Все задания олимпиад. Олимпиадные задания с решениями (школьный этап)

Участие в олимпиадах по математике — это отличная возможность проверить свои знания и способности, проявить и отточить навыки нестандартного мышления, которые очень пригодится подростку во взрослой жизни. И хотя главный девиз любых олимпийских игр состоит в том, что главное не победа, а участие, каждый атлет хочет стать победителем. Именно поэтому подготовка к олимпиадам по математике – это очень важно. Причём, как для спортсменов, готовящихся к олимпийским играм, очень важная поддержка личного тренера, так и для школьников при подготовке к олимпиадам по математике очень важна помощь .

Главной задачей проведения олимпиад является проверка уровня знаний лучших учеников школы, а также выявление среди них самого умного и одаренного ребенка. Помимо этого олимпиады стимулируют учеников более углубленно изучать материал и искать дополнительные источники знаний по предмету.

Организация и проведение олимпиад по математике среди школьников преследует следующие цели:

  • выявление самых умных, сообразительных и одаренных учеников;
  • развитие творческих способностей и нестандартного мышления;
  • повышение интереса к углубленному изучению предмета;
  • создание условий поддержки и поощрения одаренных детей;
  • популяризация математики среди учеников школ.

Участие в олимпиадах по математике готовит учеников к жизни в современном обществе. Это своеобразный трамплин в прекрасное будущее. Победа в олимпиаде по математике предоставляет льготные условия поступления в ведущие вузы страны на бесплатное обучение. Плюс к тому это дополнительное преимущество даже при поступлении на общих основаниях.

Как добиться победы в олимпиаде по математике?

Для того, чтобы ученик смог добиться победы в олимпиаде по математике, требуется сочетание следующих важнейших факторов:

  • Знание материала школьной программы. Это самая первая и базовая ступенька. Если у ученика есть даже незначительные пробелы со знанием школьной программы, то ни о какой победе на олимпиаде и речи быть не может. Эти пробелы нужно заполнить необходимыми знаниями в самый короткий срок.
  • Знание материала, который выходит за пределы школьной программы. Для победы в олимпиаде не достаточно только тех знаний, которые дает учитель на уроке. Нужно более углубленное изучение тем. В таком случае не обойтись без подготовки к олимпиадам по математике с репетитором. Только он, занимаясь с учеником дополнительно и индивидуально, сможет дать ему полный объем необходимой информации. Это не обязательно должен быть посторонний человек, вполне вероятно школьный учитель с радостью справится с такой задачей. К тому же он знает уровень подготовки ребенка и возможные пробелы.
  • Смекалка. Не все задачи, особенно олимпиадные, решаются по определенной проработанной схеме. Довольно часто, для того чтоб решить задачу с высоким уровнем сложности, нужно проявить еще и смекалку. Именно гибкость ума помогает учениками находить нестандартный выход в тех ситуациях, в которых остальные просто теряются.
  • Практика. Только при наличии постоянной практики в решении задач разных форм, видов, тем, ученик сможет полноценно подготовиться к олимпиаде. Благо сейчас есть большое количество сборников олимпиадных задач, примеры заданий за прошлые года. Также стоит активно использовать сеть интернет, которая постоянно пополняется новыми задачами.

Задача репетитора состоит в том, чтобы сформировать образовательную среду и обеспечить развитие одновременно всех этих способностей. Только в таком случае подготовка к олимпиадам по математике пройдет на самом высоком уровне.

Особенности подготовки к олимпиадам по математике

Сложность олимпиады для учеников заключается в первую очередь в том, что в течение весьма ограниченного промежутка времени ученик должен решить несколько достаточно сложных и нестандартных задач. Это возможно только в том случае, если ребёнок хорошо подготовлен. Среди задач, которые встречаются в олимпиадах по математике, часто встречаются следующие.

Задачи на составление примера решения

Например, такая олимпиадная задача: «Существует такая фигура, которую нельзя разделить на прямоугольники из двух клеток (доминошки), но если к ней добавить доминошку - уже можно. Нарисуйте эту фигуру на клеточной бумаге (это должна быть одна фигура, не состоящая из отдельных частей), добавьте к ней одну доминошку и расскажите, как разделить полученную фигуру на доминошки.»

Подготовленный участник без труда сможет найти решение. Оно может выглядеть, например, вот так:

Логические задачи

Задачи на логическое мышление. Интересно, что часто такие задачи легко решаются с помощью стандартных подходов, которые изучаются в школе, но, к сожалению, в более старших классах. В результате ученику приходится придумывать нетривиальное решение, что требует от него нестандартного мышления. Например, такая задача: «У Маши есть монеты достоинством 2 рубля и 5 рублей. На все монеты достоинством 2 рубля Маша не может купить 4 пирожка, потому что ей не хватает 60 рублей. На все монеты достоинством 5 рублей она не может купить 5 пирожков, потому что ей также не хватает 60 рублей. На все свои деньги она не может купить 6 пирожков, так как ей опять не хватает 60 рублей. Сколько стоит один пирожок?»

Маше не хватает 60 рублей, чтобы купить четыре пирожка, если она возьмёт все свои монеты достоинством 2 рубля. Также Маше не хватает 60 рублей, чтобы купить пять пирожков, если она возьмёт все свои монеты достоинством 5 рублей. Значит, если она возьмёт все свои деньги и ещё 120 рублей, то сможет купить 9 пирожков. С другой стороны, в условии сказано, что на все свои деньги Маша могла бы купить шесть пирожков, если бы добавила к ним 60 рублей. Из последних двух утверждений следует, что три пирожка стоят 60 рублей. То есть один пирожок стоит 20 рублей.

Для того чтобы решить такие задачи, ученик должен проявить смекалку и до чего-нибудь догадаться. Эта догадка появляется не на пустом месте, а в результате размышления над задачей, но решение начинается именно с догадки, которая затем приводит к выстраиванию логической цепочки, которая приводит к результату. Например, разберём следующую задачу: «В команде 38 борцов. Каждый более слабый борец всегда проигрывает более сильному, а бой двух борцов одинаковой силы всегда оканчивается ничьей. Всегда ли борцов удастся разбить на пары так, что все победители в полученных парах окажутся не слабее, чем все те, кто свёл поединок вничью или проиграл, а все те, кто свёл поединок вничью окажется не слабее всех тех, кто проиграл?»

Если приписать всем борцам число, соответствующее уровню их силы, то получится множество из 38 элементов. Догадка состоит в том, чтобы элементы этого множества записать в порядке неубывания. После этого формируем следующие пары: первый с последним, второй с предпоследним и т. д. В каждой паре в порядке формирования находим победителя или сделавшего ничью. Полученная последовательность будет невозрастающей, причём последний её элемент будет не меньше 19-го в исходной последовательности. То есть получается, что требуемое условие выполняется.

Задачи, для решения которых не достаточно знания только школьной программы

Для решения таких задач ученик должен знать больше, чем преподают на уроках в школе. Необходимые знания ученик может получить на основе самообразования или с помощью грамотного репетитора. Например, для решения следующей задачи требуется знание того, что биссектриса треугольника делит его сторону на отрезки, которые пропорциональны прилежащим сторонами: «В треугольнике ABC биссектрисы AA 1 и BB 1 пересекаются в точке O . Известно, что 2AO = 7OA 1 и BO = 2BO 1 . Найдите отношение высоты, опущенной из точки A , к радиусу вписанной в треугольник ABC окружности.»

Используя свойство биссектрисы, находим, что . То есть . Аналогично находим, что . То есть длины сторон треугольника выглядят следующим образом:

Тогда вновь по свойству биссектрисы получаем, что:

Итак, получаем , , . Тогда полупериметр данного треугольника равен . Тогда с одной стороны площадь треугольника ABC равна , где — радиус вписанной окружности. С другой стороны он равен , где — высота, проведенная к стороне BC. Отсюда получаем, что .

Задачи по темам, которым в школе уделяется совсем мало внимания

Например, задачи по теории чисел: «Дана последовательность из 2014 натуральных числа. Если взять из этой последовательности любые 100 чисел, то среди них обязательно будет хотя бы одно чётное число. Если взять из этой последовательности любые 1916 чисел, то среди них обязательно будет хотя бы одно нечётное число. Может ли сумма всех этих чисел равняться 2014⋅2015? Обоснуйте свой ответ.»

Подготовленный ученик решит эту задачу без особого труда. Поскольку в любой выборке из 100 чисел оказывается хотя бы одно чётное число, то нечётных чисел в наборе не больше 99. Аналогично, поскольку в любой выборке из 1916 чисел оказывается хотя бы одно нечётное число, то чётных чисел в наборе не больше 1915. А поскольку всего в наборе 2014 чисел, то в наборе 99 нечётных чисел и 1915 чётных чисел. Их сумма является нечётным числом. А произведение 2014⋅2015 оканчивается на 0, следовательно, является чётным числом. То есть сумма не может быть равна этому произведению.

В заключении отметим, что для успешной подготовки к олимпиадам по математике придётся усердно потрудиться. Постарайтесь максимально подключить к этому процессу учителей, ведь они заинтересованы в победе своих учеников. Тратьте больше времени на чтение дополнительной литературы по предмету. Ведь знания, которые вы получите, могут пригодиться в самый ответственный момент. Ну и не забывайте, что готовиться к олимпиаде по математике можно с репетитором. Опыт показывает, что это самый хороший вариант, если вы серьёзно настроены на успех. Удачи вам!

Сергей Валерьевич

Задания и ключи школьного этапа Всероссийской олимпиады школьников по математике

Скачать:


Предварительный просмотр:

Школьный этап

4 класс

1. Площадь прямоугольника 91

Предварительный просмотр:

Задачи Всероссийской олимпиады школьников по математике

Школьный этап

5 класс

Максимальная оценка каждой задачи – 7 баллов

3. Разрежьте фигуру на три одинаковые (совпадающие при наложении) фигурки:

4. Замените букву А

Предварительный просмотр:

Задачи Всероссийской олимпиады школьников по математике

Школьный этап

6 класс

Максимальная оценка каждой задачи – 7 баллов

Предварительный просмотр:

Задачи Всероссийской олимпиады школьников по математике

Школьный этап

7 класс

Максимальная оценка каждой задачи – 7 баллов

1. – различные цифры.

4. Замените буквы Y, E, A и R цифрами так, чтобы получилось верное равенство:

YYYY ─ EEE ─ AA + R = 2017 .

5. На острове жив ё т неч ё тное число людей, прич ё ё

Предварительный просмотр:

Задачи Всероссийской олимпиады школьников по математике

Школьный этап

8 класс

Максимальная оценка каждой задачи – 7 баллов

АВМ , CLD и ADK соответственно. Найдите ∠ МKL .

6. Докажите, что если a, b, c и - целые числа, то и дробь будет целым числом.

Предварительный просмотр:

Задачи Всероссийской олимпиады школьников по математике

Школьный этап

9 класс

Максимальная оценка каждой задачи – 7 баллов

2. Числа a и b таковы, что уравнения и тоже имеет решение.

6. При каких натуральных x выражение

Предварительный просмотр:

Задачи Всероссийской олимпиады школьников по математике

Школьный этап

10 класс

Максимальная оценка каждой задачи – 7 баллов

4 – 5 – 7 – 11 – 19 = 22

3. В уравнении

5. В треугольнике ABC провели биссектрису BL . Оказалось, что . Докажите, что треугольник ABL – равнобедренный.

6. По определению,

Предварительный просмотр:

Задачи Всероссийской олимпиады школьников по математике

Школьный этап

11 класс

Максимальная оценка каждой задачи – 7 баллов

1. Сумма двух чисел равна 1. Может ли их произведение быть больше 0,3?

2. Отрезки AM и BH ABC .

Известно, что AH = 1 и . Найти длину стороны BC .

3. а неравенство верно при всех значениях х ?

Предварительный просмотр:

4 класс

1. Площадь прямоугольника 91 . Длина одной из его сторон 13 см. Чему равна сумма всех сторон прямоугольника?

Ответ. 40

Решение. Длину неизвестной стороны прямоугольника находим из площади и известной стороны: 91 :13 см = 7 см.

Сумма всех сторон прямоугольника равна 13 + 7 + 13 + 7 = 40 см.

2. Разрежьте фигуру на три одинаковые (совпадающие при наложении) фигурки:

Решение.

3. Восстановите пример на сложение, где цифры слагаемых заменены звездочками: *** + *** = 1997.

Ответ. 999 + 998 = 1997.

4 . Четыре девочки ели конфеты. Аня съела больше, чем Юля, Ира – больше, чем Света, но меньше, чем Юля. Расставьте имена девочек в порядке возрастания съеденных конфет.

Ответ. Света, Ира, Юля, Аня.

Предварительный просмотр:

Ключи школьной олимпиады по математике

5 класс

1. Не меняя порядка расположения цифр 1 2 3 4 5, поставьте между ними знаки арифметических действий и скобки так, чтобы в результате получилась единица. «Склеивать» соседние цифры в одно число нельзя.

Решение. Например, ((1 + 2) : 3 + 4) : 5 = 1. Возможны другие решения.

2. На скотном дворе гуляли гуси и поросята. Мальчик сосчитал количество голов, их оказалось 30, а затем он сосчитал количество ног, их оказалось 84. Сколько гусей и сколько поросят было на школьном дворе?

Ответ. 12 поросят и 18 гусей.

Решение.

1 шаг. Представьте, что все поросята подняли по две ноги вверх.

2 шаг. На земле осталось стоять 30 ∙ 2 = 60 ног.

3 шаг. Подняли вверх 84 - 60 = 24 ноги.

4 шаг. Подняли 24: 2 = 12 поросят.

5 шаг. 30 - 12 = 18 гусей.

3. Разрежьте фигуру на три одинаковые (совпадающие при наложении) фигурки:

Решение.

4. Замените букву А на ненулевую цифру, чтобы получилось верное равенство. Достаточно привести один пример.

Ответ. А = 3.

Решение. Несложно показать, что А = 3 подходит, докажем, что других решений нет. Сократим равенство на А . Получим .
Если А ,
если А > 3, то .

5. Девочки и мальчики по дороге в школу зашли в магазин. Каждый ученик купил по 5 тонких тетрадей. Кроме этого, каждая девочка купила 5 ручек и 2 карандаша, а каждый мальчик купил 3 карандаша и 4 ручки. Сколько было куплено тетрадей, если всего ручек и карандашей дети купили 196 штук?

Ответ. 140 тетрадей.

Решение. Каждый из учеников купил по 7 ручек и карандашей. Всего было куплено 196 ручек и карандашей.

196: 7 = 28 учеников.

Каждый из учеников купил по 5 тетрадей, значит, всего куплено
28 ⋅ 5=140 тетрадей.

Предварительный просмотр:

Ключи школьной олимпиады по математике

6 класс

1. На прямой 30 точек, расстояние между любыми двумя соседними равно 2 см. Какое расстояние между двумя крайними точками?

Ответ. 58 см.

Решение. Между крайними точками помещается 29 частей по 2 см.

2 см * 29 = 58 см.

2. Будет ли сумма чисел 1 + 2 + 3 + ......+ 2005 + 2006 + 2007 делиться на 2007? Ответ обоснуйте.

Ответ. Будет.

Решение. Представим данную сумму в виде следующих слагаемых:
(1 + 2006) + (2 + 2005) + …..+ (1003 + 1004) + 2007.

Так как каждое слагаемое делится на 2007, то и вся сумма будет делиться на 2007.

3. Разрежьте фигурку на 6 равных клетчатых фигурок.

Решение. Фигурку можно разрезать только так

4. Настя расставляет в клетках квадрата 3 на 3 числа 1, 3, 5, 7, 9. Она хочет, чтобы сумма чисел по всем горизонталям, вертикалям и диагоналям делилась на 5. Приведите пример такой расстановки, при условии, что каждое число Настя собирается использовать не более двух раз.

Решение. Ниже приведена одна из расстановок. Существуют и другие решения.

5. Обычно за Павликом после уроков приезжает папа на машине. Однажды уроки закончились раньше обычного и Павлик пошел домой пешком. Спустя 20 минут он встретил папу, сел в машину и приехал домой на 10 минут раньше. На сколько минут раньше закончились уроки в этот день?

Ответ. На 25 минут раньше.

Решение. Машина приехала домой раньше, потому что ей не пришлось доезжать с места встречи до школы и обратно, значит, удвоенный этот путь машина проезжает за 10 минут, а в одну сторону – за 5 минут. Итак, машина встретилась с Павликом за 5 минут до обычного окончания уроков. К этому моменту Павлик уже шел 20 минут. Таким образом, уроки закончились на 25 минут раньше.

Предварительный просмотр:

Ключи школьной олимпиады по математике

7 класс

1. Найдите решение числового ребуса a,bb + bb,ab = 60 , где a и b – различные цифры.

Ответ. 4,55 + 55,45 = 60

2. После того, как Наташа съела половину персиков из банки, уровень компота понизился на одну треть. На какую часть (от полученного уровня) понизится уровень компота, если съесть половину от оставшихся персиков?

Ответ. На одну четверть.

Решение. Из условия ясно, что половина персиков занимает треть банки. Значит, после того как Наташа съела половину персиков, в банке персиков и компота осталось поровну (по одной трети). Значит, половина от числа оставшихся персиков составляет четверть от всего объёма содержимого

банки. Если съесть эту половину оставшихся персиков, уровень компота понизится на четверть.

3. Разрежьте по линиям сетки прямоугольник, изображённый на рисунке, на пять прямоугольников различной площади.

Решение. Например, так

4. Замените буквы Y, E, A и R цифрами так, чтобы получилось верное равенство: YYYY ─ EEE ─ AA + R = 2017 .

Ответ. При Y=2, E=1, A=9, R=5 получаем 2222 ─ 111 ─ 99 + 5 = 2017.

5. На острове жив ё т неч ё тное число людей, прич ё м каждый из них либо рыцарь, который всегда говорит правду, либо лжец, который всегда лж ё т. Как-то раз все рыцари заявили: ― «Я дружу только с 1 лжецом», а все лжецы: ― «Я не дружу с рыцарями». Кого на острове больше, рыцарей или лжецов?

Ответ. Рыцарей больше

Решение. Каждый лжец дружит хотя бы с одним рыцарем. Но так как каждый рыцарь дружит ровно с одним лжецом, у двух лжецов не может быть общего друга-рыцаря. Тогда каждому лжецу можно поставить в соответствие его друга рыцаря, откуда получается, что рыцарей, по крайней мере, столько же, сколько и лжецов. Так как всего жителей на острове неч ё тное число, то равенство невозможно. Значит, рыцарей больше.

Предварительный просмотр:

Ключи школьной олимпиады по математике

8 класс

1. В семье 4 человека. Если Маше удвоят стипендию, общий доход всей семьи возрастет на 5%, если вместо этого маме удвоят зарплату – на 15%, если же зарплату удвоят папе – на 25%. На сколько процентов возрастет доход всей семьи, если дедушке удвоят пенсию?

Ответ. На 55%.

Решение . При удвоении стипендии Маши общий доход семьи увеличивается ровно на величину этой стипендии, поэтому она составляет 5% от дохода. Аналогично, зарплаты мамы и папы составляют 15% и 25%. Значит, пенсия дедушки составляет 100 – 5 – 15 - 25 = 55%, и если е ё удвоят, то доход семьи вырастет на 55%.

2. На сторонах АВ , CD и AD квадрата АВСD вовне построены равносторонние треугольники АВМ , CLD и ADK соответственно. Найдите ∠ МKL .

Ответ. 90°.

Решение. Рассмотрим треугольник MAK : угол MAK равен 360° - 90° - 60° - 60° = 150°. MA = AK по условию, значит, треугольник MAK равнобедренный, ∠ AMK = ∠ AKM = (180° - 150°) : 2 = 15°.

Аналогично получаем, что угол DKL равен 15°. Тогда искомый угол MKL равен сумме ∠ MKA + ∠ AKD + ∠ DKL = 15° + 60° + 15° = 90°.

3. Ниф-Ниф, Наф-Наф и Нуф-Нуф делили три кусочка трюфеля массами 4 г., 7 г. и 10 г. Волк решил им помочь. Он может от любых двух кусочков одновременно отрезать и съесть по 1 г. трюфеля. Сможет ли волк оставить поросятам равные кусочки трюфеля? Если да, то как?

Ответ. Да.

Решение. Волк может сначала три раза отрезать по 1 г от кусочков в 4 г и 10 г. Получатся один кусок в 1 г и два куска по 7 г. Теперь осталось шесть раз отрезать и съесть по 1 г от кусочков в 7 г., тогда поросятам достанется по 1 г. трюфеля.

4. Сколько всего есть четырехзначных чисел, которые делятся на 19 и оканчиваются на 19?

Ответ. 5 .

Решение. Пусть – такое число. Тогда тоже кратно 19. Но
Поскольку 100 и 19 взаимно просты, то двузначное число делится на 19. А таких всего пять: 19, 38, 57, 76 и 95.

Легко убедиться, что все числа 1919, 3819, 5719, 7619 и 9519 нам подходят.

5. Команда из Пети, Васи и одноместного самоката участвует в гонке. Дистанция разделена на участки одинаковой длины, их количество равно 42, в начале каждого – контрольный пункт. Петя пробегает участок за 9 мин, Вася – за 11 мин, а на самокате любой из них проезжает участок за 3 мин. Стартуют они одновременно, а на финише учитывается время того, кто пришел последним. Ребята договорились, что один проезжает первую часть пути на самокате, остаток бегом, а другой - наоборот (самокат можно оставить на любом контрольном пункте). Сколько участков Петя должен проехать на самокате, чтобы команда показала наилучшее время?

Ответ. 18

Решение. Если время одного станет меньше времени другого из ребят, то увеличится время другого и, следовательно, время команды. Значит, время ребят должно совпадать. Обозначив число проезжаемых Петей участков через x и решив уравнение , получим x = 18.

6. Докажите, что если a, b, c и - целые числа, то и дробь будет целым числом.

Решение.

Рассмотрим , по условию это число целое.

Тогда и будет тоже целым числом как разность N и удвоенного целого числа .

Предварительный просмотр:

Ключи школьной олимпиады по математике

9 класс

1. Саше и Юре сейчас вместе 35 лет. Саше сейчас вдвое больше лет, чем было Юре тогда, когда Саше было столько лет, сколько Юре сейчас. Сколько лет сейчас Саше и сколько – Юре?

Ответ. Саше 20 лет, Юре 15 лет .

Решение. Пусть Саше сейчас x лет, тогда Юре , а когда Саше было лет, то Юре, по условию, . Но времени и для Саши и для Юры прошло поровну, поэтому получаем уравнение

из которого .

2. Числа a и b таковы, что уравнения и имеют решения. Докажите, что уравнение тоже имеет решение.

Решение. Если первые уравнения имеют решения, то их дискриминанты неотрицательны, откуда и . Перемножая эти неравенства, получаем или , откуда следует, что дискриминант последнего уравнения также неотрицателен и уравнение имеет решение.

3. Рыбак выловил большое число рыб весом 3,5 кг. и 4,5 кг. Его рюкзак вмещает не более 20 кг. Какой максимальный вес рыбы он может взять с собой? Ответ обоснуйте.

Ответ. 19.5 кг.

Решение. В рюкзак можно поместить 0, 1, 2, 3 или 4 рыбы весом 4,5 кг.
(не больше, поскольку
). Для каждого из этих вариантов остаток вместимости рюкзака не делится нацело на 3,5 и в лучшем случае удастся упаковать кг. рыбы.

4. Стрелок десять раз выстрелил по стандартной мишени и выбил 90 очков.

Сколько попаданий было в семерку, восьмерку и девятку, если десяток было четыре, а других попаданий и промахов не было?

Ответ. В семерку – 1 попадание, в восьмерку – 2 попадания, в девятку – 3 попадания.

Решение. Так как стрелок попадал лишь в семерку, восьмерку и девятку в остальные шесть выстрелов, то за три выстрела (так как по крайней мере по одному разу в семерку, восьмерку и девятку стрелок попал) он наберет очка. Тогда за оставшиеся 3 выстрела надо набрать 26 очков. Что возможно при единственной комбинации 8 + 9 + 9 = 26. Итак, в семерку стрелок попал 1 раз, в восьмерку – 2 раза, в девятку – 3 раза.

5 . Середины соседних сторон в выпуклом четырехугольнике соединены отрезками. Докажите, что площадь получившегося четырехугольника в два раза меньше площади первоначального.

Решение. Обозначим четырёхугольник за ABCD , а середины сторон AB , BC , CD , DA за P , Q , S , T соответственно. Заметим, что в треугольнике ABC отрезок PQ является средней линией, значит, она отсекает от него треугольник PBQ в четыре раза меньше площади, чем площадь ABC . Аналогично, . Но треугольники ABC и CDA в сумме составляют весь четырёхугольник ABCD , значит Аналогично получаем, что Тогда суммарная площадь этих четырёх треугольников составляет половину площади четырёхугольника ABCD и площадь оставшегося четырёхугольника PQST равна также половине площади ABCD .

6. При каких натуральных x выражение является квадратом натурального числа?

Ответ. При x = 5.

Решение. Пусть . Отметим, что – также квадрат некоторого целого числа , меньшего t . Получаем, что . Числа и – натуральные и первое больше второго. Значит , а . Решив эту систему, получаем , , что дает .

Предварительный просмотр:

Ключи школьной олимпиады по математике

10 класс

1. Расставьте знаки модуля так, чтобы получилось верное равенство

4 – 5 – 7 – 11 – 19 = 22

Решение. Например,

2. Когда Винни-Пух пришел в гости к Кролику, он съел 3 тарелки мёда, 4 тарелки сгущёнки и 2 тарелки варенья, а после этого не смог выйти наружу из-за того, что сильно растолстел от такой еды. Но известно, что если бы он съел 2 тарелки мёда, 3 тарелки сгущёнки и 4 тарелки варенья или 4 тарелки мёда, 2 тарелки сгущёнки и 3 тарелки варенья, то спокойно смог бы покинуть нору гостеприимного Кролика. От чего больше толстеют: от варенья или от сгущёнки?

Ответ. От сгущенки.

Решение. Обозначим через М – питательность мёда, через С – питательность сгущёнки, через В – питательность варенья.

По условию 3М + 4С + 2В > 2М + 3С + 4В, откуда М + С > 2В. (*)

По условию же 3М + 4С + 2В > 4М + 2С + 3В, откуда 2С > М + В (**).

Складывая неравенство (**) с неравенством (*), получаем М + 3С > М + 3В, откуда С > В.

3. В уравнении одно из чисел заменено точками. Найти это число, если известно, что один из корней равен 2.

Ответ. 2.

Решение. Так как 2 является корнем уравнения, имеем:

откуда получаем, что , а значит вместо многоточия было записано число 2.

4. Из города в деревню вышла Марья Ивановна, а навстречу ей из деревни в город одновременно вышла Катерина Михайловна. Найти расстояние между деревней и городом, если известно, что расстояние между пешеходами равнялось 2 км дважды: сначала, когда Марья Ивановна прошла половину пути до деревни, и потом, когда Катерина Михайловна прошла треть пути до города.

Ответ. 6 км.

Решение. Обозначим расстояние между деревней и городом за S км, скорости Марьи Ивановны и Катерины Михайловны за x и y , и посчитаем время, потраченное пешеходами в первом и втором случаях. Получим в первом случае

Во втором . Отсюда, исключая x и y , имеем
, откуда S = 6 км.

5. В треугольнике ABC провели биссектрису BL . Оказалось, что . Докажите, что треугольник ABL – равнобедренный.

Решение. По свойству биссектрисы имеем BC:AB = CL:AL. Умножая это равенство на , получаем , откуда BC:CL = AC:BC . Последнее равенство влечет подобие треугольников ABC и BLC по углу C и прилегающим к нему сторонам. Из равенства соответствующих углов в подобных треугольниках получаем , откуда в

треугольнике ABL углы при вершинах A и B равны, т.е. он равнобедренный: AL = BL .

6. По определению, . Какой сомножитель нужно вычеркнуть из произведения , чтобы оставшееся произведение стало квадратом некоторого натурального числа?

Ответ. 10!

Решение. Заметим, что

x = 0,5 и составляет 0,25.

2. Отрезки AM и BH - соответственно медиана и высота треугольника ABC .

Известно, что AH = 1 и . Найти длину стороны BC .

Ответ. 2 см.

Решение. Проведём отрезок МН, он будет медианой прямоугольного треугольника BHC , проведённой к гипотенузе BC и равен её половине. Тогда – равнобедренный, поэтому , значит, , поэтому, AH = HM = MC = 1 и BC = 2MC = 2 см.

3. При каких значениях числового параметра а неравенство верно при всех значениях х ?

Ответ . .

Решение . При имеем , что неверно.

При 1 сократим неравенство на , сохраняя знак:

Такое неравенство верно для всех х только при .

При сократим неравенство на , меняя знак на противоположный: . Но квадрат числа никогда не бывает отрицательным.

4. Есть один килограмм 20%-ного соляного раствора. Лаборант поместил колбу с этим раствором в аппарат, в котором выпаривается вода из раствора и одновременно с этим в него с постоянной скоростью, равной 300 г./ч., подливается 30%-ный раствор этой же соли. Скорость выпаривания также постоянна и составляет 200 г./ч. Процесс останавливается, как только в колбе окажется 40%-ный раствор. Какова будет масса полученного раствора?

Ответ. 1,4 килограмма.

Решение. Пусть t - время, в течение которого работал аппарат. Тогда по окончании работы в колбе получилось 1 + (0,3 – 0,2)t = 1 + 0,1t кг. раствора. При этом масса соли в этом растворе равна 1 · 0,2 + 0,3 · 0,3 · t = 0,2 + 0,09t. Так как полученный раствор содержит 40% соли, получаем
0,2 + 0,09t = 0,4(1 + 0,1t), то есть 0,2 + 0,09t = 0,4 + 0,04t, отсюда t = 4 ч. Следовательно, масса полученного раствора равна 1 + 0,1 · 4 = 1,4 кг.

5. Сколькими способами среди всех натуральных чисел от 1 до 25 можно выбрать 13 различных так, чтобы сумма любых двух выбранных чисел не равнялась 25 или 26?

Ответ. Единственным.

Решение. Запишем все наши числа в следующем порядке: 25,1,24,2,23,3,…,14,12,13. Ясно, что любые два из них равны в сумме 25 или 26 тогда и только тогда, когда являются в этой последовательности соседними. Таким образом, среди выбранных нами тринадцати чисел не должно быть соседних, откуда сразу получаем, что это должны быть все члены этой последовательности с нечётными номерами – выбор единственный.

6. Пусть k – натуральное число. Известно, что среди 29 последовательных чисел 30k+1, 30k+2, ..., 30k+29 имеется 7 простых. Докажите, что первое и последнее из них – простые.

Решение. Вычеркнем из этого ряда числа, кратные 2, 3 или 5. Останется 8 чисел: 30k+1, 30k+7, 30k+11, 30k+13, 30k+17, 30k+19, 30k+23, 30k+29. Допустим, что среди них есть составное число. Докажем, что это число кратно 7. Первые семь этих чисел дают разные остатки при делении на 7, т. к. числа 1, 7, 11, 13, 17, 19, 23 дают разные остатки при делении на 7. Значит, одно из этих чисел кратно 7. Заметим, что число 30k+1 не кратно 7, иначе 30k+29 также будет кратно 7, а составное число должно быть ровно одно. Значит, числа 30k+1 и 30k+29 - простые.


Часто бывает так, что серьёзное увлечение математикой начинается с решения какой-либо понравившейся нестандартной задачи. Такая задача может встретиться на уроке в школе, на занятии математического кружка, в журнале или книге. Богатым источником таких задач служат различные олимпиады – от школьных, районных и городских до международных.

Решение олимпиадных задач обычно не требует знаний, выходящих за рамки школьной программы. Такие задачи, как правило сформулированы так, что они не принадлежат ни к одному из стандартных типов задач школьного математического курса. Поэтому решение каждой такой задачи требует особого подхода, наличие способности к интенсивному творческому труду. Умение решать нестандартные задачи свидетельствует о глубоком владение математическим аппаратом и развитой культуре математического мышления, а владение предметом гораздо важнее, чем просто «чистые знания», которые всегда можно пополнить с помощью хороших справочников.

Ниже приведены ссылки на страницы сайта с задачами олимпиадного уровня. Задачи распределены по тематикам, но деление это условно – часто одна и та же задача может быть отнесена к различным рубрикам, поэтому имеет смысл не ограничиваться просмотром только одной. Каждая страница начинается с небольшого теоретического материала. Иногда это несколько предложений, иногда – неплохой справочник, на который стоит обратить внимание. По каждой теме предложено 10 задач с достаточно подробными решениями, иногда несколькими способами, и 5 задач без решений для самостоятельного разбора.

Олимпиадные задачи по темам

Логические задачи

Цифры и десятичная система счисления

Делимость целых чисел и остатки

Простые и составные числа

Суммы и произведения

Уравнения в целых числах

Рациональные и иррациональные числа

Метод математической индукции

Квадратный трёхчлен

Алгебра многочленов

Доказательство неравенств

Принцип Дирихле

Графы, отображения

Чётность. Раскраска. Задачи на решётках

Инварианты и операции

Оценки для наборов чисел и таблиц. Принцип крайнего

Расстановки цифр и целых чисел, их преобразования

Комбинаторная геометрия

Игры, преследования, стратегии и алгоритмы

Элементы теории вероятностей

Принципы решения нестандартных задач

При решении нестандартных задач могут помочь следующие общие принципы:

  • преобразовать задачу к виду, удобному для решения;
  • решить задачу для частного, наиболее простого случая, а затем обобщить идею решения;
  • предположить, что утверждение задачи – ложное; если из этого предположения получим противоречие, то утверждение задачи верно – доказательство от противного;
  • разбить задачу на несколько простых подзадач;
  • обобщить задачу; часто исследования более общей проблемы требует меньших усилий, чем исследование её частного случая – «парадокс изобретателя».
  • Внимательно прочитайте условия задач и определите порядок, в котором будете их решать (лучше начинать с легких задач, которые, как правило, размещены в начале).
  • Если условие задачи можно понять по разному, то не выбирайте удобную для себя трактовку, а обратитесь за консультацией к членам жюри.
  • Если неясно, верно ли некоторое утверждение, попробуйте его доказать или опровергнуть.
  • Не зацикливайтесь на одной задаче. Если нет идеи решения, то задачу лучше (хотя бы на время) отложить.
  • Решив задачу, сразу оформляйте решение. Это поможет проверить его правильность и освободит внимание для других задач.
  • Каждый, даже очевидный, шаг решения нужно записывать. Громоздкие решения лучше записывать в виде нескольких утверждений (лем).
  • Перед тем, как сдать работу, перечитайте её «глазами членов жюри» – смогут ли они в ней разобраться?

Критерии оценивания олимпиадных работ

Цель математической олимпиады – выявить учащихся, способных нестандартно (и при этом правильно) думать и применять полученные в школе знания к решению «нешкольных» задач. Поэтому часто при проверке работ описки и мелкие ошибки прощаются. В последние годы традиционной является такая система оценок:

  • 7 баллов – задача решена правильно;
  • 6 баллов – задача решена, но есть мелкие замечания к решению (например, не рассмотрены некоторые простые частные случаи);
  • 5 баллов – задача решена в целом, недостатки решения легко устраняются;
  • 3-4 балла – задача решена «наполовину», т.е. ход решения правильный, есть значительный прогресс в решении, но полное решение требует дополнительных существенных идей;
  • 1-2 балла – задача не решена, но подход к решению правильный или задача решена для простых частных случаев;
  • 0 баллов – решение задачи неправильное и не содержит идей с помощью которых задача может быть решена, или задача не решалась.

Как правило, жюри олимпиады разрабатывает критерии оценки решений и начисления баллов по каждой задачей отдельно. Эти критерии могут отличаться от приведенных выше. При этом часто за решение простых (по мнению жюри) задач начисляются только такие оценки: 7 баллов, 6 баллов, 1 балл и 0 баллов.

Удачи!

Итак, вы решили заняться олимпиадной математикой. Выберите из предложенного выше списка тематику. Затем задачу, которая покажется вам наиболее интересной по формулировке и, стараясь не заглядывать в решения, начинайте размышлять над ней. Не бойтесь потратить на это многие и многие часы. Советский математик – Б.Н. Делоне говорил, что, большое научное открытие отличается от хорошей олимпиадной задачи только тем, что для решения олимпиадной задачи требуется 5 часов, а получение крупного научного результата требует затраты 5000 часов. И хотя 5000 часов можно воспринять как некоторое преувеличение, зато не только 5 часов, 5 дней (!) – далеко не предел потраченному времени на нестандартную задачу.

Решение олимпиадных задач – одна из основ подготовки к будущей научной деятельности, а для профессионального математика, который работает над трудной проблемой, является типичной способность напряженного размышления над ней целыми днями, неделями, а порой (возможно, в это трудно поверить) годами.

Если вы уже достигли, каких-либо успехов на олимпиадах, – этому естественно радоваться и даже гордиться этим. Неудачи же не должны чрезмерно огорчать и приводить к разочарованию в своих математических способностях. Для успеха на олимпиаде необходимы некоторые специальные типы одарённости, которые присущи далеко не всем и не обязательны для успешного математика. Уже само наличие назначенного очень ограниченного промежутка времени для решения задач многих делает совершенно беспомощными. Так выдающийся советский математик П.С. Александров (1896–1982) говорил, что если бы во времена его юности были математические олимпиады, то, возможно, он вообще не сделался бы математиком: его главные достижения в математике явились не плодом быстро работающей изобретательности, а итогом длительного и углубленного созерцания.

И ещё, – не откладывайте занятия математикой на потом, прислушайтесь к словам знаменитого американского математика и философа, основоположника кибернетики и теории искусственного интеллекта Норберта Винера (1894–1964): "Математика – наука молодых. Иначе и не может быть. Занятия математикой – это такая гимнастика ума, для которой нужны вся гибкость и вся выносливость молодости."