Физиология человека. Анатомия и физиология тела человека

Физиология - это наука о том, как функционируют органы и системы живых организмов. Что изучает наука физиология? Больше, чем любая другая она изучает биологические процессы на элементарном уровне для того, чтобы объяснить, как работает каждый отдельный орган и весь организм в целом.

Понятие «физиология»

Как сказал один знаменитый физиолог Эрнест Старлинг, физиология сегодня - это медицина завтрашнего дня. - это наука о механических, физических и биохимических функциях человека. которая служит основой для современной медицины. Как дисциплина, она имеет отношение к таким областям, как медицина и здравоохранение, и создает основу для понимания того, как человеческий организм адаптируется к стрессам, болезням и физической активности.

Современные исследования в области физиологии человека способствуют появлению новых способов обеспечения и повышения качества жизни, развитию новых медицинских методов лечения. Основным принципом, который является основой для изучения физиологии человека, является поддержание гомеостаза посредством функционирования сложных систем управления, охватывающих все уровни иерархии человеческой структуры и функций (клеток, тканей, органов и систем органов).

Физиология человека

Как наука занимается изучением механических, физических и биохимических функций человека в добром здравии, его органы и клетки, из которых они состоят. Основной уровень внимания физиологии - это функциональный уровень всех органов и систем. В конечном счете наука дает представление о комплексных функциях организма в целом.

Анатомия и физиология являются тесно связанными между собой областями исследования, анатомия изучает формы, а физиология - функции. Что изучает наука физиология человека? Эта биологическая дисциплина занимается изучением того, как тело функционирует в нормальном состоянии, а также исследует возможные дисфункции организма и различные заболевания.

Что изучает наука физиология? Физиология дает ответы на вопросы о том, как работает тело, что происходит, когда человек рождается и развивается, о том, как системы организма адаптируются в условиях стрессов, таких как физические упражнения или экстремальные условия окружающей среды, и о том, как изменяются функции организма при болезненных состояниях. Физиология затрагивает функции на всех уровнях, от нервов - к мышцам, от головного мозга - к гормонам, от молекул и клеток - до органов и систем.

Системы человеческого тела

Физиология человека как наука изучает функции органов человеческого тела. Телосложение включает в себя нескольких систем, которые работают вместе для нормального функционирования всего организма. Некоторые системы взаимосвязаны между собой, и один или несколько элементов одной системы могут быть частью или служить другой.

Выделяют 10 основных систем организма:

1) Сердечно-сосудистая система отвечает за перекачивание крови через вены и артерии. Кровь должна поступать в организм, постоянно вырабатывая топливо и газ для органов, кожи и мышц.

2) Желудочно-кишечный тракт отвечает за обработку пищи, ее переваривание и преобразование ее в энергию для организма.

3) отвечает за воспроизводство.

4) состоит из всех ключевых желез, отвечающих за выработку секреций.

5) - это так называемый «контейнер» для тела, для защиты внутренних органов. Ее главный орган, кожа, покрыт большим количеством датчиков, которые передают внешние сенсорные сигналы в головной мозг.

6) Опорно-двигательная система: скелет и мышцы ответственны за общую структуру и форму человеческого тела.

7) Дыхательная система представлена носом, трахеями и легкими и отвечает за дыхание.

8) помогает организму избавиться от нежелательных отходов.

9) Нервная система: сеть нервов соединяет мозг с остальным телом. Эта система отвечает за чувства человека: зрение, обоняние, вкус, осязание и слух.

10) Иммунная система защищает или пытается защитить тело от болезни и недуга. Если в организм проникают инородные тела, то система начинает вырабатывать антитела для защиты организма и уничтожения нежелательных гостей.

Кому и для чего нужно знать физиологию человека?

То, что изучает наука физиология человека, может быть увлекательной темой для врачей и хирургов. Кроме медицины, затрагиваются также другие области знаний. Данные физиологии человека имеют важное значение для спортивных специалистов, таких как тренер и физиотерапевт. Кроме того, в рамках мировой практики медицины применяются различные виды терапии, например, массаж, где также важно знать, как устроено тело, чтобы проводимое лечение было максимально эффективно и приносило только пользу, а не вред.

Роль микроорганизмов

Микроорганизмы играют ключевую роль в природе. Они делают возможным переработку материалов и энергии, они могут быть использованы как клеточные «фабрики» по производству антибиотиков, ферментов и пищевых продуктов, они также могут вызвать инфекционные заболевания у человека (например, заражение пищевым способом), животных и растений. Их существование напрямую зависит от способности к адаптации в переменчивой окружающей среде, наличия питательных веществ и света, важную роль играет также рН-фактор, такие категории, как давление, температура и многие другие.

Физиология микроорганизмов

Основу жизнедеятельности микроорганизмов и всех остальных живых существ составляет обмен веществ с окружающей средой (метаболизм). При изучении такой дисциплины, как физиология микроорганизмов, важную роль играет метаболизм. Это процесс построения химических соединений в клетке и их разрушения в процессе деятельности для получения необходимой энергии и строительных элементов.

Метаболизм включает в себя анаболизм (ассимиляция) и катаболизм (диссимиляция). Физиология микроорганизмов изучает процессы роста, развития, питания, способы получения энергии для осуществления этих процессов, а также их взаимодействие с окружающей средой.

Физиология человека. В 3-х томах. Под ред. Р. Шмидта и Г. Тевса

Пер. с англ. - 3-е изд. - М.: Мир, 2005; Т.1 - 323с., Т.2 - 314с.; Т.3 - 228с.

Получивший международное признание учебник физиологии, написанный немецкими авторами. На русском языке выходит третьим изданием, в 3-х томах. Перевод сделан со 2-го, дополненного и переработанного английского издания (23-е немецкое издание).

Том 1 посвящен вопросам общей физиологии клетки, интегративной функции нервной системы, физиологии мышц, а также сенсорной физиологии.

В том 2 вошли главы по нервной и гуморальной регуляции, физиологии кровообращения и дыхания.

В томе 3 рассматриваются энергетический обмен и терморегуляция, питание, пищеварение и выделение, репродукция и старение.

Для студентов-биологов и медиков, а также физиологов и врачей.

Том 1.

Формат: djvu

Размер: 9,2Мб

Скачать: drive.google

Том 2.

Формат: djvu

Размер: 11,7Мб

Скачать: drive.google

Том 3.

Формат: djvu

Размер: 5,9Мб

Скачать: drive.google

СОДЕРЖАНИЕ
Том 1
I. Общая физиология клетки и межклеточные взаимодействия
1. Основы клеточной физиологии
2. Передача информации посредством электрического возбуждения
3. Межклеточная передача возбуждения
II. Двигательные и интегративные функции нервной системы; физиология мышц
4. Мышцы
5. Двигательные системы
6. Интегративные функции центральной нервной системы
7. Нервная система с точки зрения теории информации
III. Общая и специальная сенсорная физиология
8. Общая сенсорная физиология
9. Соматовисцеральная нервная система
10. Ноцицепция и боль
11. Зрение
12. Физиология чувства равновесия, слуха и речи
13. Вкус и обоняние
14. Жажда и голод

Том 2
IV. Процессы нервной и гуморальной регуляции
15. Общие принципы регуляции
16. Вегетативная нервная система
17. Эндокринология
V. Кровь и система кровообращения
18. Функция крови
19. Функция сердца
20. Функции сосудистой системы
VI. Дыхание
21. Легочное дыхание
22. Транспорт газов крови и кислотно-щелочное равновесие
23. Тканевое дыхание

Том 3
VII. Энергетический баланс, работа и влияние окружающей среды
24. Энергетический баланс
25. Тепловой баланс и регуляция температуры тела
26. Физиология труда
27. Экологическая физиология
VIII. Питание, пищеварение и выделение
28. Питание
29. Функции желудочно-кишечного тракта
30. Функция почек
31. Водный и электролитный баланс
IX. Репродукция, беременность и старение
32. Половые функции
33. Репродукция и беременность
34. Старение и старость
X. Приложение

Год выпуска: 2005

Жанр: Физиология

Формат: DjVu

Качество: Отсканированные страницы

Описание: Данный учебник «Физиология человека» впервые появился на английском языке в 1983 г. как перевод 20-го издания существующего долгое время немецкого учебника „Physio-logie des Menschen" («Физиология человека»). В этом новом английском издании текст фундаментально «освежен»: надо было привести его в соответствие с быстрым развитием многих направлений физиологии и учесть массу полезных предложений, сделанных как читателями, так и специалистами. Однако по своему подходу и дидактическим целям учебник продолжает соответствовать тому, что сформулировано в предисловии к первому изданию.
Хотелось бы отметить следующие важные моменты. Во-первых, содержание учебника «Физиология человека» существенно реорганизовано. Общие аспекты физиологии клетки и межклеточных взаимодействий, лежашие в основе функции всех органов, выделены из различных глав и собраны в отдельный вводный раздел. Мы в высшей степени признательны коллеге Й. Дуделю, взявшему на себя эту задачу.

Общая физиология клетки и межклеточные взаимодействия
Глава 1. Основы клеточной физиологии. Й. Дудель (пер. Ю. Б. Шмуклер)
1.1. Клетка как единица физиологических процессов обмена
1.2. Обмен веществами между клеткой и окружающей средой
1.3. Перенос веществ внутри клетки
1.4. Регуляция клеточных функций
1.5. Литература
Глава 2. Передача информации посредством электрического возбуждения. И. Дудель (пер. М. А. Каменская)
2.1. Потенциал покоя
2.2. Потенциал действия
2.3. Токи через потенциалзависимые мембранные каналы
2.4. Электротон и стимул
2.5. Распространение потенциала действия
2.6. Генерация импульсных разрядов при длительной деполяризации
2.7. Литература
Глава 3. Межклеточная передача возбуждеиня. И. Дудель (пер. М.А. Каменская)
3.1. Химическая синаптическая передача
3.2. Взаимодействия синапсов
3.3. Микрофизиология химической синаптиче-ской передачи
3.4. Электрическая синаптическая передача
3.5. Литература
Двигательные и интегративные функции нервной системы; физиология мышц
Глава 4. Мышца. Й. Рюэгг (пер. М. А. Каменская)
4.1. Молекулярный механизм сокращения
4.2. Регуляция мышечного сокращения
4.3. Мышечная механика
4.4. Энергетика мышцы
4.5. Гладкая мышца
4.6. Литература
Глава 5. Двигательные системы. Р. Шмидт, М. Визендангер (пер. М. А. Каменская)
5.1. Нервная регуляция позы и движений: общие положения
5.2. Рецепторы двигательных систем: мышечные веретена и сухожильные органы
5.3. Спинальные двигательные рефлексы
5.4. Двигательные центры ствола головного мозга
5.5. Мозжечок
5.6. Базальные ганглии
5.7. Двигательные области коры больших полушарий
5.8. Восстановление функций после повреждений двигательной системы
5.9. Литература
Глава 6. Интегративные функции центральной нервной системы. Р. Шмидт (пер. Н. Н. Алипов)
6.1. Определение и локализация интегративных функций
6.2. Основы физиологии коры головного мозга
6.3. Сон и бодрствование
6.4. Нейрофизиологические корреляты сознания и речи
6.5. Пластичность, научение и память
6.6. Функции лобных долей
6.7. Литература
Глава 7. Нервная система с точки зрении теории информации. М. Циммерман (пер. О. В. Левашов)
7.1. Введение в теорию информации
7.2. Теория информации в сенсорной физиологии
7.3. Измерение информации в психологии
7.4. Литература
Общая и специальная сенсорная физиология
Глава 8. Общая сенсорная физиология. X. Хандверкер
(пер. О. В. Левашов)
8.1. Предмет изучения общей сенсорной физиологии
8.2. Общая объективная сенсорная физиология
8.3. Общая субъективная сенсорная физиология
8.4. Интегративная сенсорная физиология
8.5. Литература
Глава 9. Соматовисцеральная сенсорная система. М. Циммерман (пер. Н. Ю. Алексеенко)
9.1. Психофизика кожной механорецешши
9.2. Кожные механорецепторы
9.3. Психофизика терморецепции
9.4. Терморецепторы
9.5. Висцеральная чувствительность
9.6. Проприоцепция
9.7. Функциональный и анатомический обзор центральной соматосенсорной системы
9.8. Передача соматовисцеральной информации в спинном мозгу
9.9. Соматосенсорные функции ствола мозга
9.10. Таламус
9.11. Соматосенсорные проекционные области в коре
9.12. Контроль афферентного входа в сомато-сенсорной системе
9.13. Литература
Глава 10. Ноцицепция и боль. Р. Шмидт (пер. Н. Ю. Алексеенко)
10.1. Характеристика боли
10.2. Нейрофизиология боли
10.3. Патофизиология ноцицепции и боли
10.4. Эндогенное и экзогенное торможение боли
10.5. Литература
Глава 11. Зрение. О. Й. Грюссер, У. Грюссер-Корнельс (пер. О. В. Левашов)
11.1. Смотреть, видеть, созерцать
11.2. Свет и его восприятие
11.3. Восприятие и обработка сигналов сетчаткой
11.4. Нейрофизиология и психофизика восприятия света и темноты
11.5. Обработка сигналов в центральных отделах зрительной системы
11.6. Практические и клинические аспекты физиологии зрения
11.7. Цветовое зрение
11.8. Литература
Глава 12. Физиология чувства равновесия, слуха и речи. Р. Клинке (пер. Ю. Б. Шмуклер)
12.1. Физиология чувства равновесия
12.2. Физиология слуха
12.3. Физиология речевого аппарата
12.4. Литература
Глава 13. Вкус и обоняние. X. Альтнер, Й. Бекх (пер. Ю.Б. Шмуклер)
13.1. Характеристика химических ощущений
13.2. Вкус
13.3. Обоняние
13.4. Литература
Глава 14. Жажда и голод: общие ощущения. Р. Шмидт (пер. Ю. Б. Шмуклер)
14.1. Жажда
14.2. Голод
14.3. Литература

Биологическая реакция – ответная реакция клеток, тканей, органов в ответ на раздражитель (стимул).
Раздражимость – свойство всех живых тканей изменять своё внутреннее состояние при изменении внешних условий.
Виды тканей в зависимости от реагирования на внешние раздражители:
I Возбудимые - обладают свойством возбудимости, т.е. способностью возбуждаться нервная, мышечная, железистая.
II Невозбудимые – изменяют свое состояние, но не генерируют процесс возбуждения в ответ на нанесенный стимул.
Возбудимость – способность ткани переходить в возбуждённое состояние.
Возбуждение деятельное состояние тканей в ответ на действие раздражителя, это сложная биологическая реакция, проявляющаяся в совокупности физических, физико-химических и функциональных изменений, способная к распространению по ткани.
Возбуждение включает в себя неспецифические и специфические компоненты.
Неспецифические:
сдвиг химических реакций, образование тепла, физико-химические изменения,
продукция биопотенциалов, структурные изменения в мембране клеток.
Специфические:
мышечная ткань отвечает мышечным сокращением, нервная ткань - генерацией нервного импульса и его проведением, железистая ткань – образованием и выделением секрета.
Возбуждение может быть локальным и динамическим (распространяющимся).
Биопотенциалы
Луиджи Гальвани 1791 г. в эксперименте показал, что живые ткани содержат «животное электричество», его научный оппонент, физик Вольта - что это электричество от разнородных металлов, он создал первый источник постоянного тока, который носит название гальванический элемент.
Виды биопотенциалов:
1. Биопотенциал покоя (мембранный) - МПП.
2. Биопотенциал действия (возбуждения) - ПД.

  • Биопотенциал покоя – это разность потенциалов между наружной и внутренней поверхностью мембраны клетки в покое. Наружная поверхность мембраны клетки имеет положительный заряд, а внутренняя – отрицательный.

Биопотенциал покоя регистрируется внутриклеточным методом – с помощью микроэлектродов, один из которых вводится внутрь клетки (рис.1).

Рисунок 1. Схематическое представление метода регистрации биопотенциалов.

В эксперименте биопотенциал покоя можно зарегистрировать между повреждённым и неповреждённым участком ткани. Повреждённый участок является моделью внутренней поверхности мембраны клетки.
При внутриклеточном отведении перезарядка мембраны регистрируется под одним электродом (однофазный ПД), при внеклеточном отведении потенциал действия проходит через два электрода (регистрируется двухфазный ПД).

  • Биопотенциал действия – это кратковременные высокоамплитудные изменения МПП, которые возникают при возбуждении. ПД регистрируется в раздражаемых тканях, в которых возникает волна возбуждения (рис.2). Измеряется ПД с помощью внутриклеточного отведения и внеклеточного отведения.

Рисунок 2. Потенциал действия, основные его фазы.

Современная, экспериментально доказанная, мембранно-ионная теория возникновения биопотенциалов (Ходжкин, Хаксли, Катц).

Основные положения:

  • Электрические процессы возникают на плазматической мембране клетки, которая состоит из бимолекулярного слоя липидов (остов мембраны) и белков, которые выполняют различные функции в мембране: рецепторную, ферментативную, образуют в ней каналы и насосы (рис.3).

Канал мембраны может быть неспецифическим, он постоянно открыт, не имеет воротного механизма, электрические воздействия не изменяют его состояния. Называют каналом «утечки». Специфические каналы (селективные) имеют воротный механизм, поэтому могут находиться или в открытом, или в закрытом состоянии в зависимости от электрических воздействий на мембрану и пропускают только определенный ион. Этот канал состоит из трех частей: водной поры – выстлана внутри гидрофильными группами; селективного фильтра – на наружной поверхности, который пропускает ионы в зависимости от их размера и формы; ворот – на внутренней поверхности мембраны, управляют проницаемостью канала.

Рисунок 3. Строение биологической мембраны.

Канал мембраны может быть неспецифическим, он постоянно открыт, не имеет воротного механизма, электрические воздействия не изменяют его состояния. Называют каналом «утечки». Специфические каналы (селективные) имеют воротный механизм, поэтому могут находиться или в открытом, или в закрытом состоянии в зависимости от электрических воздействий на мембрану и пропускают только определенный ион. Этот канал состоит из трех частей: водной поры – выстлана внутри гидрофильными группами; селективного фильтра – на наружной поверхности, который пропускает ионы в зависимости от их размера и формы; ворот – на внутренней поверхности мембраны, управляют проницаемостью канала (рис.4).

Рисунок 4. Строение ионного канала.

Каналы для натрия имеют два типа ворот: быстрые активационные и медленные инактивационные. В покое открыты медленные инактивационные и закрыты быстрые активационные. При возбуждении происходит открытие быстрых активационных и медленное закрытие медленных инактивационных, т.е. на короткий промежуток времени оба типа ворот открыты (рис.5).

Рисунок 5. Работа активационные и инактивационный воротных механизмов натриевого ионного канала.

Калиевые каналы имеют только медленные ворота.
Насосы выполняют функцию транспорта через мембрану ионов против градиента концентрации, для их работы используется энергия АТФ.

  • По обе стороны мембраны существует концентрационный градиент.

Внутри клетки в 40 раз > К+; t;/p>

Вне клетки: в 20-30 раз > Na+,
в 50 раз > Cl-.

  • Мембрана пропускает молекулы жирорастворимых веществ, а анионы органических кислот не проходят. Мембрана проницаема для воды, для ионов проницаемость мембраны различна: для калия в состоянии покоя проницаемость почти в 25 раз больше, чем для натрия. При возбуждении увеличивается проницаемость и для калия (постепенно), и для натрия (быстро, но на очень короткий промежуток времени).

Потенциал покоя
Проницаемость мембраны для ионов К+ повышена, поэтому калий играет основную роль в генерации МПП. Калий создаёт электрическое поле и заряжает наружную поверхность мембраны «+». В тот момент, когда «+» потенциал наружной стороны достигает определённой величины по отношению к «–» внутри, который создается анионами – наступает динамическое равновесие между входящими и выходящими из клетки ионами К+. Этому моменту соответствует потенциал равновесия для К - потенциал покоя.

МПП характеризуется:
1. постоянством;
2. полярностью, снаружи «+», внутри «-»;
3. величина – в мВ, для скелетной мышцы - 60 – 90 мВ,
для гладкой - -30 – 70 мВ,
для нерва -50 – 80мВ,
для секреторной клетки - -20мВ.

МПП - один из основных показателей состояния физиологического покоя клетки. При увеличении внеклеточной концентрации калия уменьшается МПП, т.к. уменьшается диффузия калия из клетки в связи со снижением его концентрационного градиента. При действии веществ, блокирующих ресинтез АТФ, т.к. прекращается работа натрий-калиевого насоса, также снижается МПП. Ионы натрия и хлора входят в клетку, но ввиду низкой проницаемости значительного влияния на МП не оказывают.

Потенциал действия
При возбуждении – резко увеличивается (в несколько тысяч раз) проницаемость для ионов Na, которые поступают внутрь клетки лавинообразно и заряжают внутреннюю сторону «+» - происходит деполяризация мембраны, а затем количество ионов натрия внутри превышает калиевый заряд на поверхности и это приводит к перезарядке мембраны (реверсии). Постепенно увеличивающаяся проницаемость для калия и его поток из клетки инактивирует натриевую проницаемость и приводит к восстановлению заряда на мембране. Возникает фаза реполяризации.
Существенным фактором является натрий-калиевый насос, который выводит из клетки 3 иона натрия в обмен на 2 иона калия, вводимые в клетку. Его работа зависит от метаболизма клетки, в частности, от ее энергоснабжения. При этом расходуется 1 молекула АТФ (рис.6).

Рисунок 6. Механизм работы натрий-калиевого насоса.

ПД состоит из пикового потенциала, который образуется фазой деполяризации, реверсии и реполяризации, и следовых потенциалов (рис.2).
Следовые потенциалы:
Отрицательный (следовая деполяризация);
Положительный (следовая гиперполяризация).

Причиной следовых потенциалов являются дальнейшие изменения соотношения между входом натрия в клетку и выходом калия из нее. При следовой деполяризации отмечается остаточный ток натрия в клетку при одновременном снижении калиевого тока. При следовой гиперполяризации – остаточное усиление тока калия из клетки при одновременной активации натрий-калиевого насоса.

ПД характеризуется:
1. изменяющимся характером;
2. кратковременностью – несколько мсек;
3. зарядом мембраны, снаружи – «-», внутри – «+».
При действии веществ, блокирующих натриевые каналы, ПД не генерируется, т.к. в норме деполяризация мембраны обусловлена повышение ее натриевой проницаемости. При увеличении силы раздражителя выше порога амплитуда ПД не изменяется, т.к. не изменяется число активированных натриевых каналов, которые максимально раскрываются при пороговом раздражении.

Условия, необходимые для возникновения возбуждения (законы раздражения).

Возбудимость тканей различна. Чтобы вызвать возбуждение, раздражитель должен обладать:
1. Достаточной силой – закон порога.
2. Крутизной (градиентом) нарастания этой силы – закон аккомодации.
3. Временем действия – закон силы-времени.

1. Закон силы. Мерой возбудимости является порог раздражения – минимальная сила раздражителя, способная вызвать возбуждение. Все раздражители можно разделить на подпороговые, пороговые и сверхпороговые. По биологическому значению раздражители делят на адекватные (действующие на ткань в естественных условиях, к ним она приспособлена в процессе эволюции) и неадекватные. В физиологических экспериментах в качестве раздражителя чаще всего используется электрический ток, т.к. он вызывает обратимые изменения, легко дозируется по силе и длительности, по своей природе близок к электрическим процессам, протекающим в живых организмах.
В 1870 г. Боудич в эксперименте на мышце сердца путем нанесения на неё одиночных пороговых раздражений регистрировал ответную реакцию - установил, что на подпороговое раздражение реакции не было, при пороговой силе и сверхпороговой амплитуда ответной реакции была одинаковой. На основании этого он предложил закон «Всё или ничего».
После введения в экспериментальные исследования микроэлектронной техники было установлено, что на подпороговое раздражение в ткани возникает ответная реакция. Если сила стимула меньше 50% пороговой величины, то под полюсами электродов происходит пассивная деполяризация без изменения проницаемости мембраны для ионов (электротонические изменения). Если сила стимула меньше пороговой величины, но больше 50% от нее, то в ткани возникает локальный ответ, который сопровождается деполяризацией мембраны в области нанесения раздражения и не распространяется на всю ткань, возбудимость тканей в этом участке повышена. Локальный ответ подчиняется закону силовых отношений, т.е. чем больше сила подпорогового стимула, тем больше амплитуда локального ответа. Проницаемость мембраны клетки в этом участке повышается для ионов натрия. При нанесении порогового стимула возникает ПД, амплитуда которого не изменяется, если величина стимула будет превышать пороговую, т.е. отвечает закону «Все или ничего», но на сверхпороговые стимулы длительность ПД будет меньше за счет укорочения продолжительности локального ответа.
Момент перехода локального ответа в ПД называется критическим уровнем деполяризации (КУД), а сдвиг заряда мембраны с мембранного потенциала до КУД, называется пороговым потенциалом, он наряду с порогом раздражения характеризует возбудимость ткани.

Изменение возбудимости тканей при возбуждении.

При возбуждении возбудимость тканей претерпевает определенные изменения в зависимости от фаз ПД (рис.7):
I – супернормальная возбудимость (первичная) соответствует локальному ответу, при этом два подпороговых стимула, нанесенных с интервалом времени, короче длительности локального ответа могут суммироваться и вызывать ПД;
II – абсолютная рефрактерность – соответствует регенеративной деполяризации и реверсии, при этом ткань становится абсолютно невозбудимой и не отвечает на самые сильные раздражители;
III – относительная рефрактерная фаза, соответствует реполяризации, при этом возбудимость ткани постепенно восстанавливается и сверхпороговый стимул, нанесенный в этот период может генерировать ПД;
IV – супернормальная возбудимость (вторичная или экзальфационная фаза) - следовой деполяризации, ткань становится более возбудимой, чем в исходном состоянии и даже подпороговый стимул способен вызвать ПД;
V – субнормальная возбудимость – следовой гиперполяризации, возбудимость ткани несколько снижена.

Рисунок 7. Изменение возбудимости мембраны при развитии потенциала действия.

2. Закон градиента раздражения (Дюбуа Реймон). Чем больше градиент раздражения, тем больше (до известных пределов) реакция живого образования.
За время действия медленно нарастающего стимула наступает приспособление ткани – аккомодация. Она связана с тем, что при возбуждении проницаемость для ионов натрия увеличивается на короткий промежуток времени, если в течение его раздражитель не достигает пороговой величины, то увеличивающаяся проницаемость для ионов калия инактивирует натриевую проницаемость и возбуждение не наступает. При этом происходит также сдвиг КУД с увеличением порогового потенциала.

3. Закон силы-времени (Лапик). Пороговая величина любого раздражителя находится в обратной зависимости от времени его действия, которая характеризуется математической кривой – гиперболой. Характер кривой свидетельствует о том, что подпороговые стимулы (меньше 1 реобазы) не вызовут возбуждение как долго бы они не действовали, в то же время очень сильный кратковременный стимул, длительность которого меньше полезного времени, также не вызовет возбуждение.
Сила постоянного тока, которая, действуя неопределенное время, вызывает возбуждение, называется реобазой.
Время, в течение которого ток в 1 реобазу вызывает возбуждение – полезное время.
Минимальное время, в течение которого ток силой в 2 реобазы вызовет возбуждение, называется хронаксией. Исследование этого показателя используется в неврологической и травматологической практике для изучения динамики восстановления в нервной или мышечной ткани после травмы.

Список использованной литературы

  • Нормальна фізіологія /Під ред. В.І. Філімонова. – К. – Здоров’я, 1994. – С. 5 - 37.
  • Физиология человека /Под ред. Г. И. Косицкого. – М., Медицина, 1985. – С. 19 – 84.
  • Посібник з нормальної фізіології /Під ред. В.Г. Шевчука. – К., Здоров’я, 1995. – С. 6 - 36.
  • Руководство к практическим занятиям по физиологии /Под ред. Г. И. Косицкого. – М., Медицина, 1988. – С. 72 - 94.
  • Нормальная физиология /Под ред. В. И. Филимонова. - Запорожье, 1995. – С. 74-72.
  • Физиология человека. Т.1 /Под ред. Р. Шмидта и Г. Тевса. – М., Мир, - 1996. - С. 9-87.
  • Физиология человека. Т.1 / Под ред. В.М. Покровского. – М., Медицина, 1998. – С. 27-97.
  • Общий курс физиологии человека и животных. Т.1. /Под ред. А.Д. Ноздрачева – М., Высшая школа, 1991.- С.36-116.
  • Физиология человека. /Под ред. В.М. Смирнова – М., Медицина, 2002. – С. 45-61, 82-94.
  • Фізіологія людини. Вільям Ф. Ганонг. – БаК, Львів, 2002. – С. 6 – 69, 74-76.

Физиология (от греч. fysis – природа иlogos – наука) – наука о процессах, протекающих в организме человека, о его функциях. Предметом физиологии является изучение жизнедеятельности целостного организма во взаимодействии его с окружающей средой в различных условиях существования.

Возникновение первых представлений о физиологических функциях относится к глубокой древности. Но основы физиологии как науки были заложены трудами исследователей XVI–XVIII вв. (анатомические исследования А. Везалия, М. Сервета, открытие кровообращения У. Гарвеем, рефлексов – Р. Декартом, биоэлектрических явлений – Л. Гальвани и др.).

Во второй половине XIX в., когда были сделаны три великих открытия в естествознании – закон сохранения энергии, создана клеточная теория и разработано эволюционное учение (дарвинизм) – физиология, как наука, получила теоретическую базу. К этому времени были накоплены многочисленные экспериментальные факты, но отсутствовали сколько-нибудь значительные теоретические представления о связи различных функций организма между собой. Во второй половине XIX в. наибольшие достижения имели место в изучении функций отдельных органов и физиологических систем организма, а также регуляции и координации их деятельности. Была выявлена тесная связь между строением органов и их функцией. Тонкие наблюдения и блестящие эксперименты выдающихся французских исследователей Ф. Мажанди, К. Бернара, Э. Марея, немецких – Г. Гельмгольца, Э. Пфлюгера, Э. Дюбуа-Реймона, итальянского ученого А. Массо, русских – И.М. Сеченова, И.П. Павлова, Б.Ф. Вериго, Н.Е. Введенского и др. дали возможность более детально изучать деятельность сердечно-сосудистой системы, органов чувств, дыхательного аппарата, желудочно-кишечного тракта, органов выделения, мышц, обмена веществ и др.

Во второй половине XIX в. и в первой половине XX в. широко развернулось изучение функций нервной системы. Была выдвинута рефлекторная теория нервной деятельности и на ее основе дана общая характеристика физиологии центральной нервной системы. Важнейшее значение имели работы Сеченова, которыми были заложены основы изучения функций общего отдела нервной системы, – головного мозга – как материального субстрата психических явлений. И.П. Павлов и его ученики создали новый раздел физиологии, имеющий первостепенное значение для материалистического естествознания, – учение о высшей нервной деятельности человека.

Успехам физиологии в немалой степени способствовало развитие физики, химии, техники (особенно радиотехники, электроники, кибернетики). Сложные физические и химические методы исследования (осциллография, электроэнцефалография, энцефалоскопия, электронная микроскопия, рентгенография, методы радиоактивных изотопов и т.д.) позволили проникнуть в сущность процессов, совершающихся не только в различных органах и физиологических системах, но и в клетках и в частях клетки.

      1. Мозг и сознание

        1. Сознание – функция мозга

Достоверные факты свидетельствуют о том что, сознание есть только там и тогда, где есть здоровый, нормально функционирующий головноймозг человека. Смерть мозга, даже когда искусственно продолжается кровообращение в теле и дыхание легких, отождествляется специалистами с биологической смертью человека. Остановка сердца и прекращение дыхания, как критерии смерти, стали весьма относительными критериями. Вопрос о наступлении смерти связывается с вопросами о времени и механизмах возникновения необратимых изменений в организме в целом и головном мозгу в частности. Нарушения метаболизма мозга, в первую очередь кислородное голодание, приводят к нарушениям сознания от небольших отклонений до глубокой комы, т.е. полного прекращения контакта с окружающим миром.

Современная наука конкретизирует представления о прямых и обратных связях сознания и мозга. В последние десятилетия усиленно развивались нейрокибернетические модели мозговой деятельности, психофармакологические исследования измененных состояний сознания, представления о локализации психических функций, изучение функциональной асимметрии мозга и психофизиология чувственного отображения. Все эти исследования существенно обогатили наши представления о функциях головного мозга. Успехи исследования головного мозга, все более глубокое понимание переработки информации в мозгу и способов ее кодирования открывают новые возможности самосовершенствования человека. Но эти завоевания науки могут быть использованы для создания средств психического контроля над личностью и обращены во вред людям. Ведь расшифровка нейродинамического кода приведет к повышению степени “открытости” субъективного мира личности.

Фундаментальным свойством головного мозга является его асимметрия . Она проявляется в раннем детстве, нарастает и достигает максимума к зрелому возрасту и значительно ослабевает в старости. Только парная работа асимметричных по функциям полушарий мозга обеспечивает ясное сознание человека.

Опознание голосов животных и птиц, музыкальный слух и музыкальные способности – дело правого полушария. Больные с повреждением левого полушария, вызвавшим глубокие нарушения речи вплоть до полной немоты, сохраняли способность воспроизводить известные им мелодии, даже напевать простые песенки. Известны случаи, когда из-за левостороннего повреждения мозга выдающиеся композиторы теряли речь, но сохраняли способность сочинять музыку. Наоборот, очень незначительные повреждения определенных областей правого полушария, не вызывая нарушения речи, приводили к потере музыкальных способностей: нарушалось пение, игра на музыкальных инструментах, исчезал дар композиции. Не только теоретически, но и практически важно учитывать психические особенности правшей и левшей.