Формулы сокращенного умножения. Математические действия с разностью чисел

Приведем правила вычисления погрешности результата различных арифметических операций над приближенными числами.

Относительно алгебраической суммы u = х ± у можно утверждать следующее.

Теорема 1.2 . Предельная абсолютная погрешность суммы приближенных чисел равна сумме предельных абсолютных погрешностей слагаемых, т. е.

Δ u = Δ x + Δ y (1.13)

Из формулы (1.13) следует, что предельная абсолютная погрешность суммы не может быть меньше предельной абсолютной погрешности наименее точного из слагаемых, т. е. если в состав суммы входят приближенные слагаемые с разными абсолютными погрешностями, то сохранять лишние значащие цифры в более точных не имеет смысла.

Пример 1.12 . Найти сумму приближенных чисел, все цифры которых являются верными в широком смысле, и ее предельную абсолютную и относительную погрешности u= 0.259 + 45.12+ 1.0012.

Решение . Предельные абсолютные погрешности слагаемых здесь равны соответственно 0.001; 0.01; 0.0001.

Суммирование производим, руководствуясь следующим правилом:

1) выделим наименее точные слагаемые (в нашем примере это второе слагаемое) и оставим их без изменения; ,

2) остальные числа округлим по образцу выделенных, оставляя один или два запасных знака;

3) сложим данные числа, учитывая все сохраненные знаки;

4)полученный результат округлим до точности наименее точных слагаемых. Имеем

Δ u = 0.001 + 0.01 + 0.0001 = 0.0111;

u = 0.259 + 45.12 + 1.0012 = 0.26 + 45.12 + 1.00 = 46.38 ± 0.01.

Основной вклад в абсолютную погрешность результата здесь вносят предельные погрешности исходных данных, приведенные выше.

Теорема 1.3 . Если все слагаемые в сумме имеют один и тот же знак, то предельная относительная погрешность суммы не превышает наибольшей из предельных относительных погрешностей слагаемых:

При вычислении разности двух приближенных чисел u = х - у ее абсолютная погрешность, согласно теореме 1.2, равна сумме абсолютных погрешностей уменьшаемого и вычитаемого, т. е. Δ u = Δ x + Δ y , а предельная относительная погрешность

(1.15)

Из формулы (1.15) следует, что если приближенные значения х и у близки, то предельная относительная погрешность будет очень большой.

Пример 1.13 . Найти разность х - у с тремя верными знаками, если х = 12.1254 ± 0.0001, у = 12.128 ± 0.001.

Решение.

Имеем 12.1254 – 12.128 = - 0.0026.

Δ u = 0.0001 + 0.001 = 0.0011;

δ u = 0.0011/|-0.00261 =0.42;

δ x =0.0001/ 12.1254 = 0.000008;

δ y =0.001 /12.128 = 0.00008.

Согласно этим результатам разность х - у имеет не более одной верной цифры и относительная погрешность очень велика по сравнению с относительными погрешностями операндов.

В некоторых случаях удается избежать вычисления разности близких чисел с помощью преобразования выражения так, чтобы разность была исключена. Рассмотрим один из таких примеров.

Пример 1.14 . Найти разность с тремя верными знаками.

Решение .

Умножим и разделим на сумму. Получим

Если представляется сложным заменить вычитание близких приближенных чисел сложением, то следует поступать так: если известно, что при вычитании должно пропасть m первых значащих цифр, а в результате требуется сохранить n верных цифр, тогда в уменьшаемом и вычитаемом следует сохранять m + n верных зна чащих цифр:

Теорема 1.4 . Предельная относительная погрешность произведения u = х ∙у приближенных чисел, отличных от нуля, равна сумме предельных относительных погрешностей сомножителей, т. е.

δ u = δ x + δ y . (1.16)

В частности, если u = kx, где k - точное число, имеем Δ u = |k| Δ x , δ u = δ x .

Пример 1.15 . Определить произведение приближенных чисел х = 12.45 и у = 2.13 и число верных значащих цифр в нем, если все написанные цифры сомножителей - верные в узком смысле.

Решение.

По условию предельные абсолютные погрешности сомножителей равны Δ x = Δ y = 0.005; δ x = 0.005/12.45 = = 0.0004; δ y = 0.005/2.13 = 0.0023. Тогда по теореме 1.4 имеем δ u = δ x + δ y = 0.0004 + 0.0023 = 0.0027 ≈ 0.003. Вычислим произведение 12.45 ∙ 2.13 = 26.5185. Δ u = = 26.5185 0.003 = 0.079 ≈ 0.08. Таким образом, результат имеет три верных значащих цифры в широком смысле и может быть записан в виде u = 26.5 (1 ± 0.003).

Теорема 1.5 . Предельная относительная погрешность частного равна сумме предельных относительных погрешностей делимого и делителя.

Пример 1.16 . Вычислить частное приближенных чисел х = 12.45 и у = 2.18 и число верных значащих цифр в нем, если все написанные цифры сомножителей - верные в узком смысле.

Решение.

Предельная относительная погрешность частного по теореме 1.5 равна δ u = 0.003. Вычислим частное 12.45 / 2,13 = 5.84507. Δ u = 5.84507 0.003 = 0.0175 ≈ 0,02. Результат имеет две верных значащих цифры в узком смысле и может быть записан в виде u = 5.8 (1 ± 0.003).

РАЗНОСТЬ

РАЗНОСТЬ

1. Число, составляющее остаток в вычитании (мат.). Уменьшаемое равно вычитаемому плюс разность.


Толковый словарь Ушакова . Д.Н. Ушаков. 1935-1940 .


Синонимы :

Смотреть что такое "РАЗНОСТЬ" в других словарях:

    См. разница... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. разность избыток, разница; отличие, различие, разрыв, несходство; разнокалиберность, перепад, сальдо, марджин, натяг,… … Словарь синонимов

    - (difference) Изменение значения какой либо переменной между фиксированными моментами времени. Если xt – значение переменной х во время t, то первая разность определяется как Δxt=xt–xt–1. Вторая разность равна первой разнице Δxt, минус первая… … Экономический словарь

    РАЗНОСТЬ - (1) потенциалов (напряжение (см. (2))) количественная характеристика электрического поля неподвижных электрических зарядов () между двумя его точками, равная работе электрического поля по перемещению единичного положительного заряда из одной… … Большая политехническая энциклопедия

    РАЗНОСТЬ, разнота и пр. см. разный. Толковый словарь Даля. В.И. Даль. 1863 1866 … Толковый словарь Даля

    Результат вычитания … Большой Энциклопедический словарь

    РАЗНОСТЬ, и, жен. 1. см. разный. 2. Результат, итог вычитания. | прил. разностный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    разность - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN differential … Справочник технического переводчика

    Разность многозначный термин: результат вычитания. Разность (минералогия) (например, «среднезернистые разности» или «мелоподобные разности») Разность потенциалов … Википедия

    И; ж. 1. к Разный (1 зн.); различие. Р. убеждений, взглядов. Обнаружить р. в подходах к историческим фактам. // Различие между двумя сравниваемыми величинами в числовом выражении. Р. высот над уровнем моря. Р. температур. Р. уровней воды. Р. в… … Энциклопедический словарь

    разность - ▲ величина различие разность величина различия; результат вычитания; количественное различие. разница. перепад (# давлений). приращение. ▼ ни на сколько, угол ↓ вычита … Идеографический словарь русского языка

Книги

  • Комплект таблиц. Алгебра. 7 класс. 15 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 15 листов. Выражения.…
  • Распределенная во времени «разность разностей» на примере оценки отдачи от дополнительного профессионального обучения , А. В. Аистов. В работе представлена эконометрическая модель, описывающая распределение во времени эффекта воздействия, построенная на основе методологии «разность разностей». Модель позволила…

Сегодня достойна в стихах быть воспета
О свойствах корней теорема Виета.
Что лучше, скажи, постоянства такого:
Умножил ты корни – и дробь уж готова
В числителе с , в знаменателе а.
И сумма корней тоже дроби равна
Хоть с минусом дробь эта
Что за беда
В числители в , в знаменателе а .
(Из школьного фольклора)

В эпиграфе замечательная теорема Франсуа Виета приведена не совсем точно. В самом деле, мы можем записать квадратное уравнение, которое не имеет корней и записать их сумму и произведение. Например, уравнение х 2 + 2х + 12 = 0 не имеет действительных корней. Но, подойдя формально, мы можем записать их произведение (х 1 · х 2 = 12) и сумму (х 1 + х 2 = -2). Наши стихи будут соответствовать теореме с оговоркой: «если уравнение имеет корни», т.е. D ≥ 0.

Первое практическое применение этой теоремы – составление квадратного уравнения, имеющего заданные корни. Второе: она позволяет устно решать многие квадратные уравнения. На отработку этих навыков, прежде всего и обращается внимание в школьных учебниках.

Мы же здесь будем рассматривать более сложные задачи, решаемые с помощью теоремы Виета.

Пример 1.

Один из корней уравнения 5х 2 – 12х + с = 0 в три раза больше за второй. Найдите с.

Решение.

Пусть второй корень равен х 2 .

Тогда первый корень х1 = 3х 2 .

Согласно теореме Виета сумма корней равна 12/5 = 2,4.

Составим уравнение 3х 2 + х 2 = 2,4.

Отсюда х 2 = 0,6. Следовательно х 1 = 1,8.

Ответ: с = (х 1 · х 2) · а = 0,6 · 1,8 · 5 = 5,4.

Пример 2.

Известно, что х 1 и х 2 – корни уравнения х 2 – 8х + p = 0, причём 3х 1 + 4х 2 = 29. Найдите p.

Решение.

Согласно теореме Виета х 1 + х 2 = 8, а по условию 3х 1 + 4х 2 = 29.

Решив систему из этих двух уравнений найдём значение х 1 = 3, х 2 = 5.

А следовательно p = 15.

Ответ: p = 15.

Пример 3.

Не вычисляя корней уравнения 3х 2 + 8 х – 1 = 0, найдите х 1 4 + х 2 4

Решение.

Заметим, что по теореме Виета х 1 + х 2 = -8/3 и х 1 · х 2 = -1/3 и преобразуем выражение

а) х 1 4 + х 2 4 = (х 1 2 + х 2 2) 2 – 2х 1 2 х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) 2 – 2(х 1 х 2) 2 = ((-8/3) 2 – 2 · (-1/3)) 2 – 2 · (-1/3) 2 = 4898/9

Ответ: 4898/9.

Пример 4.

При каких значениях параметра а разность наибольшего и наименьшего корней уравнения
2х 2 – (а + 1)х + (а – 1) = 0 равна их произведению.

Решение.

Это квадратное уравнение. Оно будет иметь 2 разных корня, если D > 0. Иными словами (а + 1) 2 – 8(а – 1) > 0 или (а – 3) 2 > 0. Следовательно, мы имеем 2 корня при всех а, за исключением а = 3.

Для определенности будем считать, что х 1 >х 2 и получим х 1 + х 2 = (а + 1)/2 и х 1 · х 2 = (а – 1)/2. Исходя из условия задачи х 1 – х 2 = (а – 1)/2. Все три условия должны выполняться одновременно. Рассмотрим первое и последнее уравнения как систему. Она легко решается методом алгебраического сложения.

Получаем х 1 = а/2, х 2 = 1/2. Проверим при каких а выполнится второе равенство: х 1 · х 2 = (а – 1)/2. Подставим полученные значения и будем иметь: а/4 = (а – 1)/2. Тогда, а = 2. Очевидно, что если а = 2, то все условия выполнены.

Ответ: при а = 2.

Пример 5.

Чему равно наименьшее значение а, при котором сумма корней уравнения
х 2 – 2а(х – 1) – 1 = 0 равна сумме квадратов его корней.

Решение.

Прежде всего, приведем уравнение к каноническому виду: х 2 – 2ах + 2а – 1 = 0. Оно будет иметь корни, если D/4 ≥ 0. Следовательно: а 2 – (2а – 1) ≥ 0. Или (а – 1) 2 ≥ 0. А это условие справедливо при любом а.

Применим теорему Виета: х 1 + х 2 = 2а, х 1 · х 2 = 2а – 1. Посчитаем

х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 . Или после подстановки х 1 2 + х 2 2 = (2а) 2 – 2 · (2а – 1) = 4а 2 – 4а + 2. Осталось составить равенство которое соответствует условию задачи: х 1 + х 2 = х 1 2 + х 2 2 . Получим: 2а = 4а 2 – 4а + 2. Это квадратное уравнение имеет 2 корня: а 1 = 1 и а 2 = 1/2. Наименьший из них –1/2.

Ответ: 1/2.

Пример 6.

Найти зависимость между коэффициентами уравнения ах 2 + вх + с = 0 если сумма кубов его корней равна произведению квадратов этих корней.

Решение.

Будем исходить из того, что данное уравнение имеет корни и, поэтому, к нему можно применить теорему Виета.

Тогда условие задачи запишется так: х 1 3 + х 2 3 = х 1 2 · х 2 2 . Или: (х 1 + х 2)(х 1 2 – х 1 · х 2 + х 2 2) = (х 1 х 2) 2 .

Необходимо преобразовать второй множитель. х 1 2 – х 1 · х 2 + х 2 2 = ((х 1 + х 2) 2 – 2х 1 х 2) – х 1 х 2 .

Получим (х 1 + х 2)((х 1 + х 2) 2 – 3х 1 х 2) = (х 1 х 2) 2 . Осталось заменить суммы и произведения корней через коэффициенты.

(-b/a)((b/a) 2 – 3 · c/a) = (c/a) 2 . Это выражение легко преобразуется к виду b(3ac – b 2)/a = c 2 . Соотношение найдено.

Замечание. Следует учесть, что полученное соотношение имеет смысл рассматривать лишь после того, как выполнится другое: D ≥ 0.

Пример 7.

Найдите значение переменной а, для которого сумма квадратов корней уравнения х 2 + 2ах + 3а 2 – 6а – 2 = 0 есть величина наибольшая.

Решение.

Если у этого уравнения есть корни х 1 и х 2 , то их сумма х 1 + х 2 = -2а, а произведение х 1 · х 2 = 3а 2 – 6а – 2.

Вычисляем х 1 2 + х 2 2 = (х 1 + х 2) 2 – 2х 1 · х 2 = (-2а) 2 – 2(3а 2 – 6а – 2) = -2а 2 + 12а + 4 = -2(а – 3) 2 + 22.

Теперь очевидно, что это выражение принимает наибольшее значение при а = 3.

Остается проверить, в самом ли деле у исходного квадратного уравнения существуют корни при а = 3. Проверяем подстановкой и получаем: х 2 + 6х + 7 = 0 и для него D = 36 – 28 > 0.

Следовательно, ответ: при а = 3.

Пример 8.

Уравнение 2х 2 – 7х – 3 = 0 имеет корни х 1 и х 2 . Найти утроенную сумму коэффициентов приведенного квадратного уравнения, корнями которого являются числа Х 1 = 1/х 1 и Х 2 = 1/х 2 . (*)

Решение.

Очевидно, что х 1 + х 2 = 7/2 и х 1 · х 2 = -3/2. Составим второе уравнение по его корням в виде х 2 + рх + q = 0. Для этого используем утверждение, обратное теореме Виета. Получим: р = -(Х 1 + Х 2) и q = Х 1 · Х 2 .

Выполнив подстановку в эти формулы, исходя из (*), тогда: р = -(х 1 + х 2)/(х 1 · х 2) = 7/3 и q = 1/(х 1 · х 2) = -2/3.

Искомое уравнение примет вид: х 2 + 7/3 · х – 2/3 = 0. Теперь легко посчитаем утроенную сумму его коэффициентов:

3(1 + 7/3 – 2/3) = 8. Ответ получен.

Остались вопросы? Не знаете, как использовать теорему Виета?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Слово «разность» может употребляться во многих значениях. Это может означать и разницу чего-либо, например, мнений, взглядов, интересов. В некоторых научных, медицинских и других профессиональных сферах этим термином обозначают разные показатели, к примеру, уровня сахара в крови, атмосферного давления, погодных условий. Понятие «разность», как математический термин тоже существует.

Арифметические действия с числами

Основными арифметическими действиями в математике являются:

  • сложение;
  • вычитание;
  • умножение;
  • деление.

Каждый результат этих действий также имеет своё название:

  • сумма - результат, получившийся при сложении чисел;
  • разность - результат, получившийся при вычитании чисел;
  • произведение - результат умножения чисел;
  • частное - результат деления.

Более простым языком объясняя понятия суммы, разности, произведения и частного в математике, можно упрощённо записать их лишь как словосочетания:

  • сумма - прибавить;
  • разность - отнять;
  • произведение - умножить;
  • частное - разделить.

Рассматривая определения , что же такое разность чисел в математике, можно обозначить это понятие несколькими способами:

И все эти определения являются верными .

Как найти разницу величин

Возьмём за основу то обозначение разности, которое нам предлагает школьная программа:

  • Разностью называется результат вычитания одного числа из другого. Первое из этих чисел, из которого осуществляется вычитание, называется уменьшаемым, а второе, которое вычитают из первого, называется вычитаемым.

Ещё раз прибегнув к школьной программе, мы находим правило, как найти разность:

  • Чтобы найти разность, надо от уменьшаемого отнять вычитаемое.

Всё понятно. Но при этом мы получили ещё несколько математических терминов. Что они значат?

  • Уменьшаемое - это математическое число, от которого отнимают и оно уменьшается (становится меньше).
  • Вычитаемое - это математическое число, которое вычитают из уменьшаемого.

Теперь понятно, что разность состоит из двух чисел, которые для её вычисления должны быть известны. А как их найти тоже воспользуемся определениями:

  • Чтобы найти уменьшаемое, надо к вычитаемому прибавить разность.
  • Чтобы найти вычитаемое, нужно из уменьшаемого вычесть разность .

Математические действия с разностью чисел

Опираясь на выведенные правила, можно рассмотреть наглядные примеры. Математика, интереснейшая наука. Мы здесь возьмём для решения лишь самые простые цифры. Научившись вычитать их, вы научитесь решать и более сложные значения, трёхзначные, четырёхзначные, целые, дробные, в степенях, корнях, другие.

Простые примеры

  • Пример 1. Найти разницу двух величин.

20 - уменьшаемое значение,

15 - вычитаемое.

Решение: 20 - 15 = 5

Ответ: 5 - разница величин.

  • Пример 2. Найти уменьшаемое.

48 - разность,

32 - вычитаемое значение.

Решение: 32 + 48 = 80

  • Пример 3. Найти вычитаемое значение.

7 - разность,

17 - уменьшаемая величина.

Решение: 17 - 7 = 10

Ответ: вычитаемое значение 10.

Более сложные примеры

На примерах 1-3 рассмотрены действия с простыми целыми числами. Но в математике разницу вычисляют с применением не только двух, но и нескольких чисел, а также целых, дробных, рациональных, иррациональных, др.

Даны целые значения: 56, 12, 4.

56 - уменьшаемое значение,

12 и 4 - вычитаемые значения.

Решение можно выполнить двумя способами .

1 способ (последовательное отнимание вычитаемых значений):

1) 56 - 12 = 44 (здесь 44 - получившаяся разница двух первых величин, которая во втором действии будет уменьшаемым);

2 способ (отнимание из уменьшаемого суммы двух вычитаемых, которые в таком случае называются слагаемыми):

1) 12 + 4 = 16 (где 16 - сумма двух слагаемых, которая в следующем действии будет вычитаемым);

2) 56 - 16 = 40.

Ответ: 40 - разница трёх значений.

  • Пример 5. Найти разницу рациональных дробных чисел.

Даны дроби с одинаковыми знаменателями, где

4/5 - уменьшаемая дробь,

3/5 - вычитаемая.

Чтобы выполнить решение, нужно повторить действия с дробями. То есть, надо знать как отнимать дроби с одинаковым знаменателем. Как обращаться с дробями, имеющими разные знаменатели. Их надо уметь привести к общему знаменателю.

Решение: 4/5 - 3/5 = (4 - 3)/5 = 1/5

Ответ: 1/5.

  • Пример 6. Утроить разницу чисел.

А как выполнить такой пример, когда требуется удвоить или утроить разницу?

Вновь прибегнем к правилам:

  • Удвоенное число - это величина, умноженная на два.
  • Утроенное число - это величина, умноженная на три.
  • Удвоенная разность - это разница величин, умноженная на два.
  • Утроенная разность - это разница величин, умноженная на три.

7 - уменьшаемая величина,

5 - вычитаемая величина.

2) 2 * 3 = 6. Ответ: 6 - разница чисел 7 и 5.

  • Пример 7. Найти разницу величин 7 и 18.

7 - уменьшаемая величина;

18 - вычитаемая.

Вроде всё понятно. Стоп! Вычитаемое больше уменьшаемого?

И опять есть применяемое для конкретного случая правило:

  • Если вычитаемое больше уменьшаемого, разница окажется отрицательной.

Ответ: - 11. Это отрицательное значение и есть разница двух величин, при условии, что вычитаемая величина больше уменьшаемой.

Математика для блондинок

Во Всемирной паутине можно найти массу тематических сайтов, которые ответят на любой вопрос. Точно так же в любых математических расчётах вам помогут онлайн-калькуляторы на любой вкус. Все расчёты, производимые на них, прекрасное подспорье для торопливых, нелюбознательных, ленивых. Математика для блондинок - один из таких ресурсов. Причём прибегаем к нему мы все, независимо от цвета волос, пола и возраста.

В школе подобные действия с математическими величинами нас учили вычислять в столбик, а позднее - на калькуляторе. Калькулятор - это также удобное подспорье. Но, для развития мышления, интеллекта, кругозора и других жизненных качеств, советуем производить арифметические действия на бумаге или даже в уме. Красота человеческого тела - это великое достижение современного фитнес-плана. Но мозг - это тоже мышца, которая требует иногда её качать. А значит, не откладывая, начинайте думать.

И пусть в начале пути вычисления сводятся к примитивным примерам, всё у вас впереди. А освоить придётся немало. Мы видим, что действий с разными величинами в математике множество. Поэтому кроме разницы необходимо изучить, как вычислить и остальные результаты арифметических действий:

  • сумму - сложением слагаемых;
  • произведение - умножением множителей;
  • частное - делением делимого на делитель.

Вот такая интересная арифметика.