Примеры с отрицательной степенью числа. Степень числа: определения, обозначение, примеры

Урок и презентация на тему: "Степень с отрицательным показателем. Определение и примеры решения задач"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 8 класса
Пособие к учебнику Муравина Г.К.    Пособие к учебнику Алимова Ш.А.

Определение степени с отрицательным показателем

Ребята, мы с вами хорошо умеем возводить числа в степень.
Например: $2^4=2*2*2*2=16$  ${(-3)}^3=(-3)*(-3)*(-3)=27$.

Мы хорошо знаем, что любое число в нулевой степени равно единице. $a^0=1$, $a≠0$.
Возникает вопрос, а что будет, если возвести число в отрицательную степень? Например, чему будет равно число $2^{-2}$?
Первые математики, задавшиеся этим вопросом, решили, что изобретать велосипед заново не стоит, и хорошо, чтобы все свойства степеней оставались прежними. То есть при умножении степеней с одинаковым основанием, показатели степени складываются.
Давайте рассмотрим такой случай: $2^3*2^{-3}=2^{3-3}=2^0=1$.
Получили, что произведение таких чисел должно давать единицу. Единица в произведении получается при перемножении обратных чисел, то есть $2^{-3}=\frac{1}{2^3}$.

Такие рассуждения привели к следующему определению.
Определение. Если $n$ – натуральное число и $а≠0$, то выполняется равенство: $a^{-n}=\frac{1}{a^n}$.

Важное тождество, которое часто используется: $(\frac{a}{b})^{-n}=(\frac{b}{a})^n$.
В частности, $(\frac{1}{a})^{-n}=a^n$.

Примеры решения

Пример 1.
Вычислите: $2^{-3}+(\frac{2}{5})^{-2}-8^{-1}$.

Решение.
Рассмотрим каждое слагаемое по отдельности.
1. $2^{-3}=\frac{1}{2^3}=\frac{1}{2*2*2}=\frac{1}{8}$.
2. $(\frac{2}{5})^{-2}=(\frac{5}{2})^2=\frac{5^2}{2^2}=\frac{25}{4}$.
3. $8^{-1}=\frac{1}{8}$.
Осталось выполнить операции сложения и вычитания: $\frac{1}{8}+\frac{25}{4}-\frac{1}{8}=\frac{25}{4}=6\frac{1}{4}$.
Ответ: $6\frac{1}{4}$.

Пример 2.
Представить заданное число в виде степени простого числа $\frac{1}{729}$.

Решение.
Очевидно, что $\frac{1}{729}=729^{-1}$.
Но 729 - не простое число, заканчивающиеся на 9. Можно предположить, что это число является степенью тройки. Последовательно разделим 729 на 3.
1) $\frac{729}{3}=243$;
2) $\frac{243}{3}=81$;
3) $\frac{81}{3}=27$;
4) $\frac{27}{3}=9$;
5) $\frac{9}{3}=3$;
6) $\frac{3}{3}=1$.
Выполнено шесть операций и значит: $729=3^6$.
Для нашей задачи:
$729^{-1}=(3^6)^{-1}=3^{-6}$.
Ответ: $3^{-6}$.

Пример 3. Представьте выражение в виде степени: $\frac{a^6*(a^{-5})^2}{(a^{-3}*a^8)^{-1}}$.
Решение. Первое действие выполняется всегда внутри скобок, затем умножение $\frac{a^6*(a^{-5})^2}{(a^{-3}*a^8)^{-1}}=\frac{a^6*a^{-10}}{(a^5)^{-1}}=\frac{a^{(-4)}}{a^{(-5)}}=a^{-4-(-5)}=a^{-4+5}=a$.
Ответ: $a$.

Пример 4. Докажите тождество:
$(\frac{y^2 (xy^{-1}-1)^2}{x(1+x^{-1}y)^2}*\frac{y^2(x^{-2}+y^{-2})}{x(xy^{-1}+x^{-1}y)}):\frac{1-x^{-1} y}{xy^{-1}+1}=\frac{x-y}{x+y}$.

Решение.
В левой части рассмотрим каждый сомножитель в скобках отдельно.
1. $\frac{y^2(xy^{-1}-1)^2}{x(1+x^{-1}y)^2}=\frac{y^2(\frac{x}{y}-1)^2}{x(1+\frac{y}{x})^2} =\frac{y^2(\frac{x^2}{y^2}-2\frac{x}{y}+1)}{x(1+2\frac{y}{x}+\frac{y^2}{x^2})}=\frac{x^2-2xy+y^2}{x+2y+\frac{y^2}{x}}=\frac{x^2-2xy+y^2}{\frac{x^2+2xy+y^2}{x}}=\frac{x(x^2-2xy+y^2)}{(x^2+2xy+y^2)}$.
2. $\frac{y^2(x^{-2}+y^{-2})}{x(xy^{-1}+x^{-1}y)}=\frac{y^2(\frac{1}{x^2}+\frac{1}{y^2})}{x(\frac{x}{y}+\frac{y}{x})} =\frac{\frac{y^2}{x^2}+1}{\frac{x^2}{y}+y}=\frac{\frac{y^2+x^2}{x^2}}{{\frac{x^2+y^2}{y}}}=\frac{y^2+x^2}{x^2} *\frac{y}{x^2+y^2}=\frac{y}{x^2}$.
3. $\frac{x(x^2-2xy+y^2)}{(x^2+2xy+y^2)}*\frac{y}{x^2}=\frac{y(x^2-2xy+y^2)}{x(x^2+2xy+y^2)}=\frac{y(x-y)^2}{x(x+y)^2}$.
4. Перейдем к дроби, на которую делим.
$\frac{1-x^{-1}y}{xy^{-1}+1}=\frac{1-\frac{y}{x}}{\frac{x}{y}+1}=\frac{\frac{x-y}{x}}{\frac{x+y}{y}}=\frac{x-y}{x}*\frac{y}{x+y}=\frac{y(x-y)}{x(x+y)}$.
5. Выполним деление.
$\frac{y(x-y)^2}{x(x+y)^2}:\frac{y(x-y)}{x(x+y)}=\frac{y(x-y)^2}{x(x+y)^2}*\frac{x(x+y)}{y(x-y)}=\frac{x-y}{x+y}$.
Получили верное тождество, что и требовалось доказать.

В конце урока еще раз запишем правила действий со степенями, здесь показатель степени - это целое число.
$a^s*a^t=a^{s+t}$.
$\frac{a^s}{a^t}=a^{s-t}$.
$(a^s)^t=a^{st}$.
$(ab)^s=a^s*b^s$.
$(\frac{a}{b})^s=\frac{a^s}{b^s}$.

Задачи для самостоятельного решения

1. Вычислите: $3^{-2}+(\frac{3}{4})^{-3}+9^{-1}$.
2. Представить заданное число в виде степени простого числа $\frac{1}{16384}$.
3. Представьте выражение в виде степени:
$\frac{b^{-8}*(b^3)^{-4}}{(b^2*b^{-7})^3}$.
4. Докажите тождество:
$(\frac{b^{-m}-c^{-m}}{b^{-m}+c^{-m}}+\frac{b^{-m}+c^{-m}}{c^{-m}-b^{-m}})=\frac{4}{b^m c^{-m}-b^{-m}c^m} $. В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.

среда, 4 июля 2018 г.

Очень хорошо различия между множеством и мультимножеством описаны в Википедии . Смотрим.

Как видите, "во множестве не может быть двух идентичных элементов", но если идентичные элементы во множестве есть, такое множество называется "мультимножество". Подобную логику абсурда разумным существам не понять никогда. Это уровень говорящих попугаев и дрессированных обезьян, у которых разум отсутствует от слова "совсем". Математики выступают в роли обычных дрессировщиков, проповедуя нам свои абсурдные идеи.

Когда-то инженеры, построившие мост, во время испытаний моста находились в лодке под мостом. Если мост обрушивался, бездарный инженер погибал под обломками своего творения. Если мост выдерживал нагрузку, талантливый инженер строил другие мосты.

Как бы математики не прятались за фразой "чур, я в домике", точнее "математика изучает абстрактные понятия", есть одна пуповина, которая неразрывно связывает их с реальностью. Этой пуповиной являются деньги. Применим математическую теорию множеств к самим математикам.

Мы очень хорошо учили математику и сейчас сидим в кассе, выдаем зарплату. Вот приходит к нам математик за своими деньгами. Отсчитываем ему всю сумму и раскладываем у себя на столе на разные стопки, в которые складываем купюры одного достоинства. Затем берем с каждой стопки по одной купюре и вручаем математику его "математическое множество зарплаты". Поясняем математику, что остальные купюры он получит только тогда, когда докажет, что множество без одинаковых элементов не равно множеству с одинаковыми элементами. Вот здесь начнется самое интересное.

В первую очередь, сработает логика депутатов: "к другим это применять можно, ко мне - низьзя!". Дальше начнутся уверения нас в том, что на купюрах одинакового достоинства имеются разные номера купюр, а значит их нельзя считать одинаковыми элементами. Хорошо, отсчитываем зарплату монетами - на монетах нет номеров. Здесь математик начнет судорожно вспоминать физику: на разных монетах имеется разное количество грязи, кристаллическая структура и расположение атомов у каждой монеты уникально...

А теперь у меня самый интересный вопрос: где проходит та грань, за которой элементы мультимножества превращаются в элементы множества и наоборот? Такой грани не существует - всё решают шаманы, наука здесь и близко не валялась.

Вот смотрите. Мы отбираем футбольные стадионы с одинаковой площадью поля. Площадь полей одинакова - значит у нас получилось мультимножество. Но если рассматривать названия этих же стадионов - у нас получается множество, ведь названия разные. Как видите, один и тот же набор элементов одновременно является и множеством, и мультимножеством. Как правильно? А вот здесь математик-шаман-шуллер достает из рукава козырный туз и начинает нам рассказывать либо о множестве, либо о мультимножестве. В любом случае он убедит нас в своей правоте.

Чтобы понять, как современные шаманы оперируют теорией множеств, привязывая её к реальности, достаточно ответить на один вопрос: чем элементы одного множества отличаются от элементов другого множества? Я вам покажу, без всяких "мыслимое как не единое целое" или "не мыслимое как единое целое".

воскресенье, 18 марта 2018 г.

Сумма цифр числа - это пляска шаманов с бубном, которая к математике никакого отношения не имеет. Да, на уроках математики нас учат находить сумму цифр числа и пользоваться нею, но на то они и шаманы, чтобы обучать потомков своим навыкам и премудростям, иначе шаманы просто вымрут.

Вам нужны доказательства? Откройте Википедию и попробуйте найти страницу "Сумма цифр числа". Её не существует. Нет в математике формулы, по которой можно найти сумму цифр любого числа. Ведь цифры - это графические символы, при помощи которых мы записываем числа и на языке математики задача звучит так: "Найти сумму графических символов, изображающих любое число". Математики эту задачу решить не могут, а вот шаманы - элементарно.

Давайте разберемся, что и как мы делаем для того, чтобы найти сумму цифр заданного числа. И так, пусть у нас есть число 12345. Что нужно сделать для того, чтобы найти сумму цифр этого числа? Рассмотрим все шаги по порядку.

1. Записываем число на бумажке. Что же мы сделали? Мы преобразовали число в графический символ числа. Это не математическое действие.

2. Разрезаем одну полученную картинку на несколько картинок, содержащих отдельные цифры. Разрезание картинки - это не математическое действие.

3. Преобразовываем отдельные графические символы в числа. Это не математическое действие.

4. Складываем полученные числа. Вот это уже математика.

Сумма цифр числа 12345 равна 15. Вот такие вот "курсы кройки и шитья" от шаманов применяют математики. Но это ещё не всё.

С точки зрения математики не имеет значения, в какой системе счисления мы записываем число. Так вот, в разных системах счисления сумма цифр одного и того же числа будет разной. В математике система счисления указывается в виде нижнего индекса справа от числа. С большим числом 12345 я не хочу голову морочить, рассмотрим число 26 из статьи про . Запишем это число в двоичной, восьмеричной, десятичной и шестнадцатеричной системах счисления. Мы не будем рассматривать каждый шаг под микроскопом, это мы уже сделали. Посмотрим на результат.

Как видите, в разных системах счисления сумма цифр одного и того же числа получается разной. Подобный результат к математике никакого отношения не имеет. Это всё равно, что при определении площади прямоугольника в метрах и сантиметрах вы получали бы совершенно разные результаты.

Ноль во всех системах счисления выглядит одинаково и суммы цифр не имеет. Это ещё один аргумент в пользу того, что . Вопрос к математикам: как в математике обозначается то, что не является числом? Что, для математиков ничего, кроме чисел, не существует? Для шаманов я могу такое допустить, но для ученых - нет. Реальность состоит не только из чисел.

Полученный результат следует рассматривать как доказательство того, что системы счисления являются единицами измерения чисел. Ведь мы не можем сравнивать числа с разными единицами измерения. Если одни и те же действия с разными единицами измерения одной и той же величины приводят к разным результатам после их сравнения, значит это не имеет ничего общего с математикой.

Что же такое настоящая математика? Это когда результат математического действия не зависит от величины числа, применяемой единицы измерения и от того, кто это действие выполняет.

Табличка на двери Открывает дверь и говорит:

Ой! А это разве не женский туалет?
- Девушка! Это лаборатория по изучению индефильной святости душ при вознесении на небеса! Нимб сверху и стрелочка вверх. Какой еще туалет?

Женский... Нимб сверху и стрелочка вниз - это мужской.

Если у вас перед глазами несколько раз в день мелькает вот такое вот произведение дизайнерского искусства,

Тогда не удивительно, что в своем автомобиле вы вдруг обнаруживаете странный значок:

Лично я делаю над собой усилие, чтобы в какающем человеке (одна картинка), увидеть минус четыре градуса (композиция из нескольких картинок: знак минус, цифра четыре, обозначение градусов). И я не считаю эту девушку дурой, не знающей физику. Просто у неё дугой стереотип восприятия графических образов. И математики нас этому постоянно учат. Вот пример.

1А - это не "минус четыре градуса" или "один а". Это "какающий человек" или число "двадцать шесть" в шестнадцатеричной системе счисления. Те люди, которые постоянно работают в этой системе счисления, автоматически воспринимают цифру и букву как один графический символ.

Возведение в отрицательную степень - один из основных элементов математики, который часто встречается при решении алгебраических задач. Ниже приведена подробная инструкция.

Как возводить в отрицательную степень - теория

Когда мы число в обычную степень, мы умножаем его значение несколько раз. Например, 3 3 = 3×3×3 = 27. С отрицательной дробью все наоборот. Общий вид по формуле будет иметь следующий вид: a -n = 1/a n . Таким образом, чтобы возвести число в отрицательную степень, нужно единицу поделить на данное число, но уже в положительной степени.

Как возводить в отрицательную степень - примеры на обычных числах

Держа вышеприведенное правило на уме, решим несколько примеров.

4 -2 = 1/4 2 = 1/16
Ответ: 4 -2 = 1/16

4 -2 = 1/-4 2 = 1/16.
Ответ -4 -2 = 1/16.

Но почему ответ в первом и втором примерах одинаковый? Дело в том, что при возведении отрицательного числа в четную степень (2, 4, 6 и т.д.), знак становится положительным. Если бы степень была четной, то минус сохранился:

4 -3 = 1/(-4) 3 = 1/(-64)

Как возводить в отрицательную степень - числа от 0 до 1

Вспомним, что при возведении числа в промежутке от 0 до 1 в положительную степень, значение уменьшается с возрастанием степени. Так например, 0,5 2 = 0,25. 0,25

Пример 3: Вычислить 0,5 -2
Решение: 0,5 -2 = 1/1/2 -2 = 1/1/4 = 1×4/1 = 4.
Ответ: 0,5 -2 = 4

Разбор (последовательность действий):

  • Переводим десятичную дробь 0,5 в дробную 1/2. Так легче.
    Возводим 1/2 в отрицательную степень. 1/(2) -2 . Делим 1 на 1/(2) 2 , получаем 1/(1/2) 2 => 1/1/4 = 4


Пример 4: Вычислить 0,5 -3
Решение: 0,5 -3 = (1/2) -3 = 1/(1/2) 3 = 1/(1/8) = 8

Пример 5: Вычислить -0,5 -3
Решение: -0,5 -3 = (-1/2) -3 = 1/(-1/2) 3 = 1/(-1/8) = -8
Ответ: -0,5 -3 = -8


Исходя из 4-го и 5-ого примеров, сделаем несколько выводов:

  • Для положительного числа в промежутке от 0 до 1 (пример 4), возводимого в отрицательную степень, четность или нечетность степени не важна, значение выражения будет положительным. При этом, чем больше степень, тем больше значение.
  • Для отрицательного числа в промежутке от 0 до 1 (пример 5), возводимого в отрицательную степень, четность или нечетность степени неважна, значение выражения будет отрицательным. При этом, чем больше степень, тем меньше значение.


Как возводить в отрицательную степень - степень в виде дробного числа

Выражения данного типа имеют следующий вид: a -m/n , где a - обычное число, m - числитель степени, n - знаменатель степени.

Рассмотрим пример:
Вычислить: 8 -1/3

Решение (последовательность действий):

  • Вспоминаем правило возведения числа в отрицательную степень. Получим: 8 -1/3 = 1/(8) 1/3 .
  • Заметьте, в знаменателе число 8 в дробной степени. Общий вид вычисления дробной степени таков: a m/n = n √8 m .
  • Таким образом, 1/(8) 1/3 = 1/(3 √8 1). Получаем кубический корень из восьми, который равен 2. Исходя отсюда, 1/(8) 1/3 = 1/(1/2) = 2.
  • Ответ: 8 -1/3 = 2

Со школы всем нам известно правило о возведении в степень: любое число с показателем N равно результату перемножения данного числа на самого себя N-ное количество раз. Иными словами, 7 в степени 3 - это 7, умноженное на себя три раза, то есть 343. Еще одно правило - возведение любой величины в степень 0 дает единицу, а возведение отрицательной величины представляет собой результат обычного возведения в степень, если она четная, и такой же результат со знаком «минус», если она нечетная.

Правила же дают и ответ, как возводить число в отрицательную степень. Для этого нужно возвести обычным способом нужную величину на модуль показателя, а потом единицу поделить на результат.

Из этих правил становится понятно, что выполнение реальных задач с оперированием большими величинами потребует наличия технических средств. Вручную получится перемножить на самого себя максимум диапазон чисел до двадцати-тридцати, и то не более трех-четырех раз. Это не говоря уж о том, чтобы потом еще и единицу разделить на результат. Поэтому тем, у кого нет под рукой специального инженерного калькулятора, мы расскажем, как возвести число в отрицательную степень в Excel.

Решение задач в Excel

Для разрешения задач с возведением в степень Excel позволяет пользоваться одним из двух вариантов.

Первое - это использование формулы со стандартным знаком «крышечка». Введите в ячейки рабочего листа следующие данные:

Таким же образом можно возвести нужную величину в любую степень - отрицательную, дробную. Выполним следующие действия и ответим на вопрос о том, как возвести число в отрицательную степень. Пример:

Можно прямо в формуле подправить =B2^-C2.

Второй вариант - использование готовой функции «Степень», принимающей два обязательных аргумента - число и показатель. Чтобы приступить к ее использованию, достаточно в любой свободной ячейке поставить знак «равно» (=), указывающий на начало формулы, и ввести вышеприведенные слова. Осталось выбрать две ячейки, которые будут участвовать в операции (или указать конкретные числа вручную), и нажать на клавишу Enter. Посмотрим на нескольких простых примерах.

Формула

Результат

СТЕПЕНЬ(B2;C2)

СТЕПЕНЬ(B3;C3)

0,002915

Как видим, нет ничего сложного в том, как возводить число в отрицательную степень и в обычную с помощью Excel. Ведь для решения данной задачи можно пользоваться как привычным всем символом «крышечка», так и удобной для запоминания встроенной функцией программы. Это несомненный плюс!

Перейдем к более сложным примерам. Вспомним правило о том, как возводить число в отрицательную степень дробного характера, и увидим, что эта задача очень просто решается в Excel.

Дробные показатели

Если кратко, то алгоритм вычисления числа с дробным показателем следующий.

  1. Преобразовать дробный показатель в правильную или неправильную дробь.
  2. Возвести наше число в числитель полученной преобразованной дроби.
  3. Из полученного в предыдущем пункте числа вычислить корень, с условием, что показателем корня будет знаменатель дроби, полученной на первом этапе.

Согласитесь, что даже при оперировании малыми числами и правильными дробями подобные вычисления могут занять немало времени. Хорошо, что табличному процессору Excel без разницы, какое число и в какую степень возводить. Попробуйте решить на рабочем листе Excel следующий пример:

Воспользовавшись вышеприведенными правилами, вы можете проверить и убедиться, что вычисление произведено правильно.

В конце нашей статьи приведем в форме таблицы с формулами и результатами несколько примеров, как возводить число в отрицательную степень, а также несколько примеров с оперированием дробными числами и степенями.

Таблица примеров

Проверьте на рабочем листе книги Excel следующие примеры. Чтобы все заработало корректно, вам необходимо использовать смешанную ссылку при копировании формулы. Закрепите номер столбца, содержащего возводимое число, и номер строки, содержащей показатель. Ваша формула должна иметь примерно следующий вид: «=$B4^C$3».

Число / Степень

Обратите внимание, что положительные числа (даже нецелые) без проблем вычисляются при любых показателях. Не возникает проблем и с возведением любых чисел в целые показатели. А вот возведение отрицательного числа в дробную степень обернется для вас ошибкой, поскольку невозможно выполнить правило, указанное в начале нашей статьи про возведение отрицательных чисел, ведь четность - это характеристика исключительно ЦЕЛОГО числа.

Числом, возведенным в степень, называют такое число, которое несколько раз умножено само на себя.

Степень числа с отрицательным значением (a - n) можно определить на подобии того, как определяется степень того же числа с положительным показателем (a n) . Однако, оно также требует дополнительного определения. Определяется такая формула как:

a - n = (1 / a n)

Свойства отрицательных значений степеней чисел аналогичны степеням с положительным показателем. Представленное уравнение a m / a n = a m-n может быть справедливым как

«Нигде, как в математике, ясность и точность вывода не позволяет человеку отвертеться от ответа разговорами вокруг вопроса ».

А. Д. Александров

при n больше m , так и при m больше n . Рассмотрим на примере: 7 2 -7 5 =7 2-5 =7 -3 .

Для начала необходимо определить то число, которое выступает определением степени. b=a(-n) . В этом примере -n является показателем степени, b - искомое числовое значение, a - основание степени в виде натурального числового значения. Затем определить модуль, то есть абсолютное значение отрицательного числа, которое выступает в роли показателя степени. Вычислить степень данного числа относительного абсолютного числа, как показателя. Значение степени находится делением единицы на полученное число.

Рис. 1

Рассмотри степень числа с отрицательным дробным показателем. Представим, что число а это любое положительное число, числа n и m - натуральные числа. Согласно определению a , которое возведено в степень - равняется единице, разделенной на это же число с положительной степенью (рис 1). Когда степенью числа является дробь, то в таких случаях используются исключительно числа с положительными показателями.

Стоит помнить , что ноль никогда не может быть показателем степени числа (правило деления на ноль).

Распространению такого понятия как число стали такие манипуляции, как расчеты измерения, а также развитие математики, как науки. Ввод отрицательных значений было обусловлено развитием алгебры, которая давала общие решения арифметических задач, независимо от их конкретного смысла и исходных числовых данных. В индии еще в VI-XI веках отрицательные значения чисел систематически употребляли во время решения задач и растолковывались таким же образом, что и сегодня. В европейской науке отрицательные числа начали обширно употребляться благодаря Р. Декарту, который дал геометрическое толкование отрицательным числам, как направлениям отрезков. Именно Декарт предложил обозначение числа возведенного в степень отображать как двухэтажную формулу a n .

Мы разобрались, что вообще из себя представляет степень числа. Теперь нам надо понять, как правильно выполнять ее вычисление, т.е. возводить числа в степень. В этом материале мы разберем основные правила вычисления степени в случае целого, натурального, дробного, рационального и иррационального показателя. Все определения будут проиллюстрированы примерами.

Yandex.RTB R-A-339285-1

Понятие возведения в степень

Начнем с формулирования базовых определений.

Определение 1

Возведение в степень - это вычисление значения степени некоторого числа.

То есть слова "вычисление значение степени" и "возведение в степень" означают одно и то же. Так, если в задаче стоит "Возведите число 0 , 5 в пятую степень", это следует понимать как "вычислите значение степени (0 , 5) 5 .

Теперь приведем основные правила, которым нужно придерживаться при таких вычислениях.

Вспомним, что такое степень числа с натуральным показателем. Для степени с основанием a и показателем n это будет произведение n -ного числа множителей, каждый из которых равен a . Это можно записать так:

Чтобы вычислить значение степени, нужно выполнить действие умножения, то есть перемножить основания степени указанное число раз. На умении быстро умножать и основано само понятие степени с натуральным показателем. Приведем примеры.

Пример 1

Условие: возведите - 2 в степень 4 .

Решение

Используя определение выше, запишем: (− 2) 4 = (− 2) · (− 2) · (− 2) · (− 2) . Далее нам нужно просто выполнить указанные действия и получить 16 .

Возьмем пример посложнее.

Пример 2

Вычислите значение 3 2 7 2

Решение

Данную запись можно переписать в виде 3 2 7 · 3 2 7 . Ранее мы рассматривали, как правильно умножать смешанные числа, упомянутые в условии.

Выполним эти действия и получим ответ: 3 2 7 · 3 2 7 = 23 7 · 23 7 = 529 49 = 10 39 49

Если в задаче указана необходимость возводить иррациональные числа в натуральную степень, нам потребуется предварительно округлить их основания до разряда, который позволит нам получить ответ нужной точности. Разберем пример.

Пример 3

Выполните возведение в квадрат числа π .

Решение

Для начала округлим его до сотых. Тогда π 2 ≈ (3 , 14) 2 = 9 , 8596 . Если же π ≈ 3 . 14159 , то мы получим более точный результат: π 2 ≈ (3 , 14159) 2 = 9 , 8695877281 .

Отметим, что необходимость высчитывать степени иррациональных чисел на практике возникает сравнительно редко. Мы можем тогда записать ответ в виде самой степени (ln 6) 3 или преобразовать, если это возможно: 5 7 = 125 5 .

Отдельно следует указать, что такое первая степень числа. Тут можно просто запомнить, что любое число, возведенное в первую степень, останется самим собой:

Это понятно из записи .

От основания степени это не зависит.

Пример 4

Так, (− 9) 1 = − 9 , а 7 3 , возведенное в первую степень, останется равно 7 3 .

Для удобства разберем отдельно три случая: если показатель степени - целое положительное число, если это ноль и если это целое отрицательное число.

В первое случае это то же самое, что и возведение в натуральную степень: ведь целые положительные числа принадлежат ко множеству натуральных. О том, как работать с такими степенями, мы уже рассказали выше.

Теперь посмотрим, как правильно возводить в нулевую степень. При основании, которое отличается от нуля, это вычисление всегда дает на выходе 1 . Ранее мы уже поясняли, что 0 -я степень a может быть определена для любого действительного числа, не равного 0 , и a 0 = 1 .

Пример 5

5 0 = 1 , (- 2 , 56) 0 = 1 2 3 0 = 1

0 0 - не определен.

У нас остался только случай степени с целым отрицательным показателем. Мы уже разбирали, что такие степени можно записать в виде дроби 1 a z , где а - любое число, а z - целый отрицательный показатель. Мы видим, что знаменатель этой дроби есть не что иное, как обыкновенная степень с целым положительным показателем, а ее вычислять мы уже научились. Приведем примеры задач.

Пример 6

Возведите 3 в степень - 2 .

Решение

Используя определение выше, запишем: 2 - 3 = 1 2 3

Подсчитаем знаменатель этой дроби и получим 8: 2 3 = 2 · 2 · 2 = 8 .

Тогда ответ таков: 2 - 3 = 1 2 3 = 1 8

Пример 7

Возведите 1 , 43 в степень - 2 .

Решение

Переформулируем: 1 , 43 - 2 = 1 (1 , 43) 2

Вычисляем квадрат в знаменателе: 1,43·1,43. Десятичные дроби можно умножить таким способом:

В итоге у нас вышло (1 , 43) - 2 = 1 (1 , 43) 2 = 1 2 , 0449 . Этот результат нам осталось записать в виде обыкновенной дроби, для чего необходимо умножить ее на 10 тысяч (см. материал о преобразовании дробей).

Ответ: (1 , 43) - 2 = 10000 20449

Отдельный случай - возведение числа в минус первую степень. Значение такой степени равно числу, обратному исходному значению основания: a - 1 = 1 a 1 = 1 a .

Пример 8

Пример: 3 − 1 = 1 / 3

9 13 - 1 = 13 9 6 4 - 1 = 1 6 4 .

Как возвести число в дробную степень

Для выполнения такой операции нам потребуется вспомнить базовое определение степени с дробным показателем: a m n = a m n при любом положительном a , целом m и натуральном n .

Определение 2

Таким образом, вычисление дробной степени нужно выполнять в два действия: возведение в целую степень и нахождение корня n -ной степени.

У нас есть равенство a m n = a m n , которое, учитывая свойства корней, обычно применяется для решения задач в виде a m n = a n m . Это значит, что если мы возводим число a в дробную степень m / n , то сначала мы извлекаем корень n -ной степени из а, потом возводим результат в степень с целым показателем m .

Проиллюстрируем на примере.

Пример 9

Вычислите 8 - 2 3 .

Решение

Способ 1. Согласно основному определению, мы можем представить это в виде: 8 - 2 3 = 8 - 2 3

Теперь подсчитаем степень под корнем и извлечем корень третьей степени из результата: 8 - 2 3 = 1 64 3 = 1 3 3 64 3 = 1 3 3 4 3 3 = 1 4

Способ 2. Преобразуем основное равенство: 8 - 2 3 = 8 - 2 3 = 8 3 - 2

После этого извлечем корень 8 3 - 2 = 2 3 3 - 2 = 2 - 2 и результат возведем в квадрат: 2 - 2 = 1 2 2 = 1 4

Видим, что решения идентичны. Можно пользоваться любым понравившимся способом.

Бывают случаи, когда степень имеет показатель, выраженный смешанным числом или десятичной дробью. Для простоты вычислений его лучше заменить обычной дробью и считать, как указано выше.

Пример 10

Возведите 44 , 89 в степень 2 , 5 .

Решение

Преобразуем значение показателя в обыкновенную дробь - 44 , 89 2 , 5 = 49 , 89 5 2 .

А теперь выполняем по порядку все действия, указанные выше: 44 , 89 5 2 = 44 , 89 5 = 44 , 89 5 = 4489 100 5 = 4489 100 5 = 67 2 10 2 5 = 67 10 5 = = 1350125107 100000 = 13 501 , 25107

Ответ: 13 501 , 25107 .

Если в числителе и знаменателе дробного показателя степени стоят большие числа, то вычисление таких степеней с рациональными показателями - довольно сложная работа. Для нее обычно требуется вычислительная техника.

Отдельно остановимся на степени с нулевым основанием и дробным показателем. Выражению вида 0 m n можно придать такой смысл: если m n > 0 , то 0 m n = 0 m n = 0 ; если m n < 0 нуль остается не определен. Таким образом, возведение нуля в дробную положительную степень приводит к нулю: 0 7 12 = 0 , 0 3 2 5 = 0 , 0 0 , 024 = 0 , а в целую отрицательную - значения не имеет: 0 - 4 3 .

Как возвести число в иррациональную степень

Необходимость вычислить значение степени, в показателе которой стоит иррациональное число, возникает не так часто. На практике обычно задача ограничивается вычислением приблизительного значения (до некоторого количества знаков после запятой). Обычно это считают на компьютере из-за сложности таких подсчетов, поэтому подробно останавливаться на этом не будем, укажем лишь основные положения.

Если нам нужно вычислить значение степени a с иррациональным показателем a , то мы берем десятичное приближение показателя и считаем по нему. Результат и будет приближенным ответом. Чем точнее взятое десятичное приближение, тем точнее ответ. Покажем на примере:

Пример 11

Вычислите приближенное значение 21 , 174367 ....

Решение

Ограничимся десятичным приближением a n = 1 , 17 . Проведем вычисления с использованием этого числа: 2 1 , 17 ≈ 2 , 250116 . Если же взять, к примеру, приближение a n = 1 , 1743 , то ответ будет чуть точнее: 2 1 , 174367 . . . ≈ 2 1 , 1743 ≈ 2 , 256833 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Степень используется для упрощения записи операции умножения числа само на себя. Например, вместо записи можно написать 4 5 {\displaystyle 4^{5}} (объяснение такому переходу дано в первом разделе этой статьи). Степени позволяют упростить написание длинных или сложных выражений или уравнений; также степени легко складываются и вычитаются, что приводит к упрощению выражения или уравнения (например, 4 2 ∗ 4 3 = 4 5 {\displaystyle 4^{2}*4^{3}=4^{5}} ).


Примечание: если вам необходимо решить показательное уравнение (в таком уравнении неизвестное находится в показателе степени), прочитайте .

Шаги

Решение простейших задач со степенями

    Умножьте основание степени само на себя числом раз, равным показателю степени. Если вам нужно решить задачу со степенями вручную, перепишите степень в виде операции умножения, где основание степени умножается само на себя. Например, дана степень 3 4 {\displaystyle 3^{4}} . В этом случае основание степени 3 нужно умножить само на себя 4 раза: 3 ∗ 3 ∗ 3 ∗ 3 {\displaystyle 3*3*3*3} . Вот другие примеры:

    Для начала перемножьте первые два числа. Например, 4 5 {\displaystyle 4^{5}} = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4*4*4*4*4} . Не волнуйтесь - процесс вычисления не такой сложный, каким кажется на первый взгляд. Сначала перемножьте первые две четверки, а затем замените их полученным результатом. Вот так:

    • 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4^{5}=4*4*4*4*4}
      • 4 ∗ 4 = 16 {\displaystyle 4*4=16}
  1. Умножьте полученный результат (в нашем примере 16) на следующее число. Каждый последующий результат будет пропорционально увеличиваться. В нашем примере умножьте 16 на 4. Вот так:

    • 4 5 = 16 ∗ 4 ∗ 4 ∗ 4 {\displaystyle 4^{5}=16*4*4*4}
      • 16 ∗ 4 = 64 {\displaystyle 16*4=64}
    • 4 5 = 64 ∗ 4 ∗ 4 {\displaystyle 4^{5}=64*4*4}
      • 64 ∗ 4 = 256 {\displaystyle 64*4=256}
    • 4 5 = 256 ∗ 4 {\displaystyle 4^{5}=256*4}
      • 256 ∗ 4 = 1024 {\displaystyle 256*4=1024}
    • Продолжайте умножать результат перемножения первых двух чисел на следующее число до тех пор, пока не получите окончательный ответ. Для этого перемножайте первые два числа, а затем полученный результат умножайте на следующее число в последовательности. Этот метод справедлив для любой степени. В нашем примере вы должны получить: 4 5 = 4 ∗ 4 ∗ 4 ∗ 4 ∗ 4 = 1024 {\displaystyle 4^{5}=4*4*4*4*4=1024} .
  2. Решите следующие задачи. Ответ проверьте при помощи калькулятора.

    • 8 2 {\displaystyle 8^{2}}
    • 3 4 {\displaystyle 3^{4}}
    • 10 7 {\displaystyle 10^{7}}
  3. На калькуляторе найдите клавишу, обозначенную как «exp», или « x n {\displaystyle x^{n}} », или «^». При помощи этой клавиши вы будете возводить число в степень. Вычислить степень с большим показателем вручную практически невозможно (например, степень 9 15 {\displaystyle 9^{15}} ), но калькулятор с легкостью справится с этой задачей. В Windows 7 стандартный калькулятор можно переключить в инженерный режим; для этого нажмите «Вид» –> «Инженерный». Для переключения в обычный режим нажмите «Вид» –> «Обычный».

    • Проверьте полученный ответ при помощи поисковой системы (Google или Яндекс) . Воспользовавшись клавишей «^» на клавиатуре компьютера, введите выражение в поисковик, который моментально отобразит правильный ответ (и, возможно, предложит аналогичные выражения для изучения).

    Сложение, вычитание, перемножение степеней

    1. Складывать и вычитать степени можно только в том случае, если у них одинаковые основания. Если нужно сложить степени с одинаковыми основаниями и показателями, то вы можете заменить операцию сложения операцией умножения. Например, дано выражение 4 5 + 4 5 {\displaystyle 4^{5}+4^{5}} . Помните, что степень 4 5 {\displaystyle 4^{5}} можно представить в виде 1 ∗ 4 5 {\displaystyle 1*4^{5}} ; таким образом, 4 5 + 4 5 = 1 ∗ 4 5 + 1 ∗ 4 5 = 2 ∗ 4 5 {\displaystyle 4^{5}+4^{5}=1*4^{5}+1*4^{5}=2*4^{5}} (где 1 +1 =2). То есть посчитайте число подобных степеней, а затем перемножьте такую степень и это число. В нашем примере возведите 4 в пятую степень, а затем полученный результат умножьте на 2. Помните, что операцию сложения можно заменить операцией умножения, например, 3 + 3 = 2 ∗ 3 {\displaystyle 3+3=2*3} . Вот другие примеры:

      • 3 2 + 3 2 = 2 ∗ 3 2 {\displaystyle 3^{2}+3^{2}=2*3^{2}}
      • 4 5 + 4 5 + 4 5 = 3 ∗ 4 5 {\displaystyle 4^{5}+4^{5}+4^{5}=3*4^{5}}
      • 4 5 − 4 5 + 2 = 2 {\displaystyle 4^{5}-4^{5}+2=2}
      • 4 x 2 − 2 x 2 = 2 x 2 {\displaystyle 4x^{2}-2x^{2}=2x^{2}}
    2. При перемножении степеней с одинаковым основанием их показатели складываются (основание не меняется). Например, дано выражение x 2 ∗ x 5 {\displaystyle x^{2}*x^{5}} . В этом случае нужно просто сложить показатели, оставив основание без изменений. Таким образом, x 2 ∗ x 5 = x 7 {\displaystyle x^{2}*x^{5}=x^{7}} . Вот наглядное объяснение этого правила:

      При возведении степени в степень показатели перемножаются. Например, дана степень . Так как показатели степени перемножаются, то (x 2) 5 = x 2 ∗ 5 = x 10 {\displaystyle (x^{2})^{5}=x^{2*5}=x^{10}} . Смысл этого правила в том, что вы умножаете степень (x 2) {\displaystyle (x^{2})} саму на себя пять раз. Вот так:

      • (x 2) 5 {\displaystyle (x^{2})^{5}}
      • (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 {\displaystyle (x^{2})^{5}=x^{2}*x^{2}*x^{2}*x^{2}*x^{2}}
      • Так как основание одно и то же, показатели степени просто складываются: (x 2) 5 = x 2 ∗ x 2 ∗ x 2 ∗ x 2 ∗ x 2 = x 10 {\displaystyle (x^{2})^{5}=x^{2}*x^{2}*x^{2}*x^{2}*x^{2}=x^{10}}
    3. Степень с отрицательным показателем следует преобразовать в дробь (в обратную степень). Не беда, если вы не знаете, что такое обратная степень. Если вам дана степень с отрицательным показателем, например, 3 − 2 {\displaystyle 3^{-2}} , запишите эту степень в знаменатель дроби (в числителе поставьте 1), а показатель сделайте положительным. В нашем примере: 1 3 2 {\displaystyle {\frac {1}{3^{2}}}} . Вот другие примеры:

      При делении степеней с одинаковым основанием их показатели вычитаются (основание при этом не меняется). Операция деления противоположна операции умножения. Например, дано выражение 4 4 4 2 {\displaystyle {\frac {4^{4}}{4^{2}}}} . Вычтите показатель степени, стоящей в знаменателе, из показателя степени, стоящей в числителе (основание не меняйте). Таким образом, 4 4 4 2 = 4 4 − 2 = 4 2 {\displaystyle {\frac {4^{4}}{4^{2}}}=4^{4-2}=4^{2}} = 16 .

      • Степень, стоящую в знаменателе, можно записать в таком виде: 1 4 2 {\displaystyle {\frac {1}{4^{2}}}} = 4 − 2 {\displaystyle 4^{-2}} . Помните, что дробь - это число (степень, выражение) с отрицательным показателем степени.
    4. Ниже приведены некоторые выражения, которые помогут вам научиться решать задачи со степенями. Приведенные выражения охватывают материал, изложенный в этом разделе. Для того, чтобы увидеть ответ, просто выделите пустое пространство после знака равенства.

    Решение задач с дробными показателями степени

      Степень с дробным показателем (например, ) преобразуется в операцию извлечения корня. В нашем примере: x 1 2 {\displaystyle x^{\frac {1}{2}}} = x {\displaystyle {\sqrt {x}}} . Здесь неважно, какое число стоит в знаменателе дробного показателя степени. Например, x 1 4 {\displaystyle x^{\frac {1}{4}}} - это корень четвертой степени из «х», то есть x 4 {\displaystyle {\sqrt[{4}]{x}}} .

    1. Если показатель степени представляет собой неправильную дробь, то такую степень можно разложить на две степени, чтобы упростить решение задачи. В этом нет ничего сложного - просто вспомните правило перемножения степеней. Например, дана степень . Превратите такую степень в корень, степень которого будет равна знаменателю дробного показателя, а затем возведите этот корень в степень, равную числителю дробного показателя. Чтобы сделать это, вспомните, что 5 3 {\displaystyle {\frac {5}{3}}} = (1 3) ∗ 5 {\displaystyle ({\frac {1}{3}})*5} . В нашем примере:

      • x 5 3 {\displaystyle x^{\frac {5}{3}}}
      • x 1 3 = x 3 {\displaystyle x^{\frac {1}{3}}={\sqrt[{3}]{x}}}
      • x 5 3 = x 5 ∗ x 1 3 {\displaystyle x^{\frac {5}{3}}=x^{5}*x^{\frac {1}{3}}} = (x 3) 5 {\displaystyle ({\sqrt[{3}]{x}})^{5}}
    2. На некоторых калькуляторах есть кнопка для вычисления степеней (сначала нужно ввести основание, затем нажать кнопку, а затем ввести показатель). Она обозначается как ^ или x^y.
    3. Помните, что любое число в первой степени равно самому себе, например, 4 1 = 4. {\displaystyle 4^{1}=4.} Более того, любое число, умноженное или разделенное на единицу, равно самому себе, например, 5 ∗ 1 = 5 {\displaystyle 5*1=5} и 5 / 1 = 5 {\displaystyle 5/1=5} .
    4. Знайте, что степени 0 0 не существует (такая степень не имеет решения). При попытке решить такую степень на калькуляторе или на компьютере вы получите ошибку. Но помните, что любое число в нулевой степени равно 1, например, 4 0 = 1. {\displaystyle 4^{0}=1.}
    5. В высшей математике, которая оперирует мнимыми числами: e a i x = c o s a x + i s i n a x {\displaystyle e^{a}ix=cosax+isinax} , где i = (− 1) {\displaystyle i={\sqrt {(}}-1)} ; е - константа, примерно равная 2,7; а - произвольная постоянная. Доказательство этого равенства можно найти в любом учебнике по высшей математике.
    6. Предупреждения

    • При увеличении показателя степени ее значение сильно возрастает. Поэтому если ответ кажется вам неправильным, на самом деле он может оказаться верным. Вы можете проверить это, построив график любой показательной функции, например, 2 x .