История полетов человека в космос. Первый человек в космосе

Недавно человечество вступило на порог третьего тысячелетия. Что ждёт нас в будущем? Наверняка возникнет много проблем, требующих обязательных решений. По прогнозам учёных, в 2050 году численность жителей Земли достигнет цифры 11 млрд. человек. Причём 94% прирост будет в развивающихся странах и только 6% в промышленно развитых. Кроме того, учёные научились замедлять процессы старения, что существенно увеличивает продолжительность жизни.

Это ведёт к новой проблеме - нехватке продовольствия. В данный момент примерно полмиллиарда человек голодают. По этой причине ежегодно умирают около 50 миллионов. Чтобы прокормить 11 миллиардов, нужно будет в 10 раз увеличить производство продуктов питания. Помимо этого понадобится энергия для обеспечения жизни всех этих людей. А это ведёт к увеличению добычи топлива и сырья. Выдержит ли планета подобную нагрузку?

Ну и не стоит забывать о загрязнении окружающей среды. С наращиванием темпов производства не только истощаются ресурсы, но и меняется климат планеты. Машины, электростанции, заводы выбрасывают в атмосферу такое количество углекислого газа, что возникновение парникового эффекта совсем не за горами. С повышением температуры на Земле начнётся и повышение уровня воды в Мировом океане. Всё это самым неблагоприятным образом скажется на условиях жизни людей. Даже может привести к катастрофе.

Данные проблемы поможет решить Подумайте сами. Туда можно будет переместить заводы, исследовать Марс, Луну, добывать ресурсы и энергию. И всё будет так, как в фильмах и на страницах научно-фантастических произведений.

Энергия из космоса

Сейчас 90% всей земной энергии получают путём сжигания топлива в домашних печах, автомобильных двигателях и котлах электростанций. Каждые 20 лет потребление энергии удваивается. Насколько же хватит природных ресурсов для удовлетворения наших нужд?

Например, то же нефти? По прогнозам учёных, она закончится через столько лет, сколько насчитывает история освоения космоса, то есть через 50. Угля хватит на 100 лет, а газа примерно на 40. Кстати, атомная энергия тоже относится к исчерпаемым источникам.

Теоретически проблема поиска альтернативной энергии была решена ещё в 30-х годах прошлого века, когда придумали реакцию термоядерного синтеза. К сожалению, она до сих пор неуправляема. Но даже если научиться её контролировать и получать энергию в неограниченных количествах, то это приведёт к перегреву планеты и необратимому изменению климата. Существует ли выход из этой ситуации?

Трёхмерная индустрия

Конечно, это освоение космоса. Необходимо перейти из «двухмерной» индустрии в «трёхмерную». То есть все энергоёмкие производства нужно перенести с поверхности Земли в космос. Но в данный момент делать это экономически невыгодно. Стоимость такой энергии будет в 200 раз выше электричества, полученного тепловым путём на Земле. Плюс огромных денежных вливаний потребует постройка больших орбитальных станций. В общем, нужно подождать, пока человечество пройдёт следующие этапы освоения космоса, когда будет усовершенствована техника и снизится стоимость строительных материалов.

Круглосуточное солнце

На протяжении всей истории существования планеты люди пользовались солнечным светом. Однако потребность в нём есть не только в дневное время. Ночью он нужен намного дольше: для освещения строек, улиц, полей во время сельхозработ (посевной, уборки) и т.д. А на Крайнем Севере Солнце вообще не появляется на небосклоне по полгода. Можно ли увеличить Насколько реально создание искусственного Солнца? Сегодняшние успехи в освоении космоса делают эту задачу вполне осуществимой. Достаточно лишь разместить на орбите планеты соответствующее приспособление для на Землю. При этом его интенсивность можно будет менять.

Кто придумал рефлектор?

Можно сказать, что история освоения космоса в Германии началась с идеи создания внеземных рефлекторов, предложенной немецким инженером Германом Обертом в 1929 году. Дальнейшее её развитие можно проследить по работам учёного Эрика Крафта из США. Сейчас американцы как никогда близки к осуществлению этого проекта.

Конструктивно рефлектор представляет собой раму, на которую натянута полимерная отражающая излучение солнца. Направление светового потока будет осуществляться либо по командам с Земли, либо автоматически, по заданной заранее программе.

Реализация проекта

США делают серьёзные успехи в освоении космоса и вплотную приблизились к реализации этого проекта. Сейчас американские специалисты исследуют возможность размещения на орбите соответствующих спутников. Находиться они будут прямо над Северной Америкой. 16 установленных зеркал-отражателей позволят продлить световой день на 2 часа. Два отражателя планируют направить на Аляску, что увеличит там световой день на целых 3 часа. Если использовать спутники-рефлекторы для продления дня в мегаполисах, то это обеспечит их высококачественным и бестеневым освещением улиц, магистралей, строек, что, несомненно, является выгодным с экономической точки зрения.

Рефлекторы в России

Например, если освещать из космоса пять городов, равных по размерам Москве, то благодаря экономии электроэнергии затраты окупятся примерно через 4-5 лет. Причём система спутников-рефлекторов без всяких дополнительных затрат может переключиться на другую группу городов. А как очистится воздух, если энергия будет поступать не от чадящих электростанций, а из космического пространства! Единственное препятствие на пути реализации этого проекта в нашей стране - это недостаток финансирования. Поэтому освоение космоса Россией идёт не так быстро, как хотелось.

Внеземные заводы

Прошло уже больше 300 лет со дня открытия Э. Торричелли вакуума. Это сыграло огромную роль в развитии техники. Ведь без понимания физики вакуума было бы невозможно создать ни электронику, ни двигатели внутреннего сгорания. Но всё это относится к промышленности на Земле. Сложно представить, какие возможности даст вакуум в таком деле, как освоение космоса. Почему бы не заставить галактику служить людям, построив там заводы? Они будут находиться в совершенно другой среде, в условиях вакуума, низких температур, мощных источников солнечного излучения и невесомости.

Сейчас сложно осознать все преимущества данных факторов, но можно с уверенностью сказать, что открываются просто фантастические перспективы и тема «Освоение космоса путём постройки внеземных заводов» становится актуальной как никогда. Если сконцентрировать лучи Солнца параболическим зеркалом, то можно сваривать детали из титановых сплавов, нержавеющей стали и др. При плавке металлов в земных условиях в них попадают примеси. А технике всё больше необходимы сверхчистые материалы. Как их получить? Можно «подвесить» металл в магнитном поле. Если его масса мала, то данное поле его удержит. При этом металл можно расплавить, пропуская через него высокочастотный ток.

В невесомости можно плавить материалы любых масс и размеров. Не нужны ни формы, ни тигли для литья. Также нет необходимости в последующей шлифовке и полировке. А плавить материалы будут либо в обычных, либо в солнечных печах. В условиях вакуума можно осуществлять «холодную сварку»: хорошо зачищенные и подогнанные друг к другу поверхности металлов образуют очень прочные соединения.

В земных условиях не получится сделать большие полупроводниковые кристаллы без дефектов, которые снижают качество изготовленных из них микросхем и приборов. Благодаря невесомости и вакууму можно будет получить кристаллы с нужными свойствами.

Попытки реализации идей

Первые шаги в осуществлении этих идей были сделаны в 80-х годах, когда освоение космоса в СССР шло полным ходом. В 1985 году инженеры запустили на орбиту спутник. Спустя две недели он доставил на Землю образцы материалов. Такие запуски стали ежегодной традицией.

В том же году в НПО «Салют» был разработан проект «Технология». Планировалась постройка весом 20 тонн и завода весом 100 тонн. Аппарат снабдили баллистическими капсулами, которые должны были доставлять изготовленную продукцию на Землю. Проект так и не был реализован. Вы спросите: почему? Это стандартная проблема освоения космоса - недостаток финансирования. Она актуальна и в наше время.

Космические поселения

В начале 20 века вышла фантастическая повесть К. Э. Циолковского «Вне Земли». В ней он описывал первые галактические поселения. В данный момент, когда уже есть определённые достижения в освоении космоса, можно взяться за осуществление этого фантастического проекта.

В 1974 году профессором физики Принстонского университета Джерардом О"Нилом был разработан и опубликован проект колонизации галактики. Он предлагал разместить космические поселения в точке либрации (место, где силы притяжения Солнца, Луны и Земли компенсируют друг друга). Такие посёлки всё время будут находиться в одном месте.

О " Нил считает, что в 2074 году большая часть людей переселится в космос и будет обладать неограниченными пищевыми и энергетическими ресурсами. Земля станет огромным парком, свободным от промышленности, где можно будет проводить свой отпуск.

Модель колонии О " Нила

Мирное освоение космоса профессор предлагает начать с постройки модели радиусом 100 метров. В таком сооружении может разместиться примерно 10 тысяч человек. Главная задача этого поселения - постройка следующей модели, которая должна быть в 10 раз больше. Диаметр следующей колонии увеличивается до 6-7 километров, а длина возрастает до 20.

В научном сообществе вокруг проекта О " Нила до сих пор не утихают споры. В предлагаемых им колониях плотность населения примерно такая же, как и в земных городах. А это довольно много! Особенно если учитывать, что в выходные дни там нельзя выбраться за город. В тесных парках мало кто захочет отдыхать. Вряд ли это можно сопоставить с условиями жизни на Земле. А как в этих закрытых пространствах будут обстоять дела с психологической совместимостью и тягой к перемене мест? Захотят ли люди там жить? Не станут ли космические поселения местами распространения глобальных бедствий и конфликтов? Все эти вопросы пока остаются открытыми.

Заключение

В недрах Солнечной системы заложено неисчислимое количество материальных и энергетических ресурсов. Поэтому освоение космоса человеком должно сейчас стать приоритетной задачей. Ведь в случае успеха, полученные ресурсы будут служить на благо людей.

Пока космонавтика делает в этом направлении первые шаги. Можно сказать, что это идёт ребёнок, но со временем он станет взрослым. Главная проблема освоения космоса - это не недостаток идей, а нехватка денежных средств. Необходимы огромные Но если сравнить их с затратами на вооружение, то сумма не такая уж и большая. Например, сокращение мировых военных расходов на 50% позволит в ближайшие несколько лет отправить на Марс три экспедиции.

В наше время человечеству стоит проникнуться идеей единства мира и пересмотреть приоритеты в развитии. А космос будет символом сотрудничества. Лучше строить заводы на Марсе и Луне, принося этим пользу всем людям, чем многократно увеличивать и без того раздутый мировой ядерный потенциал. Есть люди, которые утверждают, что освоение космоса может подождать. Обычно учёные отвечают им так: «Конечно, может, ведь вселенная будет существовать вечно, а вот мы, к сожалению, нет».

(Шорыгина Т .А . Детям о космосе и Юрии Гагарине - первом космонавте Земли : Беседы, досуги, рассказы. -М.:Сфера,2014.-128с .)

Первый великий шаг человечества состоит в том, чтобы

вылететь за атмосферу и сделаться спутником Земли. Остальное

сравнительно легко, вплоть до удаления от нашей Солнечной системы.

Константин Эдуардович Циолковский

Программное содержание: познакомить детей с историей освоения космоса, достижениями ученых (Константина Эдуардовича Циолковского, Сергея Павловича Королёва ) в области освоения космического пространства. Расширять представления детей о космической технике (искусственные спутники, ор­битальные космические станции , скафандры, космический корабль ). Развивать и поддерживать интерес у детей к летчикам – космонавтам (Ю. Гагарину, В. Терешковой и др. ), восхищаться их героическими поступками. Воспитывать чувство гордости за то, что первым в мире космонавтом был гражданин нашей страны.

ХОД БЕСЕДЫ

С глубокой древности люди мечтали летать, как пти­цы.

На чем только не отправлялись в небеса герои ска­зок и старинных легенд: и на золотых колесницах, и на быстрых стрелах, даже на летучих мышах!

Вспомните, на чем совершали полеты герои ваших любимых сказок.

Правильно! Аладцин летал на волшебном ковре-са­молете, Баба Яга неслась над землей в ступе, Ивануш­ку несли на своих крыльях гуси-лебеди.



Прошли века, и люди сумели покорить воздушное пространство Земли. Сначала они поднимались в небо на воздушных шарах и дирижаблях, позже стали бороз­дить воздушный океан на самолетах и вертолетах.

Но человечество мечтало о полетах не только в воз­душном, но и в космическом пространстве, о котором великий русский ученый и поэт Михаил Васильевич Ломоносов сказал так:

Открылась бездна Звезд полна, Звездам числа нет, Бездне - дна!

Таинственная звездная бездна космоса притягивала людей, звала заглянуть в нее, разгадать ее загадки!

Когда-то великий ученый, основатель науки космо­навтики - Константин Эдуардович Циолковский , го­ворил: «Человечество не останется на Земле, оно завоюет себе околосолнечное пространство».

«Но человек полетит, опираясь не на силу своих мус­кулов, а на силу своего разума», - добавлял к сказан­ному ученый.

Константин Эдуардович Циолковский начал зани­маться космонавтикой в те далекие времена, когда люди не освоили толком даже воздушное пространство Земли: не было ни мощных самолетов, ни вертолетов, ни ракет. Он опере­дил свое время на многие десятки лет!

Судьба этого замечательного русского ученого необычна.

Он родился 5 сентября 1857 года в небогатой семье в Ижевске. Костя рос веселым, жизнерадостным, озорным мальчиком. Любил с друзьями лазать по заборам, играть в жмурки и прятки, запускать в небо бумажного змея.

Однажды мама подарила Косте воздушный шарик, наполненный легким газом. Мальчик прикрепил к нему коробочку, посадил в нее жука и отправил жучка-воздухоплавателя в полет.

Костя любил фантазировать, придумывать удивительные исто­рии: то он представлял себя необыкновенным силачом, способным поднять Землю, то крошечным человечком-лилипутом.

Когда мальчику исполнилось 11 лет, он тяжело заболел и поте­рял слух. После болезни Костя уже не смог учиться в обычной школе, и с ним стала заниматься его мать.

Несколько лет спустя мальчик нашел в библиотеке отца учеб­ники и стал уже заниматься самостоятельно.

Затем отец отправил его в Москву. В столице юный Циолковский часами просиживал в библиотеках, изучал физику, математику, химию и другие науки. В те годы ярко проявились его способности к изобретательству и склонность к точным наукам.

С ранней юности будущего ученого интересовали космические полеты. И всю дальнейшую жизнь он посвятил созданию теории космонавтики.

Циолковский Константин Эдуардович (1857-1935) - российский ученый и изобретатель, основоположник современной космонавтики.

Дорогие ребята! Давайте вместе подумаем, на чем можно полететь в космос? Ни самолет, ни вертолет для таких полетов не подходят! Ведь самолетам и вертолетам, чтобы лететь, нужно опираться на воздух. Но в космосе, как вы знаете, воздуха нет! Циолковский доказал, что освоить космическое пространство можно только с помощью ракеты! Он разработал теорию аппара­та ракеты, предложил использовать для него жидкое топливо, про­думал устройство конструкции и вывел основную формулу ее дви­жения.

Этот замечательный ученый ярко нарисовал в воображении всю картину космического полета. Он предположил, что люди скоро запустят в космос спутники Земли, а космические корабли поле­тят к другим планетам Солнечной системы. Кроме того, он предсказал, что в космическом пространстве бу­дет постоянно находиться настоящий космический дом, где космо­навты станут подолгу жить, занимаясь исследованиями.

Все идеи ученого воплотились в жизнь!Вокруг Земли вращаются искусственные спутники , созданы ор­битальные космические станции , где живут и работают космонавты, люди изучают другие планеты: Луну, Марс, Венеру... Послушайте, как Циолковский представлял состояние невесомости ь в кабине космического корабля:

«Все неприкрепленные к ракете предметы сошли со своих мест и висят в воздухе, ни к чему не прикасаясь. Сами мы тоже не касаемся пола и принимаем любое положение: стоим и на полу, и на потолке, и на стене.

Масло, вытряхнутое из бутылки, принимает форму шара; разбиваем его на части и получаем группу из мелких шариков».

Когда читаешь эти сроки, то кажется, что ученый сам побывал в - космосе и испытал состояние невесомости!

Космонавты с борта Международной космической станции рассказывают о проявлении законов физики в условиях невесомости.

А вот как он описывает орбитальную космическую станцию : «Нужны особые жилища - безопасные, светлые, с желаемой температурой, с кислородом, притоком пищи, с удобствами для жизни и работы».


Орбитальные станции. Космос

Последние годы жизни основоположник космонавтики жил в городе Калуге.

Видеозапись фрагмента экскурсии в Государственнном музее истории космонавтики в Калуге - рассказ о проекте ракеты, разработанном Константином Циолковским в 1911 году, на примере электрифицированного макета, построенного по авторским рисункам и чертежам.

Однажды повидаться с ученым приехал будущий знаменитый конструктор межпланетных кораблей Сергей Павлович Королёв . Королёв с увлечением читал работы Циолковского, мечтал о и создании межпланетной ракеты. Сергей был еще совсем молод, ему шёл всего лишь двадцать четвертый год. Циолковский радушно принял юношу. Сергей Павлович сказал, что цель его жизни - «пробиться к звездам». Циолковский улыбнулся и ответил так: «Это очень трудное дело, молодой человек, поверьте мне, старику. Оно потребует знаний, настойчивости и многих лет, может быть, целой жизни...».

Позже Королёв писал: «Я ушел от него с одной мыслью - строить ракеты и летать на них. Всем смыслом моей жизни стало одно - пробиться к звездам». И ему это блестяще удалось! Королёвым был создан Реактивный научно-исследовательский институт , в котором создавались проекты межпланетных летатель­ных аппаратов. Под его руководством здесь строили мощные ракеты для запуска искусственных спутников.

Сергей Павлович Королёв , которого многие годы называли просто Главным конструктором, сумел воплотить в жизнь идеи Циолковского.

В 1957 г. 4 октября произошло событие, которое потрясло весь мир, - был запущен первый искусственный спутник Земли .


Это был первый, сотворенный человеком, объект, который не упал на Землю, а стал вращаться вокруг нее.

Что же представлял собой спутник Земли ?

Это был небольшой шар диаметром около 60 см, снабженный радиопередатчиком и четырьмя антеннами.

Все радио- и телекомпании мира прервали свои передачи, чтобы услышать его сигналы, идущие из далекого космоса на Землю!

С тех пор русское слово «спутник » вошло в словари многих народов.

Ученые мечтали о полете человека в космос. Но прежде они ре­шили проверить безопасность полетов на наших верных четвероногих помощниках - собаках.

Для пробных полетов выбрали не породистых собак, а обыкно­венных дворняжек - ведь они и выносливы, и неприхотливы, и очей смышлены.

Сначала будущих четвероногих космонавтов долго тренировали. Для этого инженеры сконструировали специальную камеру.

Самых первых собак , поднявшихся в ракете на высоту 110 км, звали Цыган и Дезик . Оба «космонавта» благополучно приземли­лись. Королёв очень радовался удаче, ласкал собачек, угощал их вкусненьким.

Многие собаки не раз летали в космос. Они привыкали, что их одевают в комбинезоны, прикрепляют ремнями к кабине.

Большинство собак были храбрые, но однажды в космическое пространство поднялся пес-трусишка, а вот кличка у него как раз была - Смелый!

Во второй раз отправиться в космос Смелый побоялся. Вечером перед полетом собачек как всегда вывели прогуляться. Только лаборант отстегнул поводок, как Смелый кинулся прочь. Он убежал далеко в степь и на зов не откликался, будто чувствовал, что завт­ра утром ему предстоит полет.

Что было делать?

Пришлось выбрать из собак, всегда гулявших около столовой, одного небольшого песика. Его покормили, помыли, подстригли шерсть и нарядили в комбинезончик.

Запуск прошел нормально, и пес благополучно вернулся на Зем­лю.

Но Главный конструктор все же заметил подмену и спросил, как зовут эту собаку.

Сотрудники ему ответили: «Зиб!»

Какая странная кличка! - удивился Королёв. Тогда ему объяснили, что расшифровывается она так: «Запасной исчезнувшего бобика». (Когда полет завершился, хитрый пес Смелый вернулся в отряд, как ни в чем не бывало!

Испытания продолжались. Для собак изготовили специальные скафандры из прорезиненной ткани и шлемы из прозрачной пла­стмассы.

Стали готовить собак к длительному полету в космическое пространство. Нужно было создать для четвероногих космонавтов питательную смесь , обеспечить кабину воздухом.

«Раз в сутки из-под лотка, в котором лежала собака, выдвигалась коробка, наполненная специально приготовленной тестообразной смесью: это и еда и питье. Собаки были заранее приучены такими продуктами питаться и утолять жажду» (А. Добровольский).

В 1960 г. 19 августа стартовал космический корабль «Восток» с двумя четвероногими космонавтами - Белкой и Стрелкой . Эти небольшие симпатичные собачки провели в космосе 22 часа. За это время космический корабль облетел вокруг Земли 18 раз.

Кроме собак на борту корабля были мыши и крысы, семена растений.

Все благополучно вернулись на Землю. А в марте 1961 г. в космический полет отправились другие пу­тешественники - собаки Чернушка и Звездочка .

Первые космические герои... Покорители космоса!


Фотографии всех этих смелых собачек облетели весь мир.

Наконец все было подготовлено для полета в космос человека.

В 1961 г. 12 апреля на околоземную орбиту был выведен косми­ческий корабль «Восток». Его пилотировал первый в мире космо­навт.

Знаете ли вы его имя?

Правильно! Самый первый космонавт Земли - Юрий Алексее­вич Гагарин.

Архивное видео полета Юрия Гагарина.

Этот отважный молодой человек первым из всех живущих на планете людей увидел Землю из космоса.

И она показалась ему прекрасной!

Первый космонавт


На космическом корабле

Он летел в межпланетной мгле,

Совершив вкруг Земли виток.

А корабль назывался «Восток»

Его знает и любит каждый,

Был он юный, сильный, отважный.

Помним взгляд его добрый,

С прищуром,

Его звали Гагарин Юра.

Как же простой русский паренек стал космонавтом?

Юрий Гагарин родился 9 марта 1934 г. на Смоленщине. В 1941 г мальчик пошел в школу, но война прервала его учебу. Послушай те рассказ писателя Юрия Нагибина о первом школьном дне Юрия Гагарина.

После войны Гагарины поселились в городе Гжатске. Семья была дружная, трудолюбивая.

Юра отлично учился, был способным, старательным и исполни­тельным мальчиком.

В юности он увлекся спортом, занимался в аэроклубе, изучал устройство самолетов, прыгал с парашютом.

Небо влекло к себе талантливого юношу! Он закончил авиационное училище и стал военным летчиком. Уже в это время Юрий мечтал о полетах в космос. Когда он узнал, что создается отряд космонавтов, то написал заявление с просьбой принять его в этот отряд.

Скоро Юрий Гагарин был принят в отряд космонавтов. Начались долгие и трудные тренировки.

Как вы думаете, какими качествами должен обладать кос­монавт?

Верно! Он должен быть смелым, тренированным, иметь крепко! здоровье и сильную волю, отличаться умом и трудолюбием.

Все эти качества у Юрия Гагарина были!

Очевидцы вспоминают, что «когда первый космонавт после по­лета ехал по улицам Москвы в открытой машине, встречать его вышли тысячи и тысячи людей. Всюду было веселье и ликование, радост­ные возгласы и сердечные объятия».

Вспоминали люди, что от Юрия Гагарина «шли какие-то волны жизнерадостности и творческого оптимизма».

Как же проходил полет Юрия Гагарина?

Вес корабля «Восток», на котором проходил полет, составлял 4730 кг Полет начался утром - в 9 ч 7 мин и проходил на высоте около 200 км над Землей. На стартовую площадку будущего космонавта провожали инже­неры, конструкторы, врачи, друзья.

Очень волновался Главный конструктор - Сергей Павлович Королёв. Ведь он любил Юрия, как родного сына!

Прежде чем шагнуть к ракете, Юрий воскликнул: «Ребята! Один за всех и все за одного!»

А когда ракета рванулась в небо, Юрий Гагарин крикнул слово, ставшее знаменитым: «По-е-ха-ли!»

«Он увидел в иллюминаторе голубую Землю и совершенно черное небо. Яркие немигающие звезды смотрели на него. Этого никогда не видел ни один житель Земли» - написал о полете Гагарина журналист Ярослав Голованов.

Вот как описал сам Юрий Алексеевич свой полет: «Двигатели ракеты были включены в 9 ч 07 мин. Я буквально был вдавлен в кресло. Как только "Восток" пробил плотные слои атмосферы, я увидел Землю. Корабль пролетал над широкой сибирской рекой. Отчетливо были видны островки на ней и освещенные солнцем лесистые берега. Смотрел то в небо, то на Землю. Четко различались горные хребты, крупные озера. Самым красивым зрелищем был горизонт - окрашенная всеми цветами радуги полоса, разделяющая Землю в свете солнечных лучей от черного неба.

Была заметна выпуклость, округлость Земли. Казалось, что вся она опоясана ореолом нежно-голубого цвета, который через бирюзовый, синий и фиолетовый переходит к иссиня-черному...».

Юрий Гагарин принес славу нашей Родине. Мы с вами, дорогие ребята, можем гордиться им.

Человек вернулся изкосмоса!

В честь первого космонавта Земли называли города, улицы, пло­щади и даже цветы! В Голландии вывели сорт тюльпанов и назвали его «Юрий Гагарин».

В мире не было ни одной газеты, ни одного журнала, которые бы не опубликовали портрет первого космонавта планеты. Все помнят 2го обаятельное лицо, открытую улыбку, ясный взгляд.








Каждый год 12 апреля в нашей стране отмечается замечательный праздник - День космонавтики.

С той поры в космосе побывали многие космонавты.

12 апреля весь мир отмечает День авиации и космонавтики. Каждый год в этот день человечество вспоминает об исторических 108 минутах, с которых началась эра пилотируемой космонавтики - 12 апреля 1961 года гражданин Советского Союза старший лейтенант Юрий Гагарин на космическом корабле «Восток» впервые в мире совершил орбитальный облет Земли. Как проходил полет от и до - в видеоинфографике.



В 1963 г. 16 июня на орбиту спутника Земли был выведен кос­мический корабль «Восток-6». Его пилотировала первая в мире женщина-космонавт Валентина Терешкова. Стать космонавтом Вале помог парашютный спорт, которым она увлеклась в юности, занимаясь в аэроклубе Ярославля.

Потом Валю приняли в отряд космонавтов, долго и серьезно готовили к ответственному полету.

Ее корабль «Восток-6» совершил 48 витков вокруг Земли и ус­пешно приземлился.

Валентина Терешкова - необыкновенная, отважная, решительная женщина! Она умеет прыгать с парашютом, управлять и реактив­ным самолетом, и космическим кораблем.

На время полета ей присвоили позывной «Чайка». Стремитель­ная, смелая, она и вправду похожа на чайку.

Первым космонавтом, вышедшим в открытый космос, стал Алексей Леонов. Под впечатлением своего полета он нарисовал замечательные картины, на которых изображал Землю и космическое пространство.



Для длительной работы в космосе ученые создали космические орбитальные станции, на которых могли работать сразу несколько космонавтов.

Искусственные спутники Земли по-прежнему день за днем не­сут свою вахту в космосе. Они снабжены многими сложными при­борами и ведут наблюдение за Солнцем, звездами, атмосферой.




С помощью спутников можно предсказывать погоду, осуществ­лять телевизионную, телефонную связь.

За 50 лет космической эры было запущено более 3000 искусст­венных спутников Земли.

Создали ученые и такие космические аппараты, которые совершают дальние полеты без участия людей. Обычно их называют автома­тическими станциями . Такие станции исследовали Луну, Марс, Ве­неру, Меркурий и другие планеты.

Когда-то Циолковский назвал Землю «колыбелью» разума, но добавил, что «...нельзя же вечно жить в колыбели».

Человек стремится покинуть «колыбель», чтобы освоить беско­нечное пространство космоса!

Кого считают основателем космонавтики?

Расскажите о Константине Эдуардовиче Циолковском. Кого называют Главным конструктором космических аппаратов?

Расскажите о Сергее Павловиче Королёве.

Расскажите о собаках, побывавших в космосе.

Как звали первого в мире космонавта?

Расскажите о Юрии Гагарине.

Как звали первую в мире женщину-космонавта? Кто из кос­монавтов первым вышел в открытый космос?

Как искусственные спутники помогают людям?


Музей истории космонавтики.
Государственный музей истории космонавтики – самая известная достопримечательность Калуги. Музей носит имя Константина Эдуардовича Циолковского – учёного, который «качал колыбель космонавтики». Неудивительно, что первый камень в это огромное белое здание в стиле модерн, издали напоминающее ракету, заложил первый космонавт Юрий Гагарин. На территории музея расположен дубликат ракеты-носителя «Восток» - первого космического корабля.
Конечно же, ещё до поездки в Калугу, мы запланировали попасть в этот музей. Директор музея и его работники любезно согласились провести для нас бесплатно экскурсию.
Мы узнали, как в космосе трудно всё делать, даже попить или надеть футболку. (На это действие может уйти более двух часов.) Кроме больших сложных машин: луноходов, ракет, различных станций, спускаемых аппаратов, мы увидели маленькие тюбики с питанием космонавтов. Нас удивили космические инструменты: молоток, отвёртка… Экскурсовод нам объяснила, что если применить обычную земную отвёртку для того, чтобы ввинтить шуруп, например, то крутиться будет не отвёртка в руках космонавта, а космонавт вокруг отвёртки.
Да, теперь мы точно знаем, что многие научные достижения, технические новшества, которыми мы так широко пользуемся, дались нам благодаря упорному труду космонавтов.
Государственное казённое общеобразовательное учреждение Владимирской области «Специальная (коррекционная) общеобразовательная школа-интернат г. Владимира для слепых и слабовидящих детей

Уважаемые студенты, на мой взгляд, это важно!

Советую Вам пройти по другим разделам " Навигации" и почитать интересные статьи или посмотреть презентации, дидактические материалы по предметам (педагогика, методика развития детской речи, теоретические основы взаимодействия ДОУ и родителей); материал для подготовки к зачётам, контрольным работам, экзаменам,курсовым и дипломным работам, Буду рада,если информация, размещённая на моём сайте, поможет Вам в работе и учёбе.

С уважением, О.Г. Гольская.

"Помощь по сайту" - нажмите на изображение - гиперссылку , чтобы вернуться на предыдущую страницу (Контрольная работа по модулю "Планирование работы по развитию детской речи. КОСМОС").


12 февраля 1961-Пролёт Венеры автоматической межпланетной станцией "Венера-1"; 19-20 мая 1961 (СССР).

12 апреля 1961-Первый полёт вокруг Земли космонавта Ю. А. Гагарина на корабле-спутнике "Восток" (СССР).

6 августа 1961-Суточный полёт вокруг Земли космонавта Г. С. Титова на корабле-спутнике "Восток-2" (СССР).

23 апреля 1962-Фотографирование и достижение 26 апреля 1962 поверхности Луны первой автоматической станцией серии "Рейнжер" (США).

11 и 12 августа 1962-Первый групповой полёт космонавтов А. Г. Николаева и П. Р. Поповича на кораблях спутниках "Восток-3" и "Восток-4" (СССР).

27 августа 1962-Пролёт Венеры и ее исследование первой автоматической межпланетной станцией "Маринер" 14 декабря 1962 (США).

1 ноября 1962-Пролёт Марса автоматической межпланетной станцией "Марс-1" 19 июня 1963 (СССР).

16 июня 1963-Полёт вокруг Земли первой женщины-космонавта В. В. Терешковой на корабле "Восток-6" (СССР).

12 октября 1964-Полёт вокруг Земли космонавтов В. М. Комарова, К. П. Феоктистова и Б. Б. Егорова на трехместном корабле "Восход" (СССР).

28 ноября 1964-Пролёт Марса 15 июля 1965 и его исследование автоматической межпланетной станцией "Маринер-4" (США).

18 марта 1965-Выход космонавта А. А. Леонова из корабля-спутника "Восход-2", пилотируемого П. И. Беляевым, в открытый космос (СССР).

23 марта 1965-Первый манёвр на орбите ИСЗ корабля "Джемини-3" с космонавтами В. Гриссом и Дж. Янгом (США).

23 апреля 1965-Первый автоматический связной ИСЗ на синхронной орбите серии "Молния-1" (СССР).

16 июля 1965-Первый автоматический тяжелый научно-исследовательский ИСЗ серии "Протон" (СССР).

18 июля 1965-Повторное фотографирование обратной стороны Луны и передача изображения на Землю автоматической межпланетной станцией "Зонд-3" (СССР).

16 ноября 1965-Достижение поверхности Венеры 1 марта 1966 автоматической станцией "Венера-3" (СССР).

4 и 15 декабря 1965-Групповой полёт с тесным сближением кораблей-спутников "Джемини-7" и "Джемини-6", с космонавтами Ф. Борманом, Дж. Ловеллом и У. Ширрой, Т. Стаффордом (США).

31 января 1966-Первая мягкая посадка на Луну 3 февраля 1966 автоматической станции "Луна-9" и передача на Землю лунной фотопанорамы (СССР).

16 марта 1966-Ручная стыковка корабля спутника "Джемини-8", пилотируемого космонавтами Н. Армстронгом и Д. Скоттом, с ракетой "Аджена" (США).

10 августа 1966-Вывод на орбиту искусственного спутника Луны первой автоматической станции серии "Лунар Орбитер".

27 января 1967-Во время испытаний космического корабля "Аполлон" на старте в кабине корабля возник пожар. Погибли космонавты В. Гриссом, Э. Уайт и Р. Чаффи (США).

23 апреля 1967-Полёт корабля-спутника "Союз-1" с космонавтом В. М. Комаровым. При спуске на Землю вследствие отказа парашютной системы космонавт погиб (СССР).

12 июня 1967-Спуск и проведение исследований в атмосфере Венеры 18 октября 1967 автоматической станцией "Венера-4" (СССР).

14 июня 1967-Пролёт Венеры 19 октября 1967 и ее исследование автоматической станцией "Маринер-5" (США).

15 сентября, 10 ноября 1968-Облёт Луны и возвращение на Землю кораблей "Зонд-5" и "Зонд-6" с использованием баллистического и управляемого спуска (СССР).

21 декабря 1968-Облёт Луны с выходом 24 декабря 1968 на орбиту спутника Луны и возвращение на Землю корабля "Аполлон-8" с космонавтами Ф. Борманом, Дж. Ловеллом, У. Андерсом (США).

5, 10 января 1969-Продолжение непосредственного исследования атмосферы Венеры автоматическими станциями "Венера-5" (16 мая 1969) и "Венера-6" (17 мая 1969) (СССР).

14, 15 января 1969-Первая стыковка на орбите спутника Земли пилотируемых кораблей "Союз-4" и "Союз-5" с космонавтами В. А. Шаталовым и Б. В. Волыновым, А. С. Елисеевым, Е. В. Хруновым. Последние два космонавта вышли в космос и перешли в другой корабль (СССР).

24 февраля, 27 марта 1969-Продолжение исследования Марса при пролёте его автоматическими станциями "Маринер-6" 31 июля 1969 и "Маринер-7" 5 августа 1969 (США).

18 мая 1969-Облёт Луны кораблем "Аполлон-10" с космонавтами Т. Стаффордом, Дж. Янгом и Ю. Сернаном с выходом 21 мая 1969 на селеноцентрическую орбиту, маневрированием на ней и возвращением на Землю (США).

16 июля 1969-Первая посадка на Луну пилотируемого корабля "Аполлон-11". Космонавты Н. Армстронг и Э. Олдрин пробыли на Луне в Море Спокойствия 21 ч 36 мин (20-21 июля 1969). М. Коллинз находился в командном отсеке корабля на селеноцентрической орбите. Выполнив программу полёта, космонавты вернулись на Землю (США).

8 августа 1969-Облёт Луны и возвращение на Землю корабля "Зонд-7" с использованием управляемого спуска (СССР).

11, 12, 13 октября 1969-Групповой полёт с маневрированием кораблей-спутников "Союз-6", "Союз-7" и "Союз-8" с космонавтами Г. С. Шониным, В. Н. Кубасовым; А. В. Филипченко, В. Н. Волковым, В. В. Горбатко; В. А. Шаталовым, А. С. Елисеевым (СССР).

14 октября 1969-Первый научно-исследовательский спутник серии "Интеркосмос" с научной аппаратурой социалистических стран (СССР).

14 ноября 1969-Посадка на Луну в Океане Бурь пилотируемого корабля "Аполлон-12". Космонавты Ч. Конрад и А. Бин пробыли на Луне 31 ч 31 мин (19-20 ноября 1969). Р. Гордон находился на селеноцентрической орбите (США).

11 апреля 1970-Облёт Луны с возвращением на Землю корабля "Аполлон-13" с космонавтами Дж. Ловеллом, Дж. Суиджертом, Ф. Хейсом. Запланированный полёт на луну отменен в связи с аварией на корабле (США).

1 июня 1970-Полёт длительностью 425 ч корабля спутника "Союз-9" с космонавтами А. Г. Николаевым и В. И. Севастьяновым (СССР).

17 августа 1970-Мягкая посадка на поверхность Венеры автоматической станции "Венера-7" с научной аппаратурой (СССР).

12 сентября 1970-Автоматическая станция "Луна-16"выполнила 20 сентября 1970 мягкую посадку на Луну в Море Изобилия, произвела бурение, забрала образцы лунной породы и доставила их на Землю (СССР).

20 октября 1970-Облёт Луны с возвращением на Землю со стороны Северного полушария корабля "Зонд-8" (СССР).

10 ноября 1970-Автоматическая станция "Луна-17" доставила на Луну радиоуправляемый с Земли самодвижущийся аппарат "Луноход-1" с научной аппаратурой. В течение 11 лунных суток луноход прошел 10,5 км, исследуя район Моря Дождей (СССР).

31 января 1971-Посадка на Луну в районе кратера Фра-Мауро пилотируемого корабля "Аполлон-14". Космонавты А. Шепард и Э. Митчелл пробыли на Луне 33 ч 30 мин (5-6 февраля 1971). С. Руса находился на селеноцентрической орбите (США).

19 мая 1971-Достижение впервые поверхности Марса спускаемым аппаратом автоматической станции "Марс-2" и выход её на орбиту первого искусственного спутника Марса 27 ноября 1971 (СССР).

28 мая 1971-Первая мягкая посадка на поверхность Марса спускаемого аппарата автоматической станции "Марс-3" и выход её на орбиту искусственного спутника Марса 2 декабря 1971 (СССР).

30 мая 1971-Первый искусственный спутник Марса - автоматическая станция "Маринер-9". На орбиту спутника выведена 13 ноября 1971 (США).

6 июня 1971-Полёт длительностью 570 ч космонавтов Г. Т. Добровольского, В. Н. Волкова и В. И. Пацаева на корабле спутнике "Союз-11" и орбитальной станции "Салют". При спуске на Землю, вследствие разгерметизации кабины корабля, космонавты погибли (СССР).

26 июля 1971-Посадка на Луну корабля "Аполлон-15". Космонавты Д. Скотт и Дж. Ирвин пробыли на Луне 66 ч 55 мин (30 июля - 2 августа 1971). А. Уорден находился на селеноцентрической орбите (США).

28 октября 1971-Первый английский ИСЗ "Просперо" выведенный на орбиту английской ракетой-носителем.

14 февраля 1972-Автоматическая станция "Луна-20" доставила на землю лунный грунт с участка материка, примыкающего к Морю Изобилия (СССР).

3 марта 1972-Пролёт автоматической станцией "Пионер-10" пояса астероидов (июль 1972 - февраль 1973) и Юпитера (4 декабря 1973) с последующим выходом за пределы Солнечной системы (США).

27 марта 1972-Мягкая посадка на поверхность Венеры автоматической станции "Венера-8" 22 июля 1972. Изучение атмосферы и поверхности планеты (СССР).

16 апреля 1972-Посадка на Луну корабля "Аполлон-16". Космонавты Дж. Янг и Ч. Дьюк пробыли на Луне 71 ч 02 мин (21-24 апреля 1972). Т. Маттингли находился на селеноцентрической орбите (США).

7 декабря 1972-Посадка на Луну корабля "Аполлон-17". Космонавты Ю. Сернан и Х. Шмитт пробыли на Луне 75 ч 00 мин (11-15 декабря 1972). Р. Эванс находился на селеноцентрической орбите (США).

8 января 1973-Автоматическая станция "Луна-21" доставила 16 января 1973 на Луну "Луноход-2". В течение 5 лунных суток луноход прошел 37 км (СССР).

14 мая 1973-Долговременная пилотируемая орбитальная станция "Скайлэб". Космонавты Ч. Конрад, П. Вейц и Дж. Кервин с 25 мая пробыли на станции 28 суток. 28 июля на станцию прибыл экипаж: А. Бин, О. Гэрриот, Дж. Лусма для двухмесячной работы (США).

Добрый день, мой многоуважаемый читатель. Ваш почтенный слуга, как и миллионы мальчишек родившихся в советском союзе, мечтал стать космонавтом. Я им не стал, в связи со здоровьем и как это не прозвучит странно, ростом. Но далекий и неизвестный космос, влечет меня и по сей день.

В этой статье, я хочу вам поведать о таких интересных и поистине космических штуках, как ракета-носители и полезный груз который они доставляли в космическое пространство.

Плотное освоение космоса началось в середине третей пятилетки, после окончания второй мировой войны. Велись активные разработки во многих странах, но главные передовики естественно были СССР и США. Первенство в удачном запуске и вывода ракета-носителя с ПС-1 (простейший спутник) на околоземную орбиту, принадлежало СССР. До первого удачного запуска, было аж шесть поколений ракет и только седьмое поколение (Р-7) смогло развить первую космическую скорость в 8км/с чтобы преодолеть земное притяжение и выйти на околоземную орбиту. Космические ракеты взяли свое начало из баллистических ракет дальнего радиуса, путем форсирования двигателя. Вначале я вам кое что поясню. Ракета и космический корабль, это разные вещи.

Сама ракета, это всего лишь средство доставки космического корабля в космос. Это первые 30 метров на рисунке. А космический корабль уже крепится на ракету в самом верху. Впрочем, космического корабля там может и не быть, там может располагаться все что угодно, начиная от спутника, заканчивая ядерной боеголовкой. Что и служило большим стимулом и страхом для держав. Первый удачный запуск и вывод спутника на орбиту, значил для страны многое. Но главное из всего прочего, военное преимущество.

Сами ракета-носители, до первого удачного запуска имеют только буквенно-цифровое обозначение. И только после фиксирования удачного вывода полезного груза на заданную высоту, получают название.

В копилку эрудита: «Спутником» - стала и межконтинентальная баллистическая ракета 8К71 (Р-7), как и всем известный шарик с четырьмя антеннами, который она вывела в космос. Произошло это 4 октября 1957 года.


Вот самый первый искусственный спутник ПС-1 проходит заключительную проверку всех систем.


ПС-1 в космосе. (картинка не является оригинальной съемкой)

Уже через пять месяцев, был запущен другой ракета-носитель (8А91) Спутник 3. Такой короткий промежуток в разработке связан с тем фактом, что первые ракета-носители могли поднимать в космос полезную нагрузку в несколько килограмм, и запуск с ПС-1 на борту, был лишь первым голом в ворота США. Когда американцы приняли тот факт, что СССР обогнал их в гонке за первое место в выходе в космос, они принялись с удвоенной силой допиливать свои ракеты. СССР было нужно вновь опередить США и создать ракету, которая смогла бы вывести в космос полезную нагрузку в тонну. А это как-никак уже реальная угроза. Кто его знает, чем можно начинить такую ракету и послать на Вашингтон? И «Спутник-3», был как раз первой ракетой, с полезной нагрузкой в 1300 кг.


Ракета-носитель «Спутник». Слева видны три спутника, которые он выводил на орбиту земли.

В США и без этого была ядерная истерия. В детских садах, школах, фабриках и заводах, начались бесконечные учения на случай ядерного удара. Это был первый случай, когда американцам нечем было противостоять СССР. Межконтинентальные баллистические ракеты могут долететь до СССР за 11 минут. Прилететь из космоса ядерный заряд может намного быстрее. Конечно, все это слишком сложно, чтобы действительно так считать. Но у страха глаза велики.





Кстати, вот еще что добавьте в копилку эрудита: Как вы думаете, сколько времени ракета летит в космос? Час, два? Может быть пол часа?
Чтобы достичь высоты в 118 км, ракете требуется примерно 500 секунд, что меньше 10 минут. Высота в 118 км(100км) это так называемая линия Кармана, где аэронавтика становится полностью невозможной. Принято полагать, что полет считается космическим, если линия Кармана была преодолена.


Ракета правда американская, но этот рисунок очень удачно отображает атмосферу земли и точки переходов.

Третьей ракетой была «Луна». СССР, видя тщетные попытки американцев, с их капиталистической системой, где ракету строит не государство, а частные компании, которые заинтересованы большей степенью в прибыли, нежели в космической гонке, стали подумывать о полете на луну. И уже 2 декабря 1959 года, ракета-носитель (8К71) путем оснащения третьей ступенью (блоком «Е»), успешно отправился в сторону нашей причины приливов и отливов. Могли бы и раньше, но вследствие развивающихся автоколебаний ракеты-носители разрушались в полете на 102-104 секунде. И только после установки в топливных системах блоков гидродемпферов ракета успешно достигла…гелиоцентрической орбиты и стала первым искусственным спутником солнца. А все из за неучёта времени распространения радиокоманды АМС (автоматическая межпланетная станция).

Следующим ракета-носителем был «Восток» 8К72. Он то и долетел в сентябре 1959 до луны и успешно скинул туда АМС «Луна-2», и пару пентагонов с символами СССР.


Ракета-носитель «Восток» стоящий на постаменте на ВДНХ в Москве.


Два металлических пентагона с символикой СССР, отправленных вместе с АМС-2 на луну.

(После этой удачи, американцы начали строить павильон, где решили снимать фильм о высадке на луну. Шутка.) 4 октября, этого же года, была запущена аналогичная ракета с АМС Луна-3, которая впервые за всю историю человечества, смогла сфотографировать обратную сторону Луны. Заставив рядовых американцев плакать, забившись в угол. Так как, к сожалению, луна с другой стороны абсолютно такая же и на ней нет лунопарков и лунных городов.


Обратная сторона луны. 1959 год.

Королев же полным ходом планировал запустить в космос человека и по этому, в совершенной секретности, разрабатывалась система жизнеобеспечения человека в космосе. Космический аппарат серии «Спутник», запущенный 15 мая 1960 года. Был первым прототипом корабля-спутника «Восток», который использовался для первого космического полета человека.


Копия космического корабля «Спутник»

Космический корабль «Спутник-2» не предназначался для возвращения на землю. Но все же было принято решение, отправить на орбиту живое существо. Это была красивая дворняжка по кличке Лайка. Ее нашли в одном из собачьих приютов. Подбирали по принципу - белая, маленькая, не породистая, так как должна быть не привередлива к еде. Отобрали 10 собак, из которых отбор и испытания прошли только три. Но одна ждала потомства, а другая имела врожденную кривизну лап и ее оставили как технологическую. Ученые разработали систему кормления, два раза в день, систему ассенизации и сделали небольшую операцию, по вживлению датчиков. Один разместили у ребер, а другой у сонной артерии, чтобы следить за дыханием и пульсом. Лайку отправили в космос 3 ноября 1957 года. Сделав неправильные расчеты в терморегулировании, температура в корабле поднялась до 40 °C и в течении 5 часов собака умерла от перегрева, хотя полет рассчитывался на 7 дней(кислородный запас корабля). Лайка была обречена с самого начала. Многие работники участвовавшие в эксперименте были морально подавлены очень долгое время. Западная пресса очень негативно отнеслась к этому полету и ТАСС передавало еще семь дней информацию о самочувствии собаки, хотя собака была уже мертва.


Лайка. Она была первым живым существом, побывавшим в космосе, но без шанса вернуться обратно.

Космический корабль «Спутник-4» был создан для изучения работы системы жизнеобеспечения и различных ситуаций, связанных с полетом человека в космос: на нем отправили куклу ростом 164 см и весом 72 кг. Через четыре дня полета спутник отклонился от запланированного курса и в начале торможения вместо входа в атмосферу оказался выброшен на более высокую орбиту, после чего уже не смог вернуться в атмосферу в запланированном режиме. Обломки спутника были найдены посреди главной улицы в городке Манитэвак в американском штате Висконсин, что как бы намекало.


Остатки «Спутника-4» посреди главной улицы в городке Манитэвак в американском штате Висконсин.


Спутник-4


1. Фотоаппаратура; 2. Спускаемый аппарат; 3. Баллоны системы ориентации; 4. Приборный отсек;
5. Антенны телеметрических систем; 6. Тормозная двигательная установка; 7. Датчик ориентации по Солнцу;
8. Построитель вертикали; 9. Антенна программной радиолинии; 10. Антенна системы радиоразведки

После этого случая, каждые два месяца, были запуски на ракета-носителях Восток, каких либо представителей фауны земли. В июле запустили собак Чайку и Лисичку, но к сожалению, На 19-й секунде полёта у ракеты-носителя разрушился боковой блок первой ступени, в результате чего она упала и взорвалась. Собаки Чайка и Лисичка погибли.


Первые собаки полетевшие в космос на возвращаемом космическом корабле(спускаемый аппарат).
Вернуться им было, к сожалению, не суждено.

А в августе 60го, осуществили успешный полет две наши гордости, Белочка и Стрелочка! Но следующую информацию, запиши в свою копилочку: Вместе с Белкой и Стрелкой, на борту было 40 мышей и 2 крысы. Они провели в космосе 1 день и 9 часов. Вскоре после приземления у Стрелки родились шесть здоровых щенков. Одного из них попросил лично Никита Сергеевич Хрущёв. Он отправил его в подарок Каролин Кеннеди, дочери президента США Джона Кеннеди.


Белка и Стрелка, первые собаки, вернувшиеся из космоса.


На борту «Спутника-5» были не только собаки, но так же и такие милые крысы.

В декабре этого же года, был запуск Спутника-6. Экипажем корабля были собаки Мушка и Пчёлка, две морские свинки, две белые лабораторные крысы, 14 чёрных мышей линии С57, семь мышей гибридов от мышей СБА и С57 и пять белых беспородных мышей. Серия биологических экспериментов, включавших проведение исследований по возможности полётов нагеофизических и космических ракетах живых существ, наблюдение за поведением высокоорганизованных животных в условиях таких полётов, а также, изучение сложных явлений в околоземном пространстве.
Учёными были проведены исследования воздействия на животных большинства факторов физического и космического характера: изменённой силы тяжести, вибрации и перегрузок, звуковых и шумовых раздражителей различной интенсивности, воздействия космического излучения, гипокинезии и гиподинамии. Полёт продолжался чуть более суток. На 17 витке из-за отказа системы управления тормозным двигателем, спуск начался в нерасчетном районе. Было принято решение уничтожить аппарат путём подрыва заряда, с целью исключить незапланированное падение на чужую территорию. Все живые существа, находившиеся на борту, погибли. Несмотря на то, что аппарат был уничтожен, цели миссии были выполнены, собранные научные данные переданы на Землю при помощи телеметрии и телевидения.


Собаки Мушка и Пчёлка перед полетом в космос.

После этого случая, было еще два удачных и одного не очень, запуска ракет Восток. Американцы негодовали и с каждым днем становились все смурнее и смурней и всячески перехватывали зашифрованные сигналы и пытались их расшифровать, но терпели фэйлы.


Шпионское фото, полученное американской разведкой, расшифровавших код радиотрансляции со «Спутника-6»

12 апреля, 1961 года, СССР преподнес свой завершающий удар и отправил Юру в космос на этом же ракета-носителе, в космическом корабле Восток-1, который выполнил один оборот вокруг Земли и совершил посадку в 10 часов 55 минут. Чтобы понимать, что такое космический корабль Восток-1, приведу его габаритные характеристики:

Масса аппарата - 4,725 т;
Диаметр герметичного корпуса - 2,2 м;
Длина (без антенн) - 4,4 м;
Максимальный диаметр - 2,43 м

(Как уже писал выше, я не космонавт, просто была возможность посидеть в аналогичном аппарате на земле.) Это очень неудобный летательный аппарат я вам скажу. С моим ростом в 190см, было крайне неудобно сидеть в кресле ковше, да еще и в скафандре. По этому Гагарин и был отобран по росту, весу и здоровью. (170/70/отличное) Но даже Гагарин скорее всего чувствовал себя дискомфортно в такой крохотной капсуле.


Спускаемый аппарат «Восток» и рядом кресло которое катапультируется.

Хочу отметить, что первый полет человека был полностью автоматическим, но Юра мог в любой момент переключить корабль на ручное управление. Для этого, надо было ввести специальный защитный код, для отключения автоматики, который был в запечатанном конверте, который был в яйце, яйцо в утке, утка….короче перед полетом, Королев шепнул Юрке этот код, все-таки мало ли? А делалось все ради того, что никто не знал, как поведет себя нервная система человека в космосе и не сойдет ли он с ума. По этому код для ручного управления поместили в конверт, который сумел бы открыть только вменяемый человек.


Наша всеобщая гордость!

Хочу вам рассказать некоторые интересные подробности о первом полете человека.

Гагарин был тот еще «Кедр».


Старт ракет всегда приходится на неровное время.


В 9-57 Гагарин махал рукой лично президенту Америки, пролетая над оной.


Автобус везущий космонавтов к ракете, голубого цвета.


Тот самый автобус.


Гагарин мог в любой момент отказаться от полета, и его заменил бы Титов, которого в свою очередь мог заменить Нелюбов.

Карандаши в космосе лучше привязывать. Кстати, из-за невесомости, обычные авторучки в космосе не пишут.

При спуске космического аппарата, из-за проблем в тормозно-двигательной установке корабль начал вращаться в течении 10 минут с амплитудой полного оборота в 1 секунду. Гагарин, не стал пугать Королева и обтекаемо сообщил о нештатной ситуации, что говорит о его стальных нервах. Все спускаемые аппараты типа Восток, садятся по баллистической траектории, что приводит к перегрузкам до 10 джи. К тому же, корабль сильно нагревается и дико потрескивает в нижних слоях атмосферы, что может очень сильно давить на психику. Когда корабль достигает отметки в 7 км над землей, происходит катапультирование космонавта, который спускается отдельно от спускаемого аппарата на собственных парашютах. Что такое катапультирование на корабле Восток? Когда спускаемый аппарат выпускает парашют и скорость с 900 км/ч постепенно падает до 72км/ч, под сидением космонавта срабатывает пиротехнический заряд и кресло вместе с космонавтом со свистом вылетает в свободное падение. Потом космонавт должен успеть отсоединиться от кресла и уже самостоятельно спуститься на парашюте на землю. И это при диких перегрузках, постоянным страхом и недоверием к автоматике. У Гагарина после катапультирования не сработал клапан подачи кислорода и он начал задыхаться. Спустя некоторое время, клапан открылся и Юра глубоко вздохнул. Когда парашют раскрылся, его стало сносить прямиком в Волгу. Напомню, что вода в апреле немного холодная и он снова оказался на волосок от гибели, и спасло его умение маневрировать с помощью строп. Думаю, не передать словами, что он успел за этот час с небольшим натерпеться. Оно того стоило. Юрий Алексеевич Гагарин, самый знаменитый (современник) человек на земле, из когда либо живших.


При спуске, капсула начинает гореть в нижних слоях атмосферы.


Парашют раскрывается на скорости 900км/ч


Приземляется капсула со скоростью 7м/с


Вот так обгорает спускаемый аппарат.


Предстартовая проверка всех систем.


Королев не скрывая волнения общается с Гагариным во время полета.

Самый знаменитый человек на планете!

На обложке журнала Тайм.


На обложке журнала Лайф.


Но сам он был очень скромным.

На этом я закончу первую часть об освоении космоса СССР. Если вам интересно продолжение я с удовольствием буду писать. В последствии я расскажу и о других странах, в том числе и о США, которые тоже очень много сделали в этой сфере деятельности.

Начало космической эры

4 октября 1957 г. бывший СССР произвел запуск первого в мире искусственного спутника Земли. Первый советский спутник позволил впервые измерить плотность верхней атмосферы, получить данные о распространении радиосигналов в ионосфере, отработать вопросы выведения на орбиту, тепловой режим и др. Спутник представлял собой алюминиевую сферу диаметром 58 см и массой 83,6 кг с четырьмя штыревыми антеннами длинной 2,4-2,9 м. В герметичном корпусе спутника размещались аппаратура и источники электропитания. Начальные параметры орбиты составляли: высота перигея 228 км, высота апогея 947 км, наклонение 65,1 гр. 3 ноября Советский Союз сообщил о выведении на орбиту второго советского спутника. В отдельной герметической кабине находились собака Лайка и телеметрическая система для регистрации ее поведении в невесомости. Спутник был также снабжен научными приборами для исследования излучения Солнца и космических лучей.

6 декабря 1957 г. в США была предпринята попытка запустить спутник «Авангард-1» с помощью ракеты-носителя, разработанной Исследовательской лабораторией ВМФ.После зажигания ракета поднялась над пусковым столом, однако через секунду двигатели выключились и ракета упала на стол, взорвавшись от удара.

31 января 1958 г. был выведен на орбиту спутник «Эксплорер-1», американский ответ на запуск советских спутников. По размерам и

Массе он не был кандидатом в рекордсмены. Будучи длинной менее 1 м и диаметром только ~15,2 см, он имел массу всего лишь 4,8 кг.

Однако его полезный груз был присоеденен к четвертой, последней ступени ракеты-носителя «Юнона-1». Спутник вместе с ракетой на орбите имел длину 205 см и массу 14 кг. На нем были установлены датчики наружной и внутренней температур, датчики эрозии и ударов для определения потоков микрометеоритов и счетчик Гейгера-Мюллера для регистрации проникающих космических лучей.

Важный научный результат полета спутника состоял в открытии окружающих Земля радиационных поясов. Счетчик Гейгера-Мюллера прекратил счет, когда аппарат находился в апогее на высоте 2530 км, высота перигея составляла 360 км.

5 февраля 1958 г. в США была предпринята вторая попытка запустить спутник «Авангард-1», но она также закончилась аварией, как и первая попытка. Наконец 17 марта спутник был выведен на орбиту. В период с декабря 1957 г. по сентябрь 1959 г. было предпринято одиннадцать попыток вывести на орбиту «Авангард-1» только три из них были успешными.

В период с декабря 1957 г. по сентябрь 1959 г. было предпринято одиннадцать попыток вывести на орбиту «Авангард

Оба спутника внесли много нового в космическую науку и технику (солнечные батареи, новые данные о плотности верхний атмосферы, точное картирование островов в Тихом океане и т.д.) 17 августа 1958 г. в США была предпринята первая попытка послать с мыса Канаверал в окрестности Луны зонд с научной аппаратурой. Она оказалась неудачной. Ракета поднялась и пролетела всего 16 км. Первая ступень ракеты взорвалась на 77 с полета. 11 октября 1958 г. была предпринята вторая попытка запуска лунного зонда «Пионер-1», также оказалась неудачной. Последующие несколько запусков также оказались неудачными, лишь 3 марта 1959 г. «Пионер-4», массой 6,1 кг частично выполнил поставленную задачу: пролетел мимо Луны на расстоянии 60000 км (вместо планируемых 24000 км).

Так же как и при запуске спутника Земли, приоритет в запуске первого зонда принадлежит СССР, 2 января 1959 г. был запущен первый созданный руками человека объект, который был выведен на траекторию, проходящую достаточно близко от Луны, на орбиту спутника Солнца. Таким образом «Луна-1» впервые достигла второй космической скорости. «Луна-1» имела массу 361,3 кг и пролетела мимо Луны на расстоянии 5500 км. На расстоянии 113000 км от Земли с ракетной ступени, пристыкованной к «Луне-1», было выпущено облако паров натрия, образовавшее искусственную комету. Солнечное излучение вызвало яркое свечение паров натрия и оптические системы на Земле сфотографировали облако на фоне созвездия Водолея.

«Луна-2» запущенная 12 сентября 1959 г. совершила первый в мире полет на другое небесное тело. В 390,2-килограммовой сфере размещались приборы, показавшие, что Луна не имеет магнитного поля и радиационного пояса.

Автоматическая межпланетная станция (АМС) «Луна-3» была запущена 4 октября 1959 г. Вес станции равнялся 435 кг. Основной целью запуска был облет Луны и фотографирование ее обратной, невидимой с Земли, стороны. Фотографирование производилось 7 октября в течение 40 мин с высоты 6200 км над Луной.
Человек в космосе

12 апреля 1961 г. в 9 ч 07 мин по московскому времени в нескольких десятках километров севернее поселка Тюратам в Казахстане на советском космодроме Байконур состоялся запуск межконтинентальной баллистической ракеты Р-7, в носовом отсеке которой размещался пилотируемый космический корабль «Восток» с майором ВВС Юрием Алексеевичем Гагариным на борту. Запуск прошел успешно. Космический корабль был выведен на орбиту с наклонением 65 гр, высотой перигея 181 км и высотой апогея 327 км и совершил один виток вокруг Земли за 89 мин. На 108-ой мин после запуска он вернулся на Землю, приземлившись в районе деревни Смеловка Саратовской области. Таким образом, спустя 4 года после выведения первого искусственного спутника Земли Советский Союз впервые в мире осуществил полет человека в космическое пространство.

Космический корабль состоял из двух отсеков. Спускаемый аппарат, являющийся одновременно кабиной космонавта, представлял собой сферу диаметром 2,3 м, покрытую абляционным материалом для тепловой защиты при входе в атмосферу. Управление кораблем осуществлялось автоматически, а также космонавтом. В полете непрерывно поддерживалась с Землей. Атмосфера корабля - смесь кислорода с азотом под давлением 1 атм. (760 мм рт. ст.). «Восток-1» имел массу 4730 кг, а с последней ступенью ракеты-носителя 6170 кг. Космический корабль «Восток» выводился в космос 5 раз, после чего было объявлено о его безопасности для полета человека.

Через четыре недели после полета Гагарина 5 мая 1961 г. капитан 3-го ранга Алан Шепард стал первым американским астронавтом.

Хотя он и не достиг околоземной орбиты, он поднялся над Землей на высоту около 186 км. Шепард запущенный с мыса Канаверал в КК «Меркурий-3» с помощью модифицированной баллистической ракеты «Редстоун», провел в полете 15 мин 22 с до посадки в Атлантическом океане. Он доказал, что человек в условиях невесомости может осуществлять ручное управление космическим кораблем. КК «Меркурий» значительно отличался от КК «Восток».

Он состоял только из одного модуля - пилотируемой капсулы в форме усеченного конуса длинной 2,9 м и диаметром основания 1,89 м. Его герметичная оболочка из никелевого сплава имела обшивку из титана для защиты от нагрева при входе в атмосферу.

Атмосфера внутри «Меркурия» состояла из чистого кислорода под давлением 0,36 ат.

20 февраля 1962 г. США достигли околоземной орбиты. С мыса Канаверал был запущен корабль «Меркурий-6», пилотируемый подполковником ВМФ Джоном Гленном. Гленн пробыл на орбите только 4 ч 55 мин, совершив 3 витка до успешной посадки. Целью полета Гленна было определение возможности работы человека в КК «Меркурий». Последний раз «Меркурий» был выведен в космос 15 мая 1963 г.

18 марта 1965 г. был выведен на орбиту КК «Восход» с двумя космонавтами на борту - командиром корабля полковником Павлом Иваровичем Беляевым и вторым пилотом подполковником Алексеем Архиповичем Леоновым. Сразу после выхода на орбиту экипаж очистил себя от азота, вдыхая чистый кислород. Затем был развернут шлюзовой отсек: Леонов вошел в шлюзовой отсек, закрыл крышку люка КК и впервые в мире совершил выход в космическое пространство. Космонавт с автономной системой жизнеобеспечения находился вне кабины КК в течении 20 мин, временами отдаляясь от корабля на расстояние до 5 м. Во время выхода он был соединен с КК только телефонным и телемеметрическим кабелями. Таким образом, была практически подтверждена возможность пребывания и работы космонавта вне КК.

3 июня был запущен КК «Джемени-4» с капитанами Джеймсом Макдивиттом и Эдвардом Уайтом. Во время этого полета, продолжавшегося 97 ч 56 мин Уайт вышел из КК и провел вне кабины 21 мин, проверяя возможность маневра в космосе с помощью ручного реактивного пистолета на сжатом газе.

К большому сожалению освоение космоса не обошлось без жертв. 27 января 1967 г. экипаж готовившийся совершить первый пилотируемый полет по программе «Аполлон» погиб во время пожара внутри КК сгорев за 15 с в атмосфере чистого кислорода. Вирджил Гриссом, Эдвард Уайт и Роджер Чаффи стали первыми американскими астронавтами, погибшими в КК. 23 апреля с Байконура был запущен новый КК «Союз-1», пилотируемый полковником Владимиром Комаровым. Запуск прошел успешно.

На 18 витке, через 26 ч 45 мин, после запуска, Комаров начал ориентацию для входа в атмосферу. Все операции прошли нормально, но после входа в атмосферу и торможения отказала парашютная система. Космонавт погиб мгновенно в момент удара «Союза» о Землю со скоростью 644 км\ч. В дальнейшем Космос унес не одну человеческую жизнь, но эти жертвы были первыми.

Нужно заметить, что в естественнонаучном и производительном планах мир стоит перед рядом глобальных проблем, решение которых требует объединённых усилий всех народов. Это проблемы сырьевых ресурсов, энергетики, контроля за состоянием окружающей среды и сохранения биосферы и другие. Огромную роль в кардинальном их решении будут играть космические исследования - одно из важнейших направлений научно-технической революции.

Космонавтика ярко демонстрирует всему миру плодотворность мирного созидательного труда, выгоды объединения усилий разных стран в решении научных и народнохозяйственных задач.

С какими же проблемами сталкивается космонавтика и сами космонавты?

Начнём с жизнеобеспечения. Что такое жизнеобеспечение? Жизнеобеспечение в космическом полёте - это создание и поддержание в течении всего полёта в жилых и рабочих отсеках К.К. таких условий, которые обеспечили бы экипажу работоспособность, достаточную для выполнения поставленной задачи, и минимальную вероятность возникновения патологических изменений в организме человека. Как это сделать? Необходимо существенно уменьшить степень воздействия на человека неблагоприятных внешних факторов космического полёта - вакуума, метеорических тел, проникающей радиации, невесомости, перегрузок; снабдить экипаж веществами и энергией без которых не возможна нормальная жизнедеятельность человека, - пищей, водой, кислородом и сетом; удалить продукты жизнедеятельности организма и вредные для здоровья вещества, выделяемые при работе систем и оборудования космического корабля; обеспечить потребности человека в движении, отдыхе, внешней информации и нормальных условиях труда; организовать медицинский контроль за состоянием здоровья экипажа и поддержание его на необходимом уровне. Пища и вода доставляются в космос в соответствующей упаковке, а кислород - в химически связанном виде. Если не проводить восстановление продуктов жизнедеятельности, то для экипажа из трёх человек на один год потребуется 11 тонн вышеперечисленных продуктов, что, согласитесь, составляет немалый вес, объём, да и как это всё будет хранится в течении года?!

В ближайшем будущем системы регенерации позволят почти полностью воспроизводить кислород и вод на борту станции. Уже давно начали использовать вода после умывания и душа, очищенную в системе регенерации. Выдыхаемая влага конденсируется в холодильно-сушильном агрегате, а затем регенерируется. Кислород для дыхания извлекается из очищенной воды электролизом, а газообразный водород, реагируя с углекислым газом, поступающим из концентратора, образует воду, которая питает электролизер. Использование такой системы позволяет уменьшить в рассмотренном примере массу запасаемых веществ с 11 до 2т. В последнее время практикуется выращивание разнообразных видов растений прямо на борту корабля, что позволяет сократить запас пищи который необходимо брать в космос, об этом упоминал ещё в своих трудах Циолковский.
Космос науке

Освоение космоса во многом помогает в развитии наук:

18 декабря 1980 года было установлено явление стока частиц радиационных поясов Земли под отрицательными магнитными аномалиями.

Эксперименты, проведённые на первых спутниках показали, что околоземное пространство за пределами атмосферы вовсе не «пустое». Оно заполнено плазмой, пронизано потоками энергетических частиц. В 1958 г. в ближнем космосе были обнаружены радиационные пояса Земли - гигантские магнитные ловушки, заполненные заряженными частицами - протонами и электронами высокой энергии.

Наибольшая интенсивность радиации в поясах наблюдается на высотах в несколько тысяч км. Теоретические оценки показывали, что ниже 500 км. Не должно быть повышенной радиации. Поэтому совершенно неожиданным было обнаружение во время полётов первых К.К. областей интенсивной радиации на высотах до 200-300 км. Оказалось, что это связано с аномальными зонами магнитного поля Земли.

Распространилось исследование природных ресурсов Земли космическими методами, что во многом посодействовало развитию народного хозяйства.

Первая проблема которая стояла в 1980 году перед космическими исследователями представляла перед собой комплекс научных исследований, включающих большинство важнейших направлений космического природоведения. Их целью являлись разработка методов тематического дешифрирования многозональной видеоинформации и их использование при решении задач наук о Земле и хозяйственных отраслей. К таким задачам относятся: изучение глобальных и локальных структур земной коры для познания истории её развития.

Вторая проблема является одной из основополагающих физико-технических проблем дистанционного зондирования и имеет своей целью создание каталогов радиационных характеристик земных объектов и моделей их трансформации, которые позволят выполнять анализ состояния природных образований на время съемки и прогнозировать их на динамику.

Отличительной особенностью третей проблемы является ориентация на излучение радиационных характеристик крупных регионов вплоть до планеты в целом с привлечением данных о параметрах и аномалиях гравитационного и геомагнитного полей Земли.
Изучение Земли из космоса

Человек впервые оценил роль спутников для контроля за состоянием сельскохозяйственных угодий, лесов и других природных ресурсов Земли лишь спустя несколько лет после наступления космической эры. Начало было положено в 1960г., когда с помощью метеорологических спутников «Тирос» были получены подобные карте очертания земного шара, лежащего под облаками. Эти первые черно-белые ТВ изображения давали весьма слабое представление о деятельности человека и тем не менее это было первым шагом. Вскоре были разработаны новые технические средства, позволившие повысить качество наблюдений. Информация извлекалась из многоспектральных изображений в видимом и инфракрасном (ИК) областях спектра. Первыми спутниками, предназначенными для максимального использования этих возможностей были аппараты типа «Лэндсат». Например спутник «Лэндсат-D», четвертый из серии, осуществлял наблюдение Земли с высоты более 640 км с помощью усовершенствованных чувствительных приборов, что позволило потребителям получать значительно более детальную и своевременную информацию. Одной из первых областей применения изображений земной поверхности, была картография. В доспутниковую эпоху карты многих областей, даже в развитых районах мира были составлены неточно. Изображения, полученные с помощью спутника «Лэндсат», позволили скорректировать и обновить некоторые существующие карты США. В СССР изображения полученные со станции «Салют», оказались незаменимыми для выверки железнодорожной трассы БАМ.

В середине 70-х годов НАСА, министерство сельского хозяйства США приняли решение продемонстрировать возможности спутниковой системы в прогнозировании важнейшей сельскохозяйственной культуры пшеницы. Спутниковые наблюдения, оказавшиеся на редкость точными в дальнейшем были распространены на другие сельскохозяйственные культуры. Приблизительно в то же время в СССР наблюдения за сельскохозяйственными культурами проводились со спутников серий «Космос», «Метеор», «Муссон» и орбитальных станций «Салют».

Использование информации со спутников выявило ее неоспоримые преимущества при оценке объема строевого леса на обширных территориях любой страны. Стало возможным управлять процессом вырубки леса и при необходимости давать рекомендации по изменению контуров района вырубки с точки зрения наилучшей сохранности леса. Благодаря изображениям со спутников стало также возможным быстро оценивать границы лесных пожаров, особенно «коронообразных», характерных для западных областей Северной Америки, а так же районов Приморья и южных районов Восточной Сибири в России.

Огромное значение для человечества в целом имеет возможность наблюдения практически непрерывно за просторами Мирового Океана, этой «кузницы» погоды. Именно над толщами океанской воды зарождаются чудовищной силы ураганы и тайфуны, несущие многочисленные жертвы и разрушения для жителей побережья. Раннее оповещение населения часто имеет решающее значение для спасения жизней десятков тысяч людей. Определение запасов рыбы и других морепродуктов также имеет огромное практическое значение. Океанские течения часто искривляются, меняют курс и размеры. Например, Эль Нино, теплое течение в южном направлении у берегов Эквадора в отдельные годы может распространяться вдоль берегов Перу до 12гр. ю.ш. . Когда это происходит, планктон и рыба гибнут огромных количествах, нанося непоправимый ущерб рыбным промыслам многих стран и том числе и России. Большие концентрации одноклеточных морских организмов повышают смертность рыбы, возможно из-за содержащихся в них токсинов. Наблюдение со спутников помогает выявить «капризы» таких течений и дать полезную информацию тем, кто в ней нуждается. По некоторым оценкам российских и американских ученых экономия топлива в сочетании с «дополнительным уловом» за счет использования информации со спутников, полученной в инфракрасном диапазоне, дает ежегодную прибыль в 2,44 млн. долл. Использование спутников для целей обзора облегчило задачу прокладывания курса морских судов. Так же спутниками обнаруживаются опасные для судов айсберги, ледники. Точное знание запасов снега в горах и объема ледников - важная задача научных исследований, ведь по мере освоения засушливых территорий потребность в воде резко возрастает.

Неоценима помощь космонавтов в создании крупнейшего картографического произведения - Атласа снежно-ледовых ресурсов мира.

Также с помощью спутников находят нефтяные загрязнения, загрязнения воздуха, полезные ископаемые.
Наука о космосе

В течении небольшого периода времени с начала космической эры человек не только послал автоматические космические станции к другим планетам и ступил на поверхность Луны, но также произвел революцию в науке о космосе, равной которой не было за всю историю человечества. Наряду с большими техническими достижениями, вызванными развитием космонавтики, были получены новые знания о планете Земля и соседних мирах. Одним из первых важных открытий, сделанных не традиционным визуальным, а иным методом наблюдения, было установление факта резкого увеличения с высотой, начиная с некоторой пороговой высоты интенсивности считавшихся ранее изотропными космических лучей. Это открытие принадлежит австрийцу В. Ф. Хессу, запустившему в 1946 г.газовый шар-зонд с аппаратурой на большие высоты.

В 1952 и 1953 гг. д-р Джеймс Ван Аллен проводил исследования низко энергетических космических лучей при запусках в районе северного магнитного полюса Земли небольших ракет на высоту 19-24 км и высотных шаров - баллонов. Проанализировав результаты проведенных экспериментов, Ван Аллен предложил разместить на борту первых американских искусственных спутников Земли достаточно простые по конструкции детекторы космических лучей.

С помощью спутника «Эксплорер-1» выведенного США на орбиту 31 января 1958 г. было обнаружено резкое уменьшение интенсивности космического излучения на высотах более 950 км. В конце 1958 г. АМС «Пионер-3», преодолевшая за сутки полета расстояние свыше 100000 км, зарегистрировала с помощью имевшихся на борту датчиков второй, расположенный выше первого, радиационный пояс Земли, который также опоясывает весь земной шар.

В августе и сентябре 1958 г. на высоте более 320 км было произведено три атомных взрыва, каждый мощностью 1,5 к.т. Целью испытаний с кодовым названием «Аргус» было изучение возможности пропадания радио и радиолокационной связи при таких испытаниях. Исследование Солнца - важнейшая научная задача, решению которой посвящены многие запуски первых спутников и АМС.

Американские «Пионер-4» - «Пионер-9» (1959-1968гг.) с околосолнечных орбит передавали по радио на Землю важнейшую информацию о структуре Солнца. В тоже время было запущено более двадцати спутников серии «Интеркосмос» с целью изучения Солнца и околосолнечного пространства.
Чёрные дыры

О чёрных дырах узнали в 1960-х годах. Оказалось, что если бы наши глаза могли видеть только рентгеновское излучение, то звёздное небо над нами выглядело бы совсем иначе. Правда, рентгеновские лучи, испускаемые Солнцем, удалось обнаружить ещё до рождения космонавтики, но о других источниках в звёздном небе и не подозревали. На них наткнулись случайно.

В 1962 году американцы, решив проверить, не исходит ли от поверхности Луны рентгеновское излучение, запустили ракету, снабжённую специальной аппаратурой. Вот тогда-то, обрабатывая результаты наблюдений убедились, что приборы отметили мощный источник рентгеновского излучения. Он располагался в созвездии Скорпион. И уже в 70-х годах на орбиту вышли первые 2 спутника, предназначенные для поиска исследований источников рентгеновских лучей во вселенной, - американский «Ухуру» и советский «Космос-428».

К этому времени кое-что уже начало проясняться. Объекты, испускающие рентгеновские лучи, сумели связать с еле видимыми звёздами, обладающими необычными свойствами. Это были компактные сгустки плазмы ничтожных, конечно по космическим меркам, размеров и масс, раскалённые до нескольких десятков миллионов градусов. При весьма скромной наружности эти объекты обладали колоссальной мощностью рентгеновского излучения, в несколько тысяч раз превышающей полную совместимость Солнца.

Эти крохотные, диаметром около 10 км. , останки полностью выгоревших звёзд, сжавшиеся до чудовищной плотности, должны были хоть как-то заявить о себе. Поэтому так охотно в рентгеновских источниках «узнавали» нейтронные звёзды. И ведь казалось бы всё сходилось. Но расчёты опровергли ожидания: только что образовавшиеся нейтронные звёзды должны были сразу остыть и перестать излучать, а эти лучились рентгеном.

С помощью запущенных спутников исследователи обнаружили строго периодические изменения потоков излучения некоторых из них. Был определён и период этих вариаций - обычно он не превышал нескольких суток. Так могли вести себя лишь две вращающиеся вокруг себя звезды, из которых одна периодически затмевала другую. Это было доказано при наблюдении в телескопы.

Откуда же черпают рентгеновские источники колоссальную энергию излучения, Основным условием превращения нормальной звезды в нейтронную считается полное затухание в ней ядерной реакции. Поэтому ядерная энергия исключается. Тогда, может быть, это кинетическая энергия быстро вращающегося массивного тела? Действительно она у нейтронных звёзд велика. Но и её хватает лишь ненадолго.

Большинство нейтронных звёзд существует не по одиночке, а в паре с огромной звездой. В их взаимодействии, полагают теоретики, и скрыт источник могучей силы космического рентгена. Она образует вокруг нейтронной звезды газовый диск. У магнитных полюсов нейтронного шара вещество диска выпадает на его поверхность, а приобретённая при этом газом энергия превращается в рентгеновское излучение.

Свой сюрприз преподнёс и «Космос-428». Его аппаратура зарегистрировала новое, совсем не известное явление - рентгеновские вспышки. За один день спутник засёк 20 всплесков, каждый из которых длился не более 1 сек. , а мощность излучения возрастала при этом в десятки раз. Источники рентгеновских вспышек учёные назвали БАРСТЕРАМИ. Их тоже связывают с двойными системами. Самые мощные вспышки по выстреливаемой энергии всего лишь в несколько раз уступает полному излучению сотен миллиардов звёзд находящихся в нашей Галлактке.

Теоретики доказали: «чёрные дыры», входящие в состав двойных звёздных систем, могут сигнализировать о себе рентгеновскими лучами. И причина возникновения та же - аккреция газа. Правда механизм в этом случае несколько другой. Оседающие в «дыру» внутренние части газового диска должны нагреться и потому стать источниками рентгена.

Переходом в нейтронную звезду заканчивают «жизнь» только те светила, масса которых не превышает 2-3 солнечных. Более крупные звёзды постигает участь «черной дыры».

Рентгеновская астрономия поведала нам о последнем, может быть, самом бурном, этапе развития звёзд. Благодаря ей мы узнали о мощнейших космических взрывах, о газе с температурой в десятки и сотни миллионов градусов, о возможности совершенно необычного сверхплотного состояния веществ в «чёрных дырах».

Что же ещё даёт космос именно для нас? В телевизионных (ТВ) программах уже давным-давно не упоминается о том, что передача ведется через спутник. Это является лишним свидетельством огромного успеха в индустриализации космоса, ставшей неотъемлемой частью нашей жизни. Спутники связи буквально опутывают мир невидимыми нитями. Идея создания спутников связи родилась вскоре после второй мировой войны, когда А. Кларк в номере журнала «Мир радио» (Wireless World) за октябрь 1945г. представил свою концепцию ретрансляционной станции связи, расположенной на высоте 35880 км над Землей.

Заслуга Кларка заключалась в том, что он определил орбиту, на которой спутник неподвижен относительно Земли. Такая орбита называется геостационарной или орбитой Кларка. При движении по круговой орбите высотой 35880 км один виток совершается за 24 часа, т.е. за период суточного вращения Земли. Спутник, движущийся по такой орбите, будет постоянно находиться над определенной точкой поверхности Земли.

Первый спутник связи «Телстар-1» был запущен все же на низкую околоземную орбиту с параметрами 950 х 5630 км это случилось 10 июля 1962г. Почти через год последовал запуск спутника «Телстар-2». В первой телепередаче был показан американский флаг в Новой Англии на фоне станции в Андовере. Это изображение было передано в Великобританию, Францию и на американскую станцию в шт. Нью-Джерси через 15 часов после запуска спутника. Двумя неделями позже миллионы европейцев и американцев наблюдали за переговорами людей, находящихся на противоположных берегах Атлантического океана. Они не только разговаривали но и видели друг друга, общаясь через спутник. Историки могут считать этот день датой рождения космического ТВ. Крупнейшая в мире государственная система спутниковой связи создана в России. Ее начало было положено в апреле 1965г. запуском спутников серии «Молния», выводимых на сильно вытянутые эллиптические орбиты с апогеем над Северным полушарием. Каждая серия включает четыре пары спутников, обращающихся на орбите на угловом расстоянии друг от друга 90 гр.

На базе спутников «Молния» построена первая система дальней космической связи «Орбита». В декабре 1975г. семейство спутников связи пополнилось спутником «Радуга», функционирующем на геостационарной орбите. Затем появился спутник «Экран» с более мощным передатчиком и более простыми наземными станциями. После первых разработок спутников наступил новый период в развитии техники спутниковой связи, когда спутники стали выводить на геостационарную орбиту по которой они движутся синхронно с вращением Земли. Это позволило установить круглосуточную связь между наземными станциями, используя спутники нового поколения: американские «Синком», «Эрли берд» и «Интелсат» российские - «Радуга» и «Горизонт».

Большое будущее связывают с размещением на геостационарной орбите антенных комплексов.

17 июня 1991 года, был выведен на орбиту геодезический спутник ERS-1. Главной задачей спутников должны были стать наблюдения за океанами и покрытыми льдом частями суши, чтобы представить климатологам, океанографам и организациям по охране окружающей среды данные об этих малоисследованных регионах. Спутник был оснащен самой современной микроволновой аппаратурой, благодаря которой он готов к любой погоде: "глаза" его радиолокационных приборов проникают сквозь туман и облака и дают ясное изображение поверхности Земли, через воду, через сушу, - и через лед. ERS-1 был нацелен на разработку ледовых карт, которые в последствии помогли бы избежать множество катастроф, связанных со столкновением кораблей с айсбергами и т.д.

При всем том, разработка судоходных маршрутов это, говоря об- разным языком, только верхушка айсберга, если только вспомнить о расшифровке данных ERS об океанах и покрытых льдом пространствах Земли. Нам известны тревожные прогнозы общего потепления Земли, которые приведут к тому, что растают полярные шапки и повысится уровень моря. Затоплены будут все прибрежные зоны, пострадают миллионы людей.

Но нам неизвестно, насколько правильны эти предсказания. Продолжительные наблюдения за полярными областями при помощи ERS-1 и последовавшего за ним в конце осени 1994 года спутника ERS-2 представляют данные, на основании которых можно сделать выводы об этих тенденциях. Они создают систему "раннего обнаружения" в деле о таянии льдов.

Благодаря снимкам, которые спутник ERS-1 передал на Землю, мы знаем, что дно океана с его горами и долинами как бы "отпечатывается" на поверхности вод. Так ученые могут составить представление о том, является ли расстояние от спутника до морской поверхности (с точностью до десяти сантиметров измеренное спутниковыми радарными высотомерами) указанием на повышение уровня моря, или же это "отпечаток" горы на дне.

Хотя первоначально спутник ERS-1 был разработан для наблюдений за океаном и льдами, он очень быстро доказал свою многосторонность и по отношению к суше. В сельском и лесном хозяйстве, в рыболовстве, геологии и картографии специалисты работают с данными, представляемыми спутником. Поскольку ERS-1 после трех лет выполнения своей миссии он все еще работоспособен, ученые имеют шанс эксплуатировать его вместе с ERS-2 для общих заданий, как тандем. И они собираются получать новые сведения о топографии земной поверхности и оказывать помощь, например, в предупреждении о возможных землетрясениях.

Спутник ERS-2 оснащен, кроме того, измерительным прибором Global Ozone Monitoring Experiment Gome который учитывает объем и распределение озона и других газов в атмосфере Земли. С помощью этого прибора можно наблюдать за опасной озоновой дырой и происходящими изменениями. Одновременно по данным ERS-2 можно отводить близкое к земле UV-b излучение.

На фоне множества общих для всего мира проблем окружающей среды, для разрешения которых должны предоставлять основополагающую информацию и ERS-1, и ERS-2, планирование судоходных маршрутов кажется сравнительно незначительным итогом работы этого нового поколения спутников. Но это одна из тех сфер, в которой возможности коммерческого использования спутниковых данных используются особенно интенсивно. Это помогает при финансировании других важных заданий. И это имеет в области охраны окружающей среды эффект, который трудно переоценить: скорые судоходные пути требуют меньшего расхода энергии. Или вспомним о нефтяных танкерах, которые в шторм садились на мель или разбивались и тонули, теряя свой опасный для окружающей среды груз. Надежное планирование маршрутов помогает избежать таких катастроф.

В заключение справедливо будет сказать, что двадцатое столетие по праву называют «веком электричества», «атомным веком», «веком химии», «веком биологии». Но самое последнее и, по-видимому, также справедливое его название - «космический век». Человечество вступило на путь, ведущий в загадочные космические дали, покоряя которые оно расширит сферу своей деятельности. Космическое будущее человечества - залог его непрерывного развития на пути прогресса и процветания, о котором мечтали и которое создают те, кто работал и работает сегодня в области космонавтики и других отраслях народного хозяйства.