nihonium и символ Nh, для элемента 113,

Moscovium и символ Mc, для элемента 115,

Tennessine и символ Ts, для элемента 117,

Oganesson и символ Og, для элемента 118.

Названия элементам даются тоже по определенным правилам. Прежде всего, они отражают роль отдельного ученого или места, в котором расположена научная организация, открывшая элемент. Поэтому элемент 113 получил имя Nihonium. Nihon - английская транскрипция японского слова, означающего "Страна восходящего солнца" - так свою страну называют японцы.

Элемент 115 получил имя Moscovium в честь заслуг ученых Москвы и Московской области, где расположен Объединенный институт ядерных исследований. Именно на ускорителе ОИЯИ синтезировались многие сверхтяжелые элементы, в том числе и 115-й, и 117-й, и 118-й.

Огромную роль в постановке экспериментов по синтезу сверхтяжелых элементов, в поиске островка стабильности и в организации работы сыграл научный руководитель лаборатории ядерных реакций имени Г. Н. Флерова ОИЯИ академик Юрий Оганесян. Все участники эксперимента по синтезу трансактиноидных элементов согласились с тем, что без этого человека и ученого эксперимент поставить бы не удалось. Поэтому элемент 118 и назван Oganesson. Президент IUPAC член-корреспондент РАН, профессор Наталья Тарасова подчеркнула: "Названия новых элементов отражают реалии нашего времени. Универсальность науки подчеркивают места на трех континентах, где были открыты новые элементы учеными из Японии, России и Соединенных Штатов Америки. А ключевая роль человеческого капитала в развитии науки отражена в имени элемента, названного в честь выдающегося ученого Юрия Оганесяна".

Как рассказал сам академик Оганесян, методика получения трансактиноидных элементов основана на реакции ядерного синтеза, в котором участвуют уран и трансурановые элементы, а также редкий изотоп кальция - кальций-48 (содержание в чистом кальции - менее 0,2%). Изотоп выделяют из природного металла специалисты комбината "Электрохимприбор". А мишени из урана, плутония, америция, кюрия, калифорния готовят в Димитровградском НИИ Атомных реакторов, в Ливерморской национальной лаборатории, а также в Национальной лаборатории в Ок-Ридже в США. Ключевые эксперименты по бомбардировке тяжелых мишеней кальцием-48 проводились академиком Оганесяном в ОИЯИ, в лаборатории ядерных реакций имени Флерова. Ускоритель в Дубне работал по 6-7 тысяч часов в год, разгоняя ионы кальция-48 примерно до 0,1 скорости света. При такой скорости ядра кальция могут преодолеть силы кулоновского отталкивания и слиться с ядрами мишеней. Если мишень из урана, например, получается элемент 112. Если плутоний - 114. Берклий-249 - 117 и продукты его распада элементы 115 и 113. А если калифорний - 118.

Согласно периодической системе Менделеева, синтезированные элементы как представители своих групп просто обязаны обладать определенным набором химических свойств. Но проверить эти свойства можно, если только элемент обладает достаточным временем жизни. Например, нихоний относится к группе бора, московий - к группе азота, теннессин - к галогенам, а предсказанный в 1922 году Нильсом Бором оганессон - вообще благородный, хоть и не газ. Согласно расчетам, при нормальных условиях это должно быть твердое вещество. К тому же химически активное, так как связь внешнего уровня электронной оболочки с ядром очень мала.

Седьмой период таблицы Менделеева полностью заполнен, однако исследование новых элементов продолжается. Как сообщил на XX Менделеевском съезде в Екатеринбурге директор лаборатории ядерных реакций имени Флерова ОИЯИ Сергей Дмитриев, сейчас идет подготовка к синтезу первых двух элементов восьмого периода - 119-го и 120-го. Сам эксперимент по синтезу начнется примерно в 2019 году.

Японские ученые, работающие в физическом центре RIKEN, уверяют, что они подтвердили получение 113 элемента таблицы Менделеева. Впервые команда, которой руководит Косуке Морита, синтезировала тяжелый атом еще в 2004 году. Его ядро содержит 113 протонов и 165 нейтронов.

Годом ранее российским ученым из Объединенного института ядерных исследований в Дубне параллельно с американскими коллегами, работающими в Ливерморской национальной лаборатории имени Лоуренса, получили такой же атом во время эксперимента по синтезу 115 и 117 элементов. Но Международный союз теоретической и прикладной химии не признал этих открытий. Причиной этому было то, что ученые все еще не могут объяснить с точки зрения атомной физики, какие именно процессы происходят в ускорителях во время получения каких-либо новых элементов.

Напомним, что элементы с атомными номерами выше 92 сами по себе не могут существовать в естественной природе. То есть, последним в этом списке идет уран. Элементы до фермия, который имеет атомный номер 100, можно получить только в атомных реакторах. Более тяжелые элементы, имеющие большее количество протонов в ядре, производят только на ускорителях частиц.

Исследователи из Японии с 2003 года предпринимали попытки получить 113 элемент на ускорителе, бомбардируя мишень из висмута-209 пучком ионов цинка-70. Несмотря на бесконечное повторение операции, лишь иногда ядро цинка попадало в ядро висмута. Пока зафиксировать было ли столкновение, невозможно. Судить о том, что оно произошло, можно только по продуктам распада. Успехом считается та ситуация, в которой образовавшееся в столкновении ядро выделяет альфа-частицы, которые улавливаются детектором ускорителя. В том случае, если ученые знают свойства всех продуктов происходящей реакции распада, то по анализу тех частиц, которые выделились, можно сказать, что именно образовалось после бомбардировки цинка висмутом. Лучшим доказательством того, что был получен искомый элемент, является раскрытие всего каскада распадов.

Команде Мориты за девять лет работы удалось зафиксировать сразу три цепочки распада в разные годы. Время жизни ядра 113 элемента составило от 0,3 до 4,9 миллисекунды.

Сейчас весь научный мир с нетерпением ждет, какой именно вердикт вынесут специалисты Международного союза теоретической и прикладной химии: признают они достижение японцев или все же нет. Если «первооткрывателями» элемента признают японцев, а не российских специалистов, то это станет для Японии важным научным достижением. Согласно практике, лаборатория, которая первая подтвердила получение нового элемента, может выбрать ему имя. Это означает, что Морита с коллегами станут первыми в Азии учеными, которые удостоятся такой чести.

Антон Белогородцев

Вы читаете самую свежую версию статьи; также доступна выверенная версия. Унунпентий / Ununpentium (Uup) Атомный номер 115 Внешний вид простого вещества Свойства атома … Википедия

Дармштадтий (Ds) Атомный номер 110 Внешний вид простого вещества Металл, по–видимому находится в твердом состоянии при 298 K (25 °C). Цвет неизвестен, но, вероятно, металлический и серебристо–белый или серый Свойства атома Атомная масса (молярная … Википедия

ЭЛЕМЕНТ ВИНЫ ИНТЕЛЛЕКТУАЛЬНЫЙ - см. Вина. Например, состояние аффекта предусмотрено в составах убийства (ст. 107 УК РФ), причинения тяжкого или средней тяжести вреда здоровью (ст. 113 УК РФ). Под аффектом понимают сильное и относительно кратковременное эмоциональное… … Словарь-справочник уголовного права

Химический элемент совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в… … Википедия

- … Википедия

- (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… …

ГОСТ Р 41.113-2005: Единообразные предписания, касающиеся автомобильных фар, испускающих симметричный луч ближнего или дальнего света либо оба луча и оснащенных лампами накаливания - Терминология ГОСТ Р 41.113 2005: Единообразные предписания, касающиеся автомобильных фар, испускающих симметричный луч ближнего или дальнего света либо оба луча и оснащенных лампами накаливания оригинал документа: 1.2 покрытие (coating): Любое… …

ГОСТ 12.2.113-2006: Прессы кривошипные. Требования безопасности - Терминология ГОСТ 12.2.113 2006: Прессы кривошипные. Требования безопасности оригинал документа: 3.3 аварийная ситуация: Ситуация, которая может привести к поломке деталей машины и травмированию работающего. Определения термина из разных… … Словарь-справочник терминов нормативно-технической документации

Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

- (франц. Antimoine, англ. Antimony, нем. Antimon, лат. Stibium, откуда символ Sb, или Regulus antimonii; атомн. вес = 120, если О = 16) блестящий серебристо белый металл, обладающий грубопластинчатым кристаллическим изломом или зернистым, смотря… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Предположительно, нихоний является сверхтяжелым металлом, который принадлежит к подгруппе бора (химические элементы 13-й группы периодической таблицы химических элементов: бор B, алюминий Al, галлий Ga, индий In, таллий Tl и Нихоний Nh) , следуя в ней после элемента «таллий». Первые сообщения о его существовании появились в 2004 году, но лишь в 2016 он получил свое настоящее название (см. статью Новые элементы таблицы Менделеева 2016). Любопытный факт: нихоний Nh стал первым химическим элементом Таблицы Менделеева открытым в Азии.

Откуда появилось название «нихоний»

После открытия 113 элемент был известен в таблице Менделеева как унунтрий. Унунтрий — систематическое имя этого химического элемента от лат. Ununtrium, дословно переводится как «сто тринадцатый». Подобные временные имена присваивают всем новым химическим элементам.
Первоначально нихоний был синтезирован в России, в Объединённом институте ядерных исследований г.Дубна. Практически одновременно с открытием российских учёных появились сообщения о синтезе этого элемента в Японии. Последующие эксперименты по синтезу 113-го элемента проводились в различных лабораториях по всему миру, но японские ученые из института RIKEN Nishina Center for Accelerator-Based Science добились наиболее впечатляющих результатов, поэтому Международный союз теоретической и прикладной химии признал приоритет открытия за японцами.
Тем не менее, недостатка в предлагаемых названиях не было. Например, российские учёные предлагали назвать 113 элемент беккерелий, в честь Анри Беккереля открывшего явление радиоактивности. Японцы предложили несколько названий: японий, нисинаний (в честь физика Ёсио Нисина) и рикений (в честь института RIKEN).
Однако Международный союз теоретической и прикладной химии рекомендовал наименование «нихоний» (от яп. Нихон коку — Япония, дословно «страна восходящего солнца»). Таким образом, двадцать восьмого ноября 2016 года сто тринадцатый элемент таблицы Менделеева получил официальное наименование, перестав именоваться унунтрием.

Что им удалось подтвердить получение 113-го элемента таблицы Менделеева.

Всё потому что учёные до сих пор не смогли объяснить (с точки зрения атомной физики), какие процессы происходят в их ускорителях при получении тех или иных элементов.

Японские исследователи с 2003 года пытались получить 113-й элемент на ускорителе в окрестностях Токио, бомбардируя мишень из висмута-209 пучком ионов цинка-70. Несмотря на то что эта операция повторялась 130 триллионов раз, лишь в отдельных случаях ядро цинка, пролетая с со скоростью, равной одной десятой скорости света, попадало в ядро висмута.

Зафиксировать это столкновение напрямую невозможно. Судить о произошедшем можно лишь по продуктам распада (полученный в столкновении атом разделяется на две меньшие части, которые впоследствии также распадаются). Настоящим успехом считается ситуация, когда образовавшееся в столкновении ядро выбрасывает альфа-частицы , которые улавливает детектор ускорителя.

Если учёным известны свойства продуктов происходящей реакции распада, то по анализу выделенных альфа-частиц они могут точно определить, что образовалось после бомбардировки, например, цинка висмутом. Раскрытие всего каскада распадов служит лучшим доказательством получения искомого элемента.

Команда Мориты за 9 лет зафиксировала три цепочки распада ― 23 июля 2004 года, 2 апреля 2005 года и 12 августа 2012 года. Время жизни ядра нового элемента составило от 0,3 до 4,9 миллисекунды. Как сообщается в издании Journal of the Physical Society of Japan, только в последнем случае исследователям удалось достоверно установить цепочку распада по выделенным альфа-частицам.

Теперь весь мир ждёт, какой вердикт вынесут специалисты IUPAC, признают ли они достижение японцев или нет.

Что касается российской группы учёных из подмосковной Дубны, то они в 2003 году сообщили о получении 113-го элемента при бомбардировке америция (атомный номер 95) ядрами кальция. Тогда проводились опыты с целью получения атомов 115-го элемента .

Позже, по утверждению учёных из России, они смогли получить в общей сложности 56 атомов нового элемента с пятью различными массами. Однако до сих пор им не удалось доказать своё право на открытие из-за отсутствия должного объяснения цепочки распада.

Руководитель этих работ Юрий Оганесян считает неэтичным обсуждать тему первенства до решения Международного союза теоретической и прикладной химии, но напоминает, что элементы с номерами и были признаны без демонстрации такой цепочки.

Добавим, что признание "первопроходцами" представителей Страны восходящего солнца, станет для Японии серьёзным научным достижением. Согласно существующей практике, лаборатория, первой подтвердившая получение нового элемента, имеет право выбрать ему имя. А это значит, что Морита и его коллеги могут стать первыми в Азии, кто удостоится такой чести.