Классический и релятивистский закон сложения скоростей. Сложение скоростей

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.

Примеры

  1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, с которой её переносит пластинка за счёт своего вращения.
  2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 - 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 - 50 = 5 километров в час.
  3. Если волны движутся относительно берега со скоростью 30 километров в час, а корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 - 30 = 0 километров в час, то есть они становятся неподвижными.

Релятивистская механика

В XIX веке классическая механика столкнулась с проблемой распространение этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов.

Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона).

Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе , то преобразования называются галилеевыми . Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разница между их координатами в одной инерциальной системе осчёта - всегда равно их расстоянию в другой инерциальной системе.

Вторая идея - принцип относительности . Находясь на корабле, движущимся равномерно и прямолинейно , нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми.

Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложение скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца:



Можно заметить, что в случае, когда , преобразования Лоренца переходят в преобразования Галилея . То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последнее объясняет, каким образом сочетаются эти две теории - первая является уточнением второй.

См. также

Литература

Wikimedia Foundation . 2010 .

Смотреть что такое "Правило сложения скоростей" в других словарях:

    При рассмотрении сложного движения (то есть когда точка или тело движется в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта. Содержание 1 Классическая механика 1.1 Примеры … Википедия

    Геометрическое построение, выражающее закон сложения скоростей. Правило П. с. состоит в том, что при сложном движении (см. Относительное движение) абсолютная скорость точки представляется как диагональ параллелограмма, построенного на… …

    Почтовая марка с формулой E = mc2, посвящённая Альберту Эйнштейну, одному из создателей СТО. Специальная теор … Википедия

    Физическая теория, рассматривающая пространственно временные закономерности, справедливые для любых физ. процессов. Универсальность пространственно временных св в, рассматриваемых О. т., позволяет говорить о них просто как о.св вах пространства… … Физическая энциклопедия

    - [от греч. mechanike (téchne) наука о машинах, искусство построения машин], наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением… … Большая советская энциклопедия Математическая энциклопедия

    А; м. 1. Нормативный акт, постановление высшего органа государственной власти, принятый в установленном порядке и имеющий юридическую силу. Кодекс законов о труде. З. о социальном обеспечении. З. о воинской обязанности. З. о рынке ценных бумаг.… … Энциклопедический словарь

А эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.

Энциклопедичный YouTube

    1 / 3

    Сложение скоростей (кинематика) ➽ Физика 10 класс ➽ Видеоурок

    Урок 19. Относительность движения. Формула сложения скоростей.

    Физика. Урок № 1. Кинематика. Закон сложения скоростей

    Субтитры

Классическая механика

V → a = v → r + v → e . {\displaystyle {\vec {v}}_{a}={\vec {v}}_{r}+{\vec {v}}_{e}.}

Данное равенство представляет собой содержание утверждения теоремы о сложении скоростей .

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.

Примеры

  1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, которую имеет точка пластинки под мухой относительно земли (то есть с которой её переносит пластинка за счёт своего вращения).
  2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 - 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 - 50 = 5 километров в час.
  3. Если волны движутся относительно берега со скоростью 30 километров в час, и корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 - 30 = 0 километров в час, то есть относительно корабля они становятся неподвижными.

Релятивистская механика

В XIX веке классическая механика столкнулась с проблемой распространения этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов.

Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона).

Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе , то преобразования называются галилеевыми . Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разница между их координатами в одной инерциальной системе отсчёта - всегда равно их расстоянию в другой инерциальной системе.

Вторая идея - принцип относительности . Находясь на корабле, движущимся равномерно и прямолинейно , нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми.

Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложения скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца:


v r e l = v 1 + v 2 1 + v 1 v 2 c 2 . {\displaystyle v_{rel}={\frac {{v}_{1}+{v}_{2}}{1+{\dfrac {{v}_{1}{v}_{2}}{c^{2}}}}}.}

Можно заметить, что в случае, когда v / c → 0 {\displaystyle v/c\rightarrow 0} , преобразования Лоренца переходят в преобразования Галилея . Это говорит о том, что специальная теория относительности сводится к механике Ньютона при скоростях, малых по сравнению со скоростью света. Это объясняет, каким образом соотносятся эти две теории - первая является обобщением второй.

Закон сложения скоростей в релятивистской механике

Пусть относительно системы К′ материальная точка движется со скоростью u′ (Рис. 2.3.2). Найдем скоростьu материальной точки относительно системы К . Проекции скоростей u и u ′ на оси координат в системах К и К′ соответственно можно представить следующим образом:

, , , , , . (2.3.10)

Согласно преобразованиям Лоренца (4 – 7),

, , , . (2.3.11)

Подставив выражения (2.3.11) в (2.3.10), поcле преобразований получим релятивистский закон сложения скоростей:

, (2.3.12)

, (2.3.13)

. (2.3.14)

Если скорости v и u малы по сравнению со скоростью света, то выражения (2.3.12) – (2.3.14) переходят в закон сложения скоростей в классической механике:

, , . (2.3.15)

Пусть материальная точка движется параллельно оси х .

Тогда и релятивистский закон сложения скоростей (2.3.12) принимает вид:

. (2.3.16)

Если в системе К′ , то в системе К ,

т.е. при сложении двух скоростей результирующая скорость оказалась равной скорости света в вакууме, что является подтверждением второго постулата Эйнштейна.

Интервал

Пусть в системе отсчета К происходят два события: первое – в точке с координатами x 1 , y 1 , z 1 в момент времени t 1,

второе – в точке с координатами x 2 , y 2 , z 2 в момент времени t 2 . Каждому событию в четырехмерном пространстве-времени соответствует точка (x ,y ,z ,t ), которую называют мировой точкой. Величину

называют интервалом между этими событиями или интервалом между двумя точками (x 1 ,y 1 ,z 1 ,t 1 ) и (x 2 ,y 2 ,z 2 ,t 2 ) в четырехмерном пространстве-времени. Можно показать, используя преобразования Лоренца, что эта величина имеет одно и то же значение во всех системах отсчета, т.е. является инвариантом преобразований Лоренца.

Обозначим промежуток времени между событиями t 2 – t 1 = =t 12 , а пространственное расстояние между точками, в кото-рых происходят события .

Тогда интервал примет вид .

Пусть первое событие состоит в том, что в момент времени t 1 из точки (x 1 ,y 1 ,z 1 ) испускается световой сигнал, а второе – в том, что в момент времени t 2 этот сигнал принимается в точке (x 2 ,y 2 ,z 2 ). Сигнал распространяется со скоростью света, поэтому l 12 = ct 12 . Интервал для этого случая s 12 = 0. Такой интервал называется нулевым. Нулевой интервал существует между событиями, которые могут быть связаны сигналом, распространяющимся со скоростью света. При нулевом интервале события могут быть связаны между собой причинно-следственной связью в любой системе отсчета.

Если l 12 > ct 12 , то рассматриваемые события не могут оказывать влияния друг на друга, т.е. между ними не может существовать причинно-следственной связи, так как никакой сигнал, никакое воздействие не могут распространяться со скоростью большей, чем скорость света в вакууме. Интервал в этом случае будет мнимым. Мнимые интервалы называются пространственноподобными . События, разделенные мнимым интервалом, ни в какой системе отсчета не могут происходить в одной точке, так как в этом случае в этой системе отсчета интервал стал бы вещественным (l 12 = 0). А в силу инвариантности интервал во всех системах отсчета должен оставаться мнимым. Для событий, разделенных пространственноподобным интервалом, можно найти систему отсчета, в которой они происходят в одно время (t 12 =0).

Если l 12 < ct 12 , то интервал оказывается вещественным. Такие интервалы называются времениподобными . События, разделенные времениподобным интервалом, могут быть причинно связанными друг с другом. Такие события ни в одной системе отсчета не могут происходить в одно и то же время (t 12 = 0), так как в этом случае интервал стал бы мнимым. Но для этих событий существует система отсчета, в которой они происходят в одной точке (l 12 = 0).

Теперь мы рассмотрим более глубоко законы эйнштейновской кинематики. При этом мы преимущественно будем ограничиваться плоскостью Получаемые при этом выводы совсем нетрудно обобщить на случай четырехмерного -пространства, поэтому мы будем лишь упоминать о нем по ходу дела.

Фиг. 125. Четырехмерные отрезки. а - временно-подобное расстояние пространственно-подобное расстояние

Световые линии, определяемые уравнением Делят плоскость на четыре квадранта (фиг. 116). Очевидно, сохраняет один и тот же знак в каждом квадранте, причем в двух противоположных квадрантах, содержащих ветви гиперболы в двух противоположных квадрантах, которые содержат ветви . Прямую мировую линию, проходящую через начало координат О, можно взять в качестве оси или оси соответственно тому, лежит ли она в квадранте или в квадранте Соответственно этому мы подразделяем мировые линии на «пространственно-подобные» и на «временно-подобные» (фиг. 125,а).

Во всякой инерциальной системе ось отделяет мировые точки «прошлого» от мировых точек «будущего» Но это подразделение различно в каждой инерциальной системе, поскольку при ином положении оси мировые точки, которые раньше лежали выше нее, т. е. в будущем, могут

оказаться ниже оси в прошлом, и наоборот. Лишь те события, которые представляются мировыми точками, лежащими в квадрантах единственным образом принадлежат либо к «прошлому», либо к «будущему» в любой инерциальной системе. Для такой мировой точки (фиг. 125, а) мы имеем в любой допустимой системе отсчета два события разделены интервалом времени, большим того времени, за которое свет покрывает путь от одной из этих точек до другой. Следовательно, мы всегда можем выбрать инерциальную систему так, что ее ось проходит через точку т. е. такую систему, в которой представляет событие, происходящее в пространственном начале отсчета. С точки зрения другой инерциальной системы наша инерциальная система будет двигаться равномерно и прямолинейно таким образом, что ее начало точно совпадает с событиями Тогда, очевидно, мы должны для события в системе положить

Во всякой инерциальной системе ось представляет геометрическое место мировых точек, соответствующих событиям, происходящим в пространственном начале координат на оси X (т. е. в точке и разделяет (на двумерной фигуре) точки, лежащие слева от начала, и точки, лежащие справа от него. Но в другой инерциальной системе с иной осью это разграничение будет иным. Оно определено единственным образом только для мировых точек, лежащих в квадрантах независимо от того, лежат ли они «до» или «после» пространственного начала координат. Для такой точки (фиг. 125,б) т. е. в любой допустимой системе отсчета временной интервал между событиями меньше того времени, которое затрачивает свет на прохождение расстояния от точки О до точки Таким образом, можно ввести подходящим образом выбранную движущуюся инерциальную систему с осью проходящей через в которой оба события, оказываются одновременными. В этой системе для события очевидно, следовательно,

Отсюда следует, что инвариант для любой мировой точки представляет собой измеримую величину, имеющую легко интерпретируемый наглядный смысл. Вводя подходящую систему отсчета мировую точку можно либо перевести «в то же самое место», в котором произошло событие О, и тогда разность времен между событиями происходящими в одной и той же пространственной точке в системе либо можно перевести «в тот же момент времени», в который произошло событие О, и тогда пространственное расстояние между двумя событиями в системе

Во всякой системе координат световые линии представляют движения, происходящие со скоростью света. В соответствии с этим каждая временно-подобная мировая линия представляет движение со скоростью, меньшей скорости света с. Или, подходя к вопросу с другой стороны, всякое движение, происходящее со скоростью, меньшей скорости света, можно «перевести в состояние покоя», поскольку существует временно-подобная мировая линия, соответствующая этому движению.

А как насчет движений, происходящих со скоростью, большей скорости света? В свете высказанных выше суждений казалось бы очевидным, что теория относительности Эйнштейна должна объявить такие движения невозможными. В самом деле, новая кинематика потеряла бы весь свой смысл, если бы существовали сигналы, позволяющие нам контролировать одновременность хода часов с помощью средств, включающих скорости, превышающие скорость света. По-видимому, здесь какая-то трудность.

Пусть система движется со скоростью относительно другой системы и пусть тело К движется относительно системы со скоростью и. Согласно обычной кинематике, относительная скорость тела К в системе равна

Теперь, если каждая превышает половину скорости Света, то и больше скорости света с, а это должно быть невозможным, согласно теории относительности.

Этот софизм, конечно, связан с тем обстоятельством, что скорости в релятивистской кинематике невозможно просто суммировать, ибо каждая система отсчета имеет собственные единицы длины и времени.

Необходимость учета этого обстоятельства с очевидностью Вытекает из того факта, что в любых двух системах, движущихся одна относительно другой, скорость света предполагается всегда одинаковой, - факта, уже использованного ранее при выводе преобразования Лоренца (гл. VI, § 2, стр. 230). Истинный закон сложения скоростей можно вывести из этого преобразования [формулы (70)]. Рассмотрим движущееся тело в системе Его движение может происходить в плоскости х, у, и, таким образом, его скорость будет иметь две компоненты их, и и движение может начаться в момент времени из начала координат. Мировая линия тела задается тогда уравнениями

Можно предвидеть, что движение окажется прямолинейным и в системе причем скорость будет иметь две постоянные компоненты Мировая линия движущегося тела в системе будет задаваться уравнениями

Для того чтобы получить соотношение между скоростями тела в системах введем выражения для в уравнения и с помощью формул преобразования Лоренца (70а). Вместо первого уравнения мы получаем

Сравнивая этот результат с уравнением получаем

который и выражает теорему о постоянстве скорости света. Более того, мы видим, что для любого тела, движущегося вдоль пространственной оси, до тех пор, пока . В самом деле, деля формулу (77а) на с, мы можем преобразовать результат к виду

Из этой формулы прямо следует наше утверждение, так как при указанных выше условиях второй член справа всегда меньше 1 (знаменатель больше 1, а каждый множитель в числителе меньше 1). Аналогичный вывод справедлив, конечно, и для движений, происходящих поперек пространственной оси, и для движений в любом направлении.

Итак, скорость света кинематически есть предельная скорость, которую невозможно превысить. Этот постулат теории Эйнштейна встретил упорную оппозицию. Он казался неоправданным ограничением планов исследователей, которые ждали в будущем открытий скоростей, превышающих скорость света.

Мы знаем, что -лучи радиоактивных веществ представляют собой электроны, движущиеся со скоростями, близкими к скорости света. Почему же невозможно ускорить их так, чтобы они двигались со скоростями больше скорости света?

Теория Эйнштейна, однако, утверждает, что это невозможно в принципе, поскольку лнерциальное сопротивление, или масса тела, возрастает по мере того, как его скорость приближается к скорости света. Таким образом, мы приходим к новой динамике, базирующейся на кинематике Эйнштейна.

Новым релятивистским представлениям о пространстве и времени соответствует новый закон сложения скоростей.

Запишем закон сложения скоростей для частного случая, когда тело М движется вдоль оси X" системы отсчета К", которая, в свою очередь, движется со скоростью \(~\vec \upsilon\) относительно системы отсчета К. Причем в процессе движения координатные оси X и X" все время совпадают, а координатные оси Y и Y", Z и Z" остаются параллельными (рис. 18.4).

Обозначим модуль скорости тела относительно К" через \(~\upsilon_1\) а модуль скорости этого же тела относительно К через \(~\upsilon_2\). Тогда релятивистский закон сложения скоростей будет иметь вид

\(\upsilon_2 = \frac{\upsilon_1 + \upsilon}{1 + \frac{\upsilon_1 \upsilon}{c^2}} . \) (18.4)

Заметим, что формула (18.4) применима только в том случае, если все три вектора \(~\vec \upsilon , \vec \upsilon_1\) и \(~\vec \upsilon_2\) направлены вдоль одной прямой. В общем случае этот закон имеет более сложный вид. Однако при любой форме записи закона его сущность заключается в том, что скорость c света в вакууме является предельной скоростью передачи сигналов.

Действительно, пусть \(~\upsilon_1 = c.\) Найдем скорость \(~\upsilon_2:\)

\(\upsilon_2 = \frac{c + \upsilon}{1 + \frac{c \upsilon}{c^2}} = c.\)

Предположим, что тело движется со скоростью \(~\upsilon_1 = c\) относительно системы К", которая в свою очередь движется со скоростью \(~\upsilon = c\) относительно системы К. Тогда \(\upsilon_2 = \frac{c + c}{1 + \frac{c \cdot c}{c^2}} = c\)

Следовательно, при любых скоростях \(~\upsilon_1\) и \(~\upsilon\) результирующая скорость \(~\upsilon_2\) не превышает с .

Если \(\upsilon \ll c\) и \(\upsilon_1 \ll c,\) то членом \(\frac{\upsilon_1 \upsilon}{c^2}\) знаменателе можно пренебречь и вместо (18.4) получим классический закон сложения скоростей\[~\upsilon_2 = \upsilon_1 + \upsilon.\] Это согласуется с принципом соответствия, согласно которому новая физическая теория не отвергает целиком предшествующую теорию, она указывает предел применимости старой теории. 

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 547.