Предел производной. Что такое производная? Механический смысл производной

Составить отношение и вычислить предел .

Откуда появилась таблица производных и правила дифференцирования ? Благодаря единственному пределу . Кажется волшебством, но в действительности – ловкость рук и никакого мошенничества. На уроке Что такое производная? я начал рассматривать конкретные примеры, где с помощью определения нашёл производные линейной и квадратичной функции. В целях познавательной разминки продолжим тревожить таблицу производных , оттачивая алгоритм и технические приёмы решения:

Пример 1

По сути, требуется доказать частный случай производной степенной функции, который обычно фигурирует в таблице: .

Решение технически оформляется двумя способами. Начнём с первого, уже знакомого подхода: лесенка начинается с дощечки, а производная функция – с производной в точке.

Рассмотрим некоторую (конкретную) точку , принадлежащую области определения функции , в которой существует производная. Зададим в данной точке приращение (разумеется, не выходящее за рамки о/о -я) и составим соответствующее приращение функции:

Вычислим предел:

Неопределённость 0:0 устраняется стандартным приёмом, рассмотренным ещё в первом веке до нашей эры. Домножим числитель и знаменатель на сопряженное выражение :

Техника решения такого предела подробно рассмотрена на вводном уроке о пределах функций .

Поскольку в качестве можно выбрать ЛЮБУЮ точку интервала , то, осуществив замену , получаем:

Ответ

В который раз порадуемся логарифмам:

Пример 2

Найти производную функции , пользуясь определением производной

Решение : рассмотрим другой подход к раскрутке той же задачи. Он точно такой же, но более рационален с точки зрения оформления. Идея состоит в том, чтобы в начале решения избавиться от подстрочного индекса и вместо буквы использовать букву .

Рассмотрим произвольную точку , принадлежащую области определения функции (интервалу ), и зададим в ней приращение . А вот здесь, кстати, как и в большинстве случаев, можно обойтись без всяких оговорок, поскольку логарифмическая функция дифференцируема в любой точке области определения.

Тогда соответствующее приращение функции:

Найдём производную:

Простота оформления уравновешивается путаницей, которая может возникнуть у начинающих (да и не только). Ведь мы привыкли, что в пределе изменяется буква «икс»! Но тут всё по-другому: – античная статуя, а – живой посетитель, бодро шагающий по коридору музея. То есть «икс» – это «как бы константа».

Устранение неопределённости закомментирую пошагово:

(1) Используем свойство логарифма .

(2) В скобках почленно делим числитель на знаменатель.

(3) В знаменателе искусственно домножаем и делим на «икс» чтобы воспользоваться замечательным пределом , при этом в качестве бесконечно малой величины выступает .

Ответ : по определению производной:

Или сокращённо:

Предлагаю самостоятельно сконструировать ещё две табличные формулы:

Пример 3

В данном случае составленное приращение сразу же удобно привести к общему знаменателю. Примерный образец оформления задания в конце урока (первый способ).

Пример 3: Решение : рассмотрим некоторую точку , принадлежащую области определения функции . Зададим в данной точке приращение и составим соответствующее приращение функции:

Найдём производную в точке :


Так как в качестве можно выбрать любую точку области определения функции , то и
Ответ : по определению производной

Пример 4

Найти производную по определению

А тут всё необходимо свести к замечательному пределу . Решение оформлено вторым способом.

Аналогично выводится ряд других табличных производных . Полный список можно найти в школьном учебнике, или, например, 1-м томе Фихтенгольца. Не вижу особого смысла переписывать из книг и доказательства правил дифференцирования – они тоже порождены формулой .

Пример 4: Решение , принадлежащую , и зададим в ней приращение

Найдём производную:

Используем замечательный предел

Ответ : по определению

Пример 5

Найти производную функции , используя определение производной

Решение : используем первый стиль оформления. Рассмотрим некоторую точку , принадлежащую , изададим в ней приращение аргумента . Тогда соответствующее приращение функции:

Возможно, некоторые читатели ещё не до конца поняли принцип, по которому нужно составлять приращение . Берём точку (число) и находим в ней значение функции: , то есть в функцию вместо «икса» следует подставить . Теперь берём тоже вполне конкретное число и так же подставляем его в функцию вместо «икса»: . Записываем разность , при этом необходимо полностью взять в скобки .

Составленное приращение функции бывает выгодно сразу же упростить . Зачем? Облегчить и укоротить решение дальнейшего предела.

Используем формулы , раскрываем скобки и сокращаем всё, что можно сократить:

Индейка выпотрошена, с жаркое никаких проблем:

В итоге:

Поскольку в качестве можно выбрать любое действительное число, то проведём замену и получим .

Ответ : по определению.

В целях проверки найдём производную с помощью правил дифференцирования и таблицы :

Всегда полезно и приятно знать правильный ответ заранее, поэтому лучше мысленно либо на черновике продифференцировать предложенную функцию «быстрым» способом в самом начале решения.

Пример 6

Найти производную функции по определению производной

Это пример для самостоятельного решения. Результат лежит на поверхности:

Пример 6: Решение : рассмотрим некоторую точку , принадлежащую , и зададим в ней приращение аргумента . Тогда соответствующее приращение функции:


Вычислим производную:


Таким образом:
Поскольку в качестве можно выбрать любое действительное число, то и
Ответ : по определению.

Вернёмся к стилю №2:

Пример 7


Давайте немедленно узнаем, что должно получиться. По правилу дифференцирования сложной функции :

Решение : рассмотрим произвольную точку , принадлежащую , зададим в ней приращение аргумента и составим приращение функции:

Найдём производную:


(1) Используем тригонометрическую формулу .

(2) Под синусом раскрываем скобки, под косинусом приводим подобные слагаемые.

(3) Под синусом сокращаем слагаемые, под косинусом почленно делим числитель на знаменатель.

(4) В силу нечётности синуса выносим «минус». Под косинусом указываем, что слагаемое .

(5) В знаменателе проводим искусственное домножение, чтобы использовать первый замечательный предел . Таким образом, неопределённость устранена, причёсываем результат.

Ответ : по определению

Как видите, основная трудность рассматриваемой задачи упирается в сложность самого предела + небольшое своеобразие упаковки. На практике встречаются и тот и другой способ оформления, поэтому я максимально подробно расписываю оба подхода. Они равноценны, но всё-таки, по моему субъективному впечатлению, чайникам целесообразнее придерживаться 1-го варианта с «икс нулевым».

Пример 8

Пользуясь определением, найти производную функции

Пример 8: Решение : рассмотрим произвольную точку , принадлежащую , зададим в ней приращение и составим приращение функции:

Найдём производную:

Используем тригонометрическую формулу и первый замечательный предел:

Ответ : по определению

Разберём более редкую версию задачи:

Пример 9

Найти производную функции в точке , пользуясь определением производной.

Во-первых, что должно получиться в сухом остатке? Число

Вычислим ответ стандартным способом:

Решение : с точки зрения наглядности это задание значительно проще, так как в формуле вместо рассматривается конкретное значение.

Зададим в точке приращение и составим соответствующее приращение функции:

Вычислим производную в точке:

Используем весьма редкую формулу разности тангенсов и в который раз сведём решение к первому замечательному пределу :

Ответ : по определению производной в точке.

Задачу не так трудно решить и «в общем виде» – достаточно заменить на или просто в зависимости от способа оформления. В этом случае, понятно, получится не число, а производная функция.

Пример 10

Используя определение, найти производную функции в точке (одно из которых может оказаться и бесконечным) , о котором я в общих чертах уже рассказал на теоретическом уроке о производной .

Некоторые кусочно-заданные функции дифференцируемы и в точках «стыка» графика, например, котопёс обладает общей производной и общей касательной (ось абсцисс) в точке . Кривой, да дифференцируемый на ! Желающие могут убедиться в этом самостоятельно по образцу только что решённого примера.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11

{\large\bf Производная функции}

Рассмотрим функцию y=f(x) , заданную на интервале (a, b) . Пусть x - любое фиксированная точка интервала (a, b) , а Δx - произвольное число, такое, что значение x+Δx также принадлежит интервалу (a, b) . Это число Δx называют приращением аргумента.

Определение . Приращением функции y=f(x) в точке x , соответствующим приращению аргумента Δx , назовем число

Δy = f(x+Δx) - f(x) .

Считаем, что Δx ≠ 0 . Рассмотрим в данной фиксированной точке x отношение приращения функции в этой точке к соответствующему приращению аргумента Δx

Это отношение будем называть разностным отношением. Так как значение x мы считаем фиксированным, разностное отношение представляет собой функцию аргумента Δx . Эта функция определена для всех значений аргумента Δx , принадлежащих некоторой достаточно малой окрестности точки Δx=0 , за исключением самой точки Δx=0 . Таким образом, мы имеем право рассматривать вопрос о существовании предела указанной функции при Δx → 0 .

Определение . Производной функции y=f(x) в данной фиксированной точке x называется предел при Δx → 0 разностного отношения, то есть

При условии, что этот предел существует.

Обозначение . y′(x) или f′(x) .

Геометрический смысл производной : Производная от функции f(x) в данной точке x равна тангенсу угла между осью Ox и касательной к графику этой функции в соответствующей точке:

f′(x 0) = \tgα .

Механический смысл производной : Производная от пути по времени равна скорости прямолинейного движения точки:

Уравнение касательной к линии y=f(x) в точке M 0 (x 0 ,y 0) принимает вид

y-y 0 = f′(x 0) (x-x 0) .

Нормалью к кривой в некоторой ее точке называется перпендикуляр к касательной в той же точке. Если f′(x 0)≠ 0 , то уравнение нормали к линии y=f(x) в точке M 0 (x 0 ,y 0) записывается так:

Понятие дифференцируемости функции

Пусть функция y=f(x) определена на некотором интервале (a, b) , x - некоторое фиксированное значение аргумента из этого интервала, Δx - любое приращение аргумента, такое, что значение аргумента x+Δx ∈ (a, b) .

Определение . Функция y=f(x) называется дифференцируемой в данной точке x , если приращение Δy этой функции в точке x , соответствующее приращению аргумента Δx , может быть представимо в виде

Δy = A Δx +αΔx ,

где A - некоторое число, не зависящее от Δx , а α - функция аргумента Δx , являющая бесконечно малой при Δx→ 0 .

Так как произведение двух бесконечно малых функций αΔx является бесконечно малой более высокого порядка, чем Δx (свойство 3 бесконечно малых функций), то можем записать:

Δy = A Δx +o(Δx) .

Теорема . Для того, чтобы функция y=f(x) являлась дифференцируемой в данной точке x , необходимо и достаточно, чтобы она имела в этой точке конечную производную. При этом A=f′(x) , то есть

Δy = f′(x) Δx +o(Δx) .

Операцию нахождения производной обычно называют дифференцированием.

Теорема . Если функция y=f(x) x , то она непрерывна в этой точке.

Замечание . Из непрерывности функции y=f(x) в данной точке x , вообще говоря, не вытекает дифференцируемость функции f(x) в этой точке. Например, функция y=|x| - непрерывна в точке x=0 , но не имеет производной.

Понятие дифференциала функции

Определение . Дифференциалом функции y=f(x) называется произведение производной этой функции на приращение независимой переменной x :

dy = y′ Δx, df(x) = f′(x) Δx .

Для функции y=x получаем dy=dx=x′Δx = 1· Δx= Δx , то есть dx=Δx - дифференциал независимой переменной равен приращению этой переменной.

Таким образом, можем записать

dy = y′ dx, df(x) = f′(x) dx

Дифференциал dy и приращение Δy функции y=f(x) в данной точке x , оба отвечающие одному и тому же приращению аргумента Δx , вообще говоря, не равны друг другу.

Геометрический смысл дифференциала : Дифференциал функции равен приращению ординаты касательной к графику данной функции, когда аргумент получает приращение Δx .

Правила дифференцирования

Теорема . Если каждая из функций u(x) и v(x) дифференцируема в данной точке x , то сумма, разность, произведение и частное этих функций (частное при условии, что v(x)≠ 0 ) также дифференцируемы в этой точке, причем имеют место формулы:

Рассмотрим сложную функцию y=f(φ(x))≡ F(x) , где y=f(u) , u=φ(x) . В этом случае u называют промежуточным аргументом , x - независимой переменной .

Теорема . Если y=f(u) и u=φ(x) - дифференцируемые функции своих аргументов, то производная сложной функции y=f(φ(x)) существует и равна произведению этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной, т.е.

Замечание . Для сложной функции, являющейся суперпозицией трех функций y=F(f(φ(x))) , правило дифференцирования имеет вид

y′ x = y′ u u′ v v′ x ,

где функции v=φ(x) , u=f(v) и y=F(u) - дифференцируемые функции своих аргументов.

Теорема . Пусть функция y=f(x) возрастает (или убывает) и непрерывна в некоторой окрестности точки x 0 . Пусть, кроме того, эта функция дифференцируема в указанной точке x 0 и ее производная в этой точке f′(x 0) ≠ 0 . Тогда в некоторой окрестности соответствующей точки y 0 =f(x 0) определена обратная для y=f(x) функция x=f -1 (y) , причем указанная обратная функция дифференцируема в соответствующей точке y 0 =f(x 0) и для ее производной в этой точке y справедлива формула

Таблица производных

Инвариантность формы первого дифференциала

Рассмотрим дифференциал сложной функции. Если y=f(x) , x=φ(t) - дифференцируемы функции своих аргументов, то производная функции y=f(φ(t)) выражается формулой

y′ t = y′ x x′ t .

По определению dy=y′ t dt , тогда получим

dy = y′ t dt = y′ x · x′ t dt = y′ x (x′ t dt) = y′ x dx ,

dy = y′ x dx .

Итак, доказали,

Свойство инвариантности формы первого дифференциала функции : как в случае, когда аргумент x является независимой переменной, так и в случае, когда аргумент x сам является дифференцируемой функцией новой переменной, дифференциал dy функции y=f(x) равен производной этой функции, умноженной на дифференциал аргумента dx .

Применение дифференциала в приближенных вычислениях

Мы показали, что дифференциал dy функции y=f(x) , вообще говоря, не равен приращению Δy этой функции. Тем не менее с точностью до бесконечно малой функции более высокого порядка малости, чем Δx , справедливо приближенное равенство

Δy ≈ dy .

Отношение называют относительной погрешностью равенства этого равенства. Так как Δy-dy=o(Δx) , то относительная погрешность данного равенства становится как угодно малой при уменьшении |Δх| .

Учитывая, что Δy=f(x+δ x)-f(x) , dy=f′(x)Δx , получим f(x+δ x)-f(x) ≈ f′(x)Δx или

f(x+δ x) ≈ f(x) + f′(x)Δx .

Это приближенное равенство позволяет с ошибкой o(Δx) заменить функцию f(x) в малой окрестности точки x (т.е. для малых значений Δx ) линейной функцией аргумента Δx , стоящей в правой части.

Производные высших порядков

Определение . Второй производной (или производной второго порядка) функции y=f(x) называется производная от ее первой производной.

Обозначение второй производной функции y=f(x) :

Механический смысл второй производной . Если функция y=f(x) описывает закон движения материальной точки по прямой линии, то вторая производная f″(x) равна ускорению движущейся точки в момент времени x .

Аналогично определяется третья, четвертая производная.

Определение . n -й производной (или производной n -го порядка) функции y=f(x) называется производная от ее n-1 -й производной:

y (n) =(y (n-1))′, f (n) (x)=(f (n-1) (x))′ .

Обозначения: y″′ , y IV , y V и т.д.

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная - одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Геометрический и физический смысл производной

Пусть есть функция f(x) , заданная в некотором интервале (a, b) . Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0 . Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

Иначе это можно записать так:

Какой смысл в нахождении такого предела? А вот какой:

производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.


Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t . Средняя скорость за некоторый промежуток времени:

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того - это нужно делать. При решении примеров по математике возьмите за правило - если можете упростить выражение, обязательно упрощайте .

Пример. Вычислим производную:

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

Пример: найти производную функции:

Решение:

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис . За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

При решении различных задач геометрии, механики, физики и других отраслей знания возникла необходимость с помощью одного и того же аналитического процесса из данной функции y=f(x) получать новую функцию, которую называют производной функцией (или просто производной) данной функции f(x) и обозначают символом

Тот процесс, с помощью которого из данной функции f(x) получают новую функцию f " (x) , называют дифференцированием и состоит он из следующих трех шагов: 1) даем аргументу x приращение  x и определяем соответствующее приращение функции  y = f(x+  x) -f(x) ; 2) составляем отношение

3) считая x постоянным, а  x 0, находим
, который обозначаем черезf " (x) , как бы подчеркивая тем самым, что полученная функция зависит лишь от того значения x , при котором мы переходим к пределу. Определение : Производной y " =f " (x) данной функции y=f(x) при данном x называется предел отношения приращения функции к приращению аргумента при условии, что приращение аргумента стремится к нулю, если, конечно, этот предел существует, т.е. конечен. Таким образом,
, или

Заметим, что если при некотором значении x , например при x=a , отношение
при x 0 не стремится к конечному пределу, то в этом случае говорят, что функция f(x) при x=a (или в точке x=a ) не имеет производной или не дифференцируема в точке x=a .

2. Геометрический смысл производной.

Рассмотрим график функции у = f (х), дифференцируемой в окрест­ностях точки x 0

f(x)

Рассмотрим произвольную прямую, проходящую через точку гра­фика функции - точку А(x 0 , f (х 0)) и пересекающую график в некоторой точке B(x;f(x)). Такая прямая (АВ) называется секущей. Из ∆АВС: АС = ∆x; ВС =∆у; tgβ=∆y/∆x .

Так как АС || Ox, то ALO = BAC = β (как соответственные при параллельных). Но ALO - это угол наклона секущей АВ к положи­тельному направлению оси Ох. Значит, tgβ = k - угловой коэффициент прямой АВ.

Теперь будем уменьшать ∆х, т.е. ∆х→ 0. При этом точка В будет прибли­жаться к точке А по графику, а секущая АВ будет поворачиваться. Пре­дельным положением секущей АВ при ∆х→ 0 будет прямая (a), называемая касательной к графику функции у = f (х) в точке А.

Если перейти к пределу при ∆х → 0 в равенстве tgβ =∆y/∆x, то получим
илиtg =f "(x 0), так как
-угол накло­на касательной к положительному направлению оси Ох
, по определению производной. Но tg = k - угловой коэффициент каса­тельной, значит, k = tg = f "(x 0).

Итак, геометрический смысл производной заключается в следую­щем:

Производная функции в точке x 0 равна угловому коэффициенту ка­сательной к графику функции, проведенной в точке с абсциссой x 0 .

3. Физический смысл производной.

Рассмотрим движение точки по прямой. Пусть задана координата точки в любой момент времени x(t). Известно (из курса физики), что средняя скорость за промежуток времени равна отношению расстояния, пройденного за этот промежуток времени, на время, т.е.

Vср = ∆x/∆t. Перейдем к пределу в последнем равенстве при ∆t → 0.

lim Vср (t) = (t 0) - мгновенная скорость в момент времени t 0 , ∆t → 0.

а lim = ∆x/∆t = x"(t 0) (по определению производной).

Итак, (t) =x"(t).

Физический смысл производной заключается в следующем: произ­водная функции y = f (x ) в точке x 0 - это скорость изменения функции f (х) в точке x 0

Производная применяется в физике для нахождения скорости по известной функции координаты от времени, ускорения по известной функции скорости от времени.

(t) = x"(t) - скорость,

a(f) = "(t) - ускорение, или

Если известен закон движения материальной точки по окружности, то можно найти угловую скорость и угловое ускорение при вращатель­ном движении:

φ = φ(t) - изменение угла от времени,

ω = φ"(t) - угловая скорость,

ε = φ"(t) - угловое ускорение, или ε = φ"(t).

Если известен закон распределения массы неоднородного стержня, то можно найти линейную плотность неоднородного стержня:

m = m(х) - масса,

x  , l - длина стержня,

р = m"(х) - линейная плотность.

С помощью производной решаются задачи из теории упругости и гармонических колебаний. Так, по закону Гука

F = -kx, x – переменная координата, k- коэффициент упругости пружины. Положив ω 2 =k/m, получим дифференциальное уравнение пружинного маятника х"(t) + ω 2 x(t) = 0,

где ω = √k/√m частота колебаний (l/c), k - жесткость пружины (H/m).

Уравнение вида у" + ω 2 y = 0 называется уравнением гармонических колебаний (механических, электрических, электромагнитных). Решени­ем таких уравнений является функция

у = Asin(ωt + φ 0) или у = Acos(ωt + φ 0), где

А - амплитуда колебаний, ω - циклическая частота,

φ 0 - начальная фаза.

Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное - понять смысл.

Запомним определение:

Производная - это скорость изменения функции.

На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден - третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , - разная. Что касается Матвея - у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание - в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол ; с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол ; с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка - точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке - точке минимума - производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 - 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задачи . Другое - на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала - и после точки продолжает возрастать. Знак производной не меняется - она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется