В чем измеряется скорость звука. Скорость звуковых волн в разных химических средах

СКОРОСТЬ ЗВУКА - скорость распространения в среде упругой волны. Определяется упругостью и плотностью среды. Для , бегущей без изменения формы со скоростью с в направлении оси х , звуковое давление р можно представить в виде р = р(х - - ct) , где t - время. Для плоской гармония, волны в среде без дисперсии и С. з. выражается через частоту w и k ф-лой с = w/k. Со скоростью с распространяется фаза гармонич. волны, поэтому с наз. также фазовой С. з. В средах, в к-рых форма произвольной волны меняется при распространении, гармонич. волны тем не менее сохраняют свою форму, но фазовая скорость оказывается различной для разных частот, т. е. имеет место дисперсия звука .В этих случаях пользуются также понятием групповой скорости . При больших амплитудах появляются нелинейные эффекты (см. Нелинейная акустика ),приводящие к изменению любых волн, в т. ч. и гармонических: скорость распространения каждой точки профиля волны зависит от величины давления в этой точке, возрастая с ростом давления, что и приводит к искажению формы волны.

Скорость звука в газах и жидкостях . В газах и жидкостях звук распространяется в виде объёмных волн сжатия - разряжения. Если процесс распространения происходит адиабатически (что, как правило, и имеет место), т. е. изменение темп-ры в звуковой волне не успевает выравниваться и за 1 / 2 , периода тепло из нагретых (сжатых) участков не успевает перейти к холодным (разреженным), то С. з. равна , где Р - давление в веществе, - его плотность, а индекс s показывает, что производная берётся при постоянной энтропии. Эта С. з. наз. адиабатической. Выражение для С. з. может быть записано также в одной из следующих форм:

где К ад - адиабатич. модуль всестороннего сжатия вещества, - адиабатич. сжимаемость, - изотермич. сжимаемость, = - отношение теплоёмкостей при постоянных давлении и объёме.

В ограниченных твёрдых телах кроме продольных и поперечных волн имеются и др. типы волн. Так, вдоль свободной поверхности твёрдого тела или вдоль границы его с др. средой распространяются поверхностные акустические волны , скорость к-рых меньше скорости объёмных волн, характерных для данного материала. Для пластин, стержней и др. твёрдых акустич. волноводов характерны нормальные волны ,скорость к-рых определяется не только свойствами вещества, но и геометрией тела. Так, напр., С. з. для продольной волны в стержне с ст, поперечные размеры к-рого много меньше длины волны звука, отличается от С. з. в неограниченной среде с l (табл. 3):

Методы измерения С.з. можно подразделить на резонансные, интерферометрические, импульсные и оптические (см. Дифракция света на ультразвуке ).Наиб. точности измерения достигают с помощью импульсно-фазовых методов. Оптич. методы дают возможность измерять С. з. на гиперзвуковых частотах (вплоть до 10 11 -10 12 Гц). Точность абс. измерений С. з. на лучшей аппаратуре ок. 10 -3 % , тогда как точность относит. измерений порядка 10 -5 % (напр., при изучении зависимости с от темп-ры или магн. поля пли от концентрации примесей или дефектов).

Измерения С. з. используются для определения мн. свойств вещества, таких, как величина отношения теплоёмкостей для газов, сжимаемости газов и жидкостей, модулей упругости твёрдых тел, дебаевской темп-ры и др. (см. Молекулярная акустика) . Определение малых изменений С. з. является чувствит. методом фиксирования примесей в газах и жидкостях. В твёрдых телах измерение С. з. и её зависимости от разл. факторов (темп-ры, магн. поля и др.) позволяет исследовать строение вещества: зонную структуру полупроводников, строение поверхности Ферми в металлах и пр.

Лит.: Ландау Л. Д., Л и ф ш и ц Е. М., Теория упругости, 4 изд., М., 1987; их же, Гидродинамика, 4 изд., М., 1988; Бергман Л., и его применение в науке и технике, пер. с нем., 2 изд., М., 1957; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Таблицы для расчета скорости звука в морской воде, Л., 1965; Физическая акустика, под ред. У. Мэзона, пер. с англ., т. 1, ч. А, М., 1966, гл. 4; т. 4, ч. Б, М., 1970, гл. 7; Колесников А. Е., Ультразвуковые измерения, 2 изд., М., 1982; Т р у э л л Р., Э л ь б а у м Ч., Ч и к Б., Ультразвуковые методы в физике твердого тела, пер. с англ., М., 1972; Акустические кристаллы, под ред. М. П. Шаскольской, М., 1982; Красильни ков В. А., Крылов В. В., Введение в физическую акустику, М., 1984. А. Л. Полякова .

Многочисленные измерения скорости звука в различных газо­образных, жидких и однородных твердых телах показывают, что она не зависит от частоты (или длины волны), т. е. для звуковых волн дисперсия отсутствует. Лишь для многоатомных газов и жидкостей при ультразвуковых частотах была обнаружена дис­персия. Мы ограничимся изучением распространения звуковых волн в средах без дисперсии. Тогда для расчетов скорости распро­странения звуковой волны мы можем, пользоваться зависимостя­ми, полученными нами для скоростей распространения в упругих средах отдельных импульсов. Для твердых сред:

(1)

В жидких и газообразных средах распространение звука про­исходит адиабатически, так как вследствие быстрой смены сжатий и разрежений теплообмен между возмущенной и невозмущенной частями среды не успевает установиться.

Для жидких сред:

(2)

где k - модуль объемного сжатия, - адиабатический коэффи­циент объемного сжатия. Для газообразных сред:

С =
(3)

-адиабатический модуль объемного сжатия. В жид­ких и газообразных телах скорость звука меняется с изменением температуры.

Для газа имеет место известный из элементарной физики за­кон Бойля - Мариотта и Гей-Люссака:

Vp =

V -- объем газа, p - давление, - коэффициент термического расширения.

Если масса газа при изменении объема остается постоянной, то плотность его обратно пропорциональна объему. И тогда

Вместо соотношения (3) получим:

C =
(4)

Зависимость скорости звука от температуры для жидкостей более сложная.

Скорость звука в твердых телах для продольных и поперечных волн резко различается. (Это обстоятельство используется, в частности, при обработке сейсмограмм, для нахождения эпицентра землетрясения и для исследования вну­треннего строения Земли.)

Измерение скорости звука в воздухе может быть произведено с помощью эха. Для этого измеряют интервал времени t между посылкой сигнала (крик, выстрел и т. п.) и его возвращением после отражения от препятствия (горы, опушки густого леса, берега реки и т. п.).

Зная расстояние от места посылки сигнала до препятствия, легко подсчитать скорость звука:

C = (5)

Достаточно точно определяется скорость звука в воздухе и воде, если одновременно со звуковым послать из пункта А и световой сигнал - вспышку, видимую из пункта В, где производится при­ем звука. Так как скорость света имеет порядок 3-10 8 м/сек, а скорость звука 3-10 2 м/сек, т. е. составляет 0,0001% от скорости света, то в таком опыте можно считать свет распространяющимся мгновенно. Тогда, измерив в пункте В время t между приходом в него светового и звукового сигналов и зная расстояние
легко вычислить скорость звука:

C =(6)

Если мы располагаем источником звука, посылающим волны с известной частотой , и можем каким-либо способом измерить длину волны в среде, то скорость распространения звука легко подсчитать по формуле:

C =
(7)

Скорость звука в воздухе может быть измерена с помощью ус­тановки, изображенной на рисунке1.

Часть стеклянного цилин­дра, соединенного с резервуаром, заполнена водой, уровень кото­рой можно менять. К открытому концу цилиндра подносят телефонную трубку, мембрана которой колеблется с известной частотой. Частота колебаний мембраны за­дается электрическим генератором звуковых частот (ламповый при­бор, вырабатывающий переменные токи с частотами звукового диапа­зона). Волна, идущая от мембраны, и волна, отраженная от поверхно­сти воды, интерферируют в столбе воздуха над водой. Если высота столба воздуха такова, что на ней укладывается нечетное число чет­вертей волн, то в нем возникают стоячие волны с узлом на поверх­ности воды и с пучностью у от­крытого конца цилиндра. В этот момент столб в цилиндре звучитнаиболее интенсивно, так как у открытого конца лежит пучность смещений и скоростей частиц и условия отдачи энергии в окру­жающее пространство наивыгоднейшие. При изменении уровня воды в трубке звук ослабляется. Звук вновь усиливается до максимума, когда уровень воды смещается на расстояние полуволны и в воздуш­ном столбе опять укладывается нечетное число четвертей волн. Зная частоту колебаний мембраны, заданную генератором, и длину

полуволны
находим по уравнению (7) скоростьC =2

Поле звуковых волн можно сделать видимым, применяя так называемый метод Теплера. Установка для этих целей изображена на рисунке2.

Щель S освещается источником света I через лин­зу L, фокус которой совпадает с S. Линза , фокус которой также совпадает сS, посылает параллельный пучок лучей; в плоскости А с помощью объектива получают изображение щели. Изобра­жение щели закрывают шторкойD так, чтобы свет не попадал на экран. Если теперь в кювете К создать неоднородность среды, то лучи, проходя ее, отклонятся от первоначального пути и, пройдя мимо шторы, дадут на экране изображение неоднородности. Если неоднородность среды создана чередованием сжатий и разрежений в стоячей звуковой волне, то на изображении звукового поля от­четливо видны светлые и темные полосы.

Измерение скорости звука с помощью эха используется в одном из так называемых импульсных методов. Впервые ультраакусти­ческие импульсы в практике исследований применил С. Я. Соколов для изучения распространения звука в твердых телах. Колеба­ние кварца возбуждается генератором, посылающим не непрерыв­ную волну, а кратковременный импульс, состоящий из нескольких быстро затухающих электромагнитных волн. Импульс, поданный на кварц, одновременно подается на вертикальные пластины осцил­лографа Е, и в момент возникновения колебаний кварца на экране осциллографа появляется резкий «всплеск». Импульс распростра­няется от кварца через исследуемую среду до отражателя (рис. 2) и возвращается обратно к кварцу. Работа генератора рассчитывается так, чтобы к моменту возвращения отраженного импульса кварц находился в покое. Тогда вернувшийся импульс возбуж­дает колебания кварца, который в этот момент соединяется с осциллографом, и на экране появляется второй «всплеск». На экранe, таким образом, видны два «всплеска»: один, соответствующий моменту посылки импульса, другой - моменту возвращения его после отражения. На пластины осциллографа подаются от специ­ального генератора импульсы высокой частоты, создающие на экране осциллографа невысокие «всплески», отстоящие друг от друга на равных расстояниях. Они служат отметками времени. Зная их частоту, можно отсчитать время t пробега импульса. Тогда скорость звука рассчитывается по формуле (5), где - расстояние между кварцем и отражателем.

Для начала можно рассмотреть простой способ прибли­женного определения скорости звука по времени прихода эхо от удаленного холма. Если расстояние до холма не из­вестно, время же пробега звука и его эхо составляет не­сколько секунд, то, измерив это время по хорошему секун­домеру (позволяющему отсчитывать десятые Доли секунды), мы найдем неизвестное расстояние, если только мы знаем скорость звука. Или, наоборот, зная расстояние, мы можем использовать измерение времени пробега для определения скорости звуковых волн. Если точность измерения времени задается секундомером и равна 0,1 секунды, то ошибка в определении расстояния будет равна пути, который звук пробежит за это время, т. е. 34 м. Но это относится к полной длине пути туда и обратно; значит, теоретически говоря, мы можем определить расстояние до холма с точно­стью до ±17 м . Другой источник ошибок - это «время реакции» наблюдателя, т. е. промежуток времени между фактическим приходом эхо и нажатием кнопки секундомера. Хотя эта ошибка составляет заметную долю секунды и уж наверное превосходит 0,1 секунды, вряд ли есть заметная разница между временем запаздывания при пуске секундо­мера после прихода исходного звука и временем запазды­вания при остановке секундомера после прихода эхо; сле­довательно, ошибки почти полностью взаимно уничтожают­ся. Еще одна ошибка появится в тех случаях, когда исход­ный звук и эхо нарастают постепенно. Может случиться, что нарастание до максимума длится полсекунды, интенсив­ность же эхо настолько мала, что мы слышим только его максимум. В этом случае мы в первый раз нажмем кнопку спустя «время реакции» после момента прихода исходного звука, а второй раз - с таким же запаздыванием, но только после того, как эхо почти достигло своего максимума. Это легко может дать ошибку порядка 0,3 секунды, если только для эксперимента не выбраны очень резкие звуки.

Аналогичный опыт можно провести при помощи хло­пушки, если нам удастся повторять хлопки достаточно бы­стро один за другим. Предположим, что вы стоите в 30 мет­рах от большого здания и направляете на него хлопушку таким образом, что слышно отчетливое эхо. Так как звук пробегает от своего источника до здания и обратно до уха 60 м , то на этот путь ему потребуется 60/344, т. е. примерно 0,17 секунды. Если давать хлопки по два раза в одну секун­ду, то, отсчитывая время от первого хлопка как от нуля, вы услышите эхо через 0,17 секунды, второй хлопок - через 0,50 секунды, второе эхо - через 0,67 секунды, и т. д. Если ускорить следование хлопков друг за другом так, чтобы вто­рой хлопок возник через 0,17 секунды после первого, то он замаскирует эхо от первого хлопка. При достаточно регу­лярном следовании хлопков слияние эхо со следующим хлопком дает новый способ определения расстояния, - если скорость звука известна.

Темп работы хлопушки можно задавать точнее, если поль­зоваться механическим устройством, например метрономом. Но при известном навыке можно добиться достаточной пра­вильности и без этого. Некоторое практическое затруднение возникает ввиду того, что звук, издаваемый хлопушкой при сгибании стальной полоски, обычно немного громче и имеет несколько другой тембр, чем при ее разгибании. Та­ким образом, последовательные щелчки различаются по уровню и тембру, и не всегда легко поддерживать ровный ритм. Но этого все же можно добиться; кроме того, незави­симо от его практической осуществимости, полезно уяснить себе этот простой метод нахождения расстояния путем опре­деления частоты повторения хлопков, дающей слияние каж­дого эхо с последующим хлопком. Хороший способ опреде­ления критической частоты повторения хлопков - счет вторым участником опыта числа хлопков за интервал вре­мени в 5 или 10 секунд, отсчитываемый по секундомеру или секундной стрелке обыкновенных часов.

Можно воспользоваться этой же хлопушкой, чтобы убе­дительно показать концентрацию эхо в определенных на­правлениях при отражении от поверхностей различных раз­меров по отношению к длине волны звука хлопка. Диапазон частот для большинства хлопушек лежит в пределах от 3 до 10 килогерц, так что длина волны самых интенсивных звуков равна нескольким сантиметрам. Для таких длин волн отражение от здания происходит почти так же, как отражение световых волн от зеркала. Когда хлопушка на­правлена прямо на стену здания, то эхо возвращается обрат­но в том же направлении; когда же издаваемый хлопушкой звук падает на стену под косым углом, то, как показано на рис. 9, эхо направится в сторону от хлопушки. Поэтому так легко обнаружить здание, просматривая пространство при помощи хлопушки: когда рупор направлен прямо на стену, эхо звучит громче всего.

Следующий простой опыт, требующий участия двух лиц, демонстрирует поведение этих эхо, отражающихся от стены здания. Один из участников направляет хлопушку под углом 20-30° к стене по одну сторону перпендикуляра, опущенного из хлопушки на стену, а второй слушает эхо. Находясь в точке В рядом с хлопушкой, он услышит эхо не так ясно, как в точке С, лежащей сбоку и несколько позади нее. По­ложение наибольшей громкости можно предсказать на ос­новании закона зеркального отражения света, а именно: угол отражения r (угол ЕАС) равен углу падения i (угол DAB ). Результаты получатся более четкими, если слу­шатель будет стоять позади хлопушки таким образом, чтобы его уши были защищены рупором от исходных хлоп­ков. Точность наблюдений можно повысить, если установить хлопушку на треножник от фотоаппарата и медленно пово­рачивать ее под разными углами к стенке. Слушатель мо­жет либо двигаться взад и вперед, отмечая точки, в которых эхо слышно яснее всего, либо стоять неподвижно в тех или иных точках, в то время как первый экспериментатор будет медленно поворачивать хлопушку туда и обратно, направо и налево, согласно инструкциям наблюдателя. Поразитель­но, насколько точно такие опыты подтверждают правиль­ность закона о равенстве угла отражения углу падения.

Вот пример совсем иных обстоятельств, когда легко наблюдается простой тип эхолокации. Если, проезжая в автомобиле, открыть окно, то будет слышен целый ряд звуков: шумы мотора, шин, воздуха, проносящегося мимо окон. Когда машина проезжает рядом с высокой каменной стеной, или через туннель, или близко от какой бы то ни было поверхности больших размеров, то тембр всех этих звуков изменяется. Цепочку бетонных столбов железнодо­рожной ограды, каменные столбы, поддерживающие желез­ную решетку, и даже ряд столбов деревянного забора можно обнаружить по быстрому следованию ряда свистящих зву­ков, слышных при движении автомашины мимо них. Проез­жая по знакомой дороге, попробуйте прислушаться, закрыв глаза; вы будете удивлены, как много мест вы узнаете на слух. Если вы обнаружили ряд ясно «слышимых» столбов ограды, сравните вызванный ими звуковой эффект с тем, который вы слышите, когда проезжаете по туннелю. Когда вы едете вдоль ограды, то слышны в основном звуки высо­кой частоты, возвращающиеся как эхо от сравнительно ма­лых поверхностей. В туннеле же большая поверхность стен отразит почти весь набор звуков, издаваемых автомашиной. Если вы будете тщательно следить за этими звуками, в то время как машина движется примерно с постоянной скоро­стью, то увидите, что можно научиться различать на слух многие типы препятствий, в том числе и стоящие авто­машины, по эхо от них, добавляющимся к примерно постоян­ным звукам вашей собственной машины.

Летучие мыши и люди пользуются эхо для обнаружения меньших и труднее уловимых объектов, чем стены зданий, и как только мы обращаемся к малым предметам, становятся важными некоторые интересные свойства отраженных волн. Приобретя некоторый навык работы с хлопушкой, интересно испробовать ее на деревьях, телефонных столбах и других объектах, которые легко найти на открытом воздухе вдали от других отражающих предметов. При навыке и внимании можно научиться обнаруживать деревья диаметром в 6 дюй­мов с расстояния в несколько футов, а когда вы этого добь­етесь, вы снова можете попросить кого-нибудь направить хлопушку на дерево, в то время как вы - слушающий на­блюдатель - будете переходить с места на место, разыскивая положение, где эхо звучит гром­че всего. В этом случае обычно можно обнаружить, что эхо бу­дет слышно в значительно боль­шем диапазоне углов, чем гром­кое эхо от здания. Это объясня­ется тем, что диаметр дерева лишь немного превышает одну длину волны, и поэтому, как по­казано на рис. 10, эхо распро­страняется во много большем диапазоне направлений. По той же причине, по которой рупор с размерами меньше одной длины волны не может сконцентриро­вать звук, эхо от малых объек­тов рассеивается во все стороны. Если вам удастся услышать эхо от деревьев или столбов диа­метром в одну или две длины волны, то вы обнаружите, что они почти одинаково громки под самыми разными углами. Но, конечно, ни под каким углом не получится такое громкое эхо, как от больших объектов, напри­мер от здания. Та же законо­мерность справедлива и для световых волн и для поверхно­стных волн на воде; выполнив опыты в водяной ванне, вы увидите, что длинные объекты дают зеркальное отражение поверхностных волн а предметы с размерами порядка одной длины волны рассеивают их во все стороны.

Различие между зеркальным отражением и рассеянием волн можно изучать в демонстрационной водяной ванне или даже в ванне для купанья, хотя в ней поверхностные волны видны не так ясно. Подобно тому как эхо от коротких звуков слышны лучше, чем от длинных, эхо для поверхностных волн легче наблюдать, возбуждая короткие цуги (импуль­сы). Вероятно именно поэтому водяные жуки так часто пре­рывают свои плавательные движения - для образования интервалов затишья, во время которых легче ощутить вол­ны, отраженные от предметов, находящихся на поверхности воды в некотором отдалении. Если легким ударом о воду возбудить короткий цуг поверхностных волн, то нетрудно увидеть их отражение от края демонстрационной ванны или даже ванны для купанья. Если опустить в воду предмет с размерами порядка одной длины волны (например, корот­кий кусок деревянной палки или деревянную пробку) так, чтобы его ось была перпендикулярна к поверхности воды, то, присмотревшись внимательно, можно увидеть слабые волны, рассеиваемые почти по всем направлениям от этого источника поверхностных эхо. Само собой разумеется, что всякие другие мешающие волны должны отсутствовать, но коль скоро это явление удалось наблюдать, интересно пере­ходить от одного размера цилиндрического объекта к дру­гому, начиная от наименьших размеров, при которых эхо еще удается заметить, и кончая большими объектами, на много превышающими по размерам длину волны.

Эти опыты убедительно демонстрируют существенное различие между остро направленным зеркальным отраже­нием и всесторонним рассеянием от малых источников эхо. Ниже мы увидим, какоеважное значение приобретут эти два главных типа отражений, когда мы перейдем от рассмот­рения физической стороны эхо к практическому использо­ванию эхо человеком, а также летучими мышами и другими животными, выработавшими столь тонкие и точные методы эхолокации для повседневного применения.

На правах рукописи

Федеральное агентство по образованию

Волгоградский государственный

архитектурно-строительный университет

Кафедра физики

ОПРЕДЕЛЕНИЕ СКОРОСТИ ЗВУКА

МЕТОДОМ СТОЯЧИХ ВОЛН

Волгоград 2010

Определение скорости звука методом стоячих волн: Метод. указания к лабораторной работе / Сост. ; ВолгГАСА, Волгоград. 2002, 9 с.

Целью настоящей работы является измерение скорости звука в воздухе. Дано определение стоячей волны, рассмотрен механизм образования стоячей волны. Рассмотрена методика определения скорости звука методом стоячих волн. Описан порядок выполнения работы . Даны правила техники безопасности и приведены контрольные вопросы.

Для студентов всех специальностей по дисциплине «Физика»

Ил. 3. Табл. 2. Библиогр. 4 назв.

© Волгоградская государственная архитектурно-строительная академия, 2002

© Составление, 2002

Цель работы ─ измерение скорости звука в воздухе.

Приборы и принадлежности : звуковой генератор, измерительная труба с микрофоном и телефоном.

1. ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Целью работы является определение скорости звука методом стоячих волн. Звук – это упругие волны, воспринимаемые ухом человека (обычно в частотном диапазоне от 20 Гц до 20 кГц). Упругие волны с частотой менее 20 Гц называются инфразвуком, с частотой более 20 кГц – ультразвуком.

Независимо от того, является ли упругая волна продольной или поперечной, ее распространение описывается уравнением бегущей волны для некоторой величины, характеризующей колебательный процесс, которая называется смещением Для волн в твердом теле – это смещения колеблющихся частиц (поперечные волны), для продольных волн в жидкости или газе величиной https://pandia.ru/text/78/365/images/image003_61.gif" width="173" height="25 src=">.gif" width="124" height="25"> – фаза плоской волны, – начальная фаза колебаний (в точке с https://pandia.ru/text/78/365/images/image008_38.gif" width="48 height=24" height="24">.gif" width="77" height="23"> где λ – длина волны. Длиной волны λ называется расстояние, на которое распространяется гармоническая волна за время, равное периоду колебаний: , где υ – скорость волны, называемая фазовой скоростью. Эту величину определяют в данной работе. Экспериментальное значение υ надо сравнить с теоретическим.

Если две различные когерентные волны, исходящие из разных источников, перекрываются в некоторой области, то в области перекрытия волн колебания налагаются друг на друга, происходит сложение (интерференция) волн, в результате чего колебания в одних местах получаются более сильные, а в других более слабые.

Особым примером интерференции двух волн служат стоячие волны. Стоячие волны возникают в результате сложения двух волн, движущихся в противоположных направлениях. Одна из них – это волна, возбуждаемая источником и распространяющаяся вдоль оси абсцисс; ее уравнение имеет вид

. Вторая волна возникает вследствие отражения первой волны от преграды и распространяется в направлении отрицательных значений оси абсцисс, что приводит к изменению знака при координате. Кроме того, следует учесть, что при отражении фаза волны может меняться. Уравнение отраженной волны имеет вид: .

Уравнение стоячей волны запишется следующим образом: .

После элементарных преобразований получится: https://pandia.ru/text/78/365/images/image016_21.gif" width="112" height="28 src=">.gif" width="49" height="23 src="> можно определить координаты узлов. Из условия следует: где целое число n = 0, 1, 2, 3… ..gif" width="113" height="45"> (3)

Координаты пучностей находятся из условия отрицательный знак при амплитуде означает, что при переходе через узел фаза стоячей волны меняется на противоположную, итак, для пучностей следовательно, Выразив вновь волновое число k через длину волны получим: https://pandia.ru/text/78/365/images/image027_2.jpg" width="254" height="148">

left">

Рис. 1. Схема образования стоячей волны

Первая фотография соответствует моменту, когда отклонения достигают наибольшего абсолютного значения. Последующие «фотографии» сделаны с интервалами в четверть периода. Стрелками показаны скорости частиц.

Из опытов было установлено, что скорость звука зависит только от давления https://pandia.ru/text/78/365/images/image031_9.gif" width="17 height=19" height="19"> т. е.

https://pandia.ru/text/78/365/images/image033_10.gif" width="64" height="47 src="> (6)

где https://pandia.ru/text/78/365/images/image035_11.gif" width="16 height=19" height="19"> – его абсолютная температура, – универсальная газовая постоянная.

Подставив выражение (6) в выражение (5), получим

υ ~https://pandia.ru/text/78/365/images/image038_10.gif" width="72" height="45 src=">; (8)

где γ – отношение теплоемкости газа при постоянном давлении к теплоемкости газа при постоянном объеме.

Водород" href="/text/category/vodorod/" rel="bookmark">водороде . Зависимость скорости звука в м/с от молярной массы и температуры приведена в таблице.

0 " style="margin-left:5.4pt;border-collapse:collapse;border:none">

Скорость, м/с

Скорость, м/с

Водород (0°С)

Воздух (20°С)

Кислород (0°С)

Воздух (0°С)

Углекислый газ (0°С)

Весьма существенно, что скорость звука не зависит от частоты. Такая зависимость сделала бы невозможной или сильно затрудненной речь и не позволила бы наслаждаться музыкой.

2. МЕТОДИКА ИЗМЕРЕНИЯ



Напряжение звуковой частоты от генератора (рис. 2) передается на телефонное устройство, вызывая колебания мембраны.

Рис. 2. Принципиальная схема установки

Возникающая звуковая волна распространяется по трубе и воспринимается микрофоном, преобразуя колебания в электрический сигнал. Этот сигнал подается на вертикальные пластины осциллографа и воспроизводится в виде полосы на экране. Интерференция падающей и отраженной от микрофона волны приводит к образованию стоячей волны, если выполняется условие резонанса:

https://pandia.ru/text/78/365/images/image043_7.gif" width="19" height="25 src="> в резонансное положение (рис. 3), можно на основании (4) записать


https://pandia.ru/text/78/365/images/image029_11.gif" width="15" height="16">.gif" width="57" height="20 src="> (11)

3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Включить звуковой генератор и осциллограф в сеть.

2. Установить частоту генератора в соответствии с заданием, подобрать громкость звука.

3. Вращая ручку перемещения телефона, установить телефон в начало шкалы.

4. Перемещая телефон в сторону возрастания, определить число пучностей, укладывающихся на всей длине. Определить положения первой и последней пучностей. Измерение проделать три раза. Найти среднее значение

https://pandia.ru/text/78/365/images/image050_7.gif" width="136" height="48 src=">

где https://pandia.ru/text/78/365/images/image052_7.gif" width="115" height="51 src="> а скорость звука . Результаты записать в таблицу.

5. Аналогичным способом измерить скорости звука при других частотах и https://pandia.ru/text/78/365/images/image056_6.gif" width="139" height="52 src=">

7..gif" width="64" height="24 src="> см.

https://pandia.ru/text/78/365/images/image060_6.gif" width="56" height="22 src=">, R=8,31·103 Дж/(кмоль· К); кг/кмоль.

T = t ºC+273º– температура по шкале Кельвина.

Таблица 2

ЗАДАНИЕ ДЛЯ УЧЕБНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЫ

Выполнить лабораторную работу в компьютерном варианте по исследованию свойств стоячей волны (программный пакет «Виртуальная физика» «Стратум»).

ТЕХНИКА БЕЗОПАСНОСТИ

· Установка включается в сеть 220 В.

· Соблюдайте осторожность при работе. Избегайте контакта в местах касания токов или проводов.

· Не допускайте перегрева установки.

· В случае неисправности обратитесь к преподавателю или вызовите дежурного лаборанта.

· После выполнения работы отключайте установку от сети.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Записать уравнение плоской бегущей гармонической волны и объяснить смысл входящих в него величин.

2. Как образуется стоячая волна? Записать уравнение стоячей волны и объяснить его.

Записать уравнения узлов и пучностей. Показать на рисунке их расположение. Объяснить распространение звуковой волны в газе. Записать и объяснить выражение для определения скорости звука в газе. Что такое звук, от чего зависят характеристики звука (громкость, высота тона, тембр, скорость)? Объяснить метод измерения скорости звука в данной работе. Задача . Определить длину волны, если расстояние между первой и четвертой пучностями стоячей волны равно 15 см. Найти расстояние между соседними узлами и пучностями.

8. Задача . Во сколько раз скорость распространения звука летом (температура +27ºС) больше скорости распространения звука зимой (температура –33 ºС)?

9. Задача . По стальному рельсу ударяют молотком. Наблюдатель, приложив ухо к рельсу, услышал звук на 3 секунды раньше, чем он дошел по воздуху. На каком расстоянии от наблюдателя был произведен удар? Скорость распространения звука в воздухе считать 340 м/с.

Библиографический список

1. Курс физики. М.: Высш. шк., 1999. § 157, 158.

2. Савельев И. В . Курс общей физики. Т.1 М.: Высш. шк., 1986. § 84, 87.

3. Курс физики. Т.1/, . М.: Высш. шк., 1985. §1.3, 1.4, 1.5.

4. Геворкян Р. Г . Курс физики. М.: Высш. шк., 1979. § 26, 27, 28

Частота, Гц

Число пучностей

к 1 =

к 2 =

Положения

пучностей

L1 , см

Lk , см

L1 , см

Lk , см

L1 , см

Lk , см

Измерение 1

Измерение 2

Измерение 3

Большинство людей прекрасно понимают, что такое звук. Он ассоциируется со слухом и связан с физиологическими и психологическими процессами. В головном мозге осуществляется переработка ощущений, которые поступают через органы слуха. Скорость звука зависит от многих факторов.

Звуки, различаемые людьми

В общем смысле слова звук - это физическое явление, которое вызывает воздействие на органы слуха. Он имеет вид продольных волн различной частоты. Люди могут слышать звук, частота которого колеблется в пределах 16-20000 Гц. Эти упругие продольные волны, которые распространяются не только в воздухе, но и в других средах, достигая уха человека, вызывают звуковые ощущения. Люди могут слышать далеко не все. Упругие волны частотой меньше 16 Гц называют инфразвуком, а выше 20000 Гц - ультразвуком. Их человеческое ухо не может слышать.

Характеристики звука

Различают две основные характеристики звука: громкость и высоту. Первая из них связана с интенсивностью упругой звуковой волны. Существует и другой важный показатель. Физической величиной, которая характеризует высоту, является частота колебаний упругой волны. При этом действует одно правило: чем она больше, тем звук выше, и наоборот. Еще одной важнейшей характеристикой является скорость звука. В разных средах она бывает различной. Она представляет собой скорость распространения упругих звуковых волн. В газовой среде этот показатель будет меньше, чем в жидкостях. Скорость звука в твердых телах самая высокая. При этом для волн продольных она всегда больше, чем для поперечных.

Скорость распространения звуковых волн

Этот показатель зависит от плотности среды и ее упругости. В газовых средах на него действует температура вещества. Как правило, скорость звука не зависит от амплитуды и частоты волны. В редких случаях, когда эти характеристики оказывают влияние, говорят о так называемой дисперсии. Скорость звука в парах или газах колеблется в пределах 150-1000 м/с. В жидких средах она составляет уже 750-2000 м/с, а в твердых материалах - 2000-6500 м/с. В нормальных условиях скорость звука в воздухе достигает 331 м/с. В обычной воде - 1500 м/с.

Скорость звуковых волн в разных химических средах

Скорость распространения звука в разных химических средах неодинакова. Так, в азоте она составляет 334 м/с, в воздухе - 331, в ацетилене - 327, в аммиаке - 415, в водороде - 1284, в метане - 430, в кислороде - 316, в гелии - 965, в угарном газе - 338, в углекислоте - 259, в хлоре - 206 м/с. Скорость звуковой волны в газообразных средах возрастает с повышением температуры (Т) и давления. В жидкостях она чаще всего уменьшается при увеличении Т на несколько метров за секунду. Скорость звука (м/с) в жидких средах (при температуре 20°С):

Вода - 1490;

Этиловый спирт - 1180;

Бензол - 1324;

Ртуть - 1453;

Углерод четыреххлористый - 920;

Глицерин - 1923.

Из вышеуказанного правила исключением является только вода, в которой с ростом температуры увеличивается и скорость звука. Своего максимума она достигает при нагревании этой жидкости до 74°С. При дальнейшем повышении температуры скорость звука уменьшается. При увеличении давления она будет увеличиваться на 0,01%/1 Атм. В соленой морской воде с ростом температуры, глубины и солености будет повышаться и скорость звука. В других средах этот показатель изменяется по-разному. Так, в смеси жидкости и газа скорость звука зависит от концентрации ее составляющих. В изотопном твердом теле она определяется его плотностью и модулями упругости. В неограниченных плотных средах распространяются поперечные (сдвиговые) и продольные упругие волны. Скорость звука (м/с) в твердых веществах (продольной/поперечной волны):

Стекло - 3460-4800/2380-2560;

Плавленый кварц - 5970/3762;

Бетон - 4200-5300/1100-1121;

Цинк - 4170-4200/2440;

Тефлон - 1340/*;

Железо - 5835-5950/*;

Золото - 3200-3240/1200;

Алюминий - 6320/3190;

Серебро - 3660-3700/1600-1690;

Латунь - 4600/2080;

Никель - 5630/2960.

В ферромагнетиках скорость звуковой волны зависит от величины напряженности магнитного поля. В монокристаллах скорость звуковой волны (м/с) зависит от направления ее распространения:

  • рубин (продольная волна) - 11240;
  • сульфид кадмия (продольная/поперечная) - 3580/4500;
  • ниобат лития (продольная) - 7330.

Скорость звука в вакууме равняется 0, поскольку в такой среде он просто не распространяется.

Определение скорости звука

Все то, что связано со звуковыми сигналами, интересовало наших предков еще тысячи лет назад. Над определением сущности этого явления работали практически все выдающиеся ученые древнего мира. Еще античные математики установили, что звук обуславливается колебательными движениями тела. Об этом писали Евклид и Птолемей. Аристотель установил, что скорость звука отличается конечной величиной. Первые попытки определения данного показателя были предприняты Ф. Бэконом в XVII в. Он пытался установить скорость путем сравнения временных промежутков между звуком выстрела и вспышкой света. На основании этого метода группа физиков Парижской Академии наук впервые определила скорость звуковой волны. В различных условиях эксперимента она составляла 350-390 м/с. Теоретическое обоснование скорости звука впервые в своих «Началах» рассмотрел И. Ньютон. Произвести правильное определение этого показателя получилось у П.С. Лапласа.

Формулы скорости звука

Для газообразных сред и жидкостей, в которых звук распространяется, как правило, адиабатически, изменение температуры, связанное с растяжениями и со сжатиями в продольной волне, не может быстро выравниваться за короткий период времени. Очевидно, что на этот показатель влияет несколько факторов. Скорость звуковой волны в однородной газовой среде или жидкости определяется по следующей формуле:

где β - адиабатическая сжимаемость, ρ - плотность среды.

В частных производных данная величина считается по такой формуле:

c 2 = -υ 2 (δρ/δυ) S = -υ 2 Cp/Cυ (δρ/δυ) T ,

где ρ, T, υ - давление среды, ее температура и удельный объем; S - энтропия; Cp - изобарная теплоемкость; Cυ - изохорная теплоемкость. Для газовых сред эта формула будет выглядеть таким образом:

c 2 = ζkT/m= ζRt/M = ζR(t + 273,15)/M = ά 2 T,

где ζ - величина адиабаты: 4/3 для многоатомных газов, 5/3 для одноатомных, 7/5 для двухатомных газов (воздух); R - газовая постоянная (универсальная); T - абсолютная температура, измеряемая в кельвинах; k - постоянная Больцмана; t - температура в °С; M - молярная масса; m - молекулярная масса; ά 2 = ζR/ M.

Определение скорости звука в твердом теле

В твердом теле, обладающем однородностью, существует два вида волн, различающихся поляризацией колебаний по отношению направления их распространения: поперечная (S) и продольная (P). Скорость первой (C S) всегда будет ниже, чем второй (C P):

C P 2 = (K + 4/3G)/ρ = E(1 - v)/(1 + v)(1-2v)ρ;

C S 2 = G/ρ = E/2(1 + v)ρ,

где K, E, G - модули сжатия, Юнга, сдвига; v - коэффициент Пуассона. Во время расчета скорости звука в твердом теле используются адиабатические модули упругости.

Скорость звука в многофазных средах

В многофазных средах благодаря неупругому поглощению энергии скорость звука находится в прямой зависимости от частоты колебаний. В двухфазной пористой среде она рассчитывается по уравнениям Био-Николаевского.

Заключение

Измерение скорости звуковой волны используется при определении различных свойств веществ, таких как модули упругости твердого тела, сжимаемость жидкостей и газа. Чувствительным методом определения примесей является измерение малых изменений скорости звуковой волны. В твердых телах колебание этого показателя позволяет проводить исследования зонной структуры полупроводников. Скорость звука является очень важной величиной, измерение которой позволяет узнать многое о самых разных средах, телах и других объектах научных исследований. Без умения ее определять были бы невозможны многие научные открытия.