Стандартная модель в физике. Стандартная модель физики частиц

«Мы задаёмся вопросом, почему группа талантливых и преданных своему делу людей готова посвятит жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть? На самом деле, в занятиях физиков элементарных частиц проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живём» Шон Кэрролл

Если вы всё ещё боитесь фразы квантовая механика и до сих пор не знаете, что такое стандартная модель - добро пожаловать под кат. В своей публикации я попытаюсь максимально просто и наглядно объяснить азы квантового мира, а так же физики элементарных частиц. Мы попробуем разобраться, в чём основные отличия фермионов и бозонов, почему кварки имеют такие странные названия, и наконец, почему все так хотели найти Бозон Хиггса.

Из чего мы состоим?

Ну что же, наше путешествие в микромир мы начнём с незатейливого вопроса: из чего состоят окружающие нас предметы? Наш мир, как дом, состоит из множества небольших кирпичиков, которые особым образом соединяясь, создают что-то новое, не только по внешнему виду, но ещё и по своим свойствам. На деле, если сильно к ним приглядеться, то можно обнаружить, что различных видов блоков не так уж и много, просто каждый раз они соединяются друг с другом по-разному, образуя новые формы и явления. Каждый блок - это неделимая элементарная частица, о которой и пойдёт речь в моём рассказе.

Для примера, возьмём какое-нибудь вещество, пусть у нас это будет второй элемент периодической системы Менделеева, инертный газ, гелий . Как и остальные вещества во Вселенной, гелий состоит из молекул, которые в свою очередь образованы связями между атомами. Но в данном случае, для нас, гелий немного особенный, потому что он состоит всего из одного атома.

Из чего состоит атом?

Атом гелия, в свою очередь, состоит из двух нейтронов и двух протонов, составляющих атомное ядро, вокруг которого вращаются два электрона. Самое интересное, что абсолютно неделимым здесь является лишь электрон .

Интересный момент квантового мира

Чем меньше масса элементарной частицы, тем больше места она занимает. Именно по этой причине электроны, которые в 2000 раз легче протона, занимают гораздо больше места по сравнению с ядром атома.

Нейтроны и протоны относятся к группе так называемых адронов (частиц, подверженных сильному взаимодействию), а если быть ещё точнее, барионов .

Адроны можно разделить на группы
  • Барионов, которые состоят из трёх кварков
  • Мезонов, которые состоят из пары: частица-античастица

Нейтрон, как ясно из его названия, является нейтрально заряженным, и может быть поделён на два нижних кварка и один верхний кварк. Протон, положительно заряженная частица, делится на один нижний кварк и два верхних кварка.

Да, да, я не шучу, они действительно называются верхний и нижний. Казалось бы, если мы открыли верхний и нижний кварк, да ещё электрон, то сможем с их помощью описать всю Вселенную. Но это утверждение было бы очень далеко от истины.

Главная проблема - частицы должны как-то между собой взаимодействовать. Если бы мир состоял лишь из этой троицы (нейтрон, протон и электрон), то частицы бы просто летали по бескрайним просторам космоса и никогда бы не собирались в более крупные образования, вроде адронов.

Фермионы и Бозоны

Достаточно давно учёными была придумана удобная и лаконичная форма представления элементарных частиц, названная стандартной моделью. Оказывается, все элементарные частицы делятся на фермионы , из которых и состоит вся материя, и бозоны , которые переносят различные виды взаимодействий между фермионами.

Разница между этими группами очень наглядна. Дело в том, что фермионам для выживания по законам квантового мира необходимо некоторое пространство, а для бозонов почти не важно наличие свободного места.

Фермионы

Группа фермионов, как было уже сказано, создаёт видимую материю вокруг нас. Что бы мы и где ни увидели, создано фермионами. Фермионы делятся на кварки , сильно взаимодействующие между собой и запертые внутри более сложных частиц вроде адронов, и лептоны , которые свободно существуют в пространстве независимо от своих собратьев.

Кварки делятся на две группы.

  • Верхнего типа. К кваркам верхнего типа, с зарядом +2\3, относят: верхний, очарованный и истинный кварки
  • Нижнего типа. К кваркам нижнего типа, с зарядом -1\3, относят: нижний, странный и прелестный кварки
Истинный и прелестный являются самыми большими кварками, а верхний и нижний - самыми маленькими. Почему кваркам дали такие необычные названия, а говоря более правильно, «ароматы», до сих пор для учёных предмет споров.

Лептоны также делятся на две группы.

  • Первая группа, с зарядом «-1», к ней относят: электрон, мюон (более тяжёлую частицу) и тау-частицу (самую массивную)
  • Вторая группа, с нейтральным зарядом, содержит: электронное нейтрино, мюонное нейтрино и тау-нейтрино
Нейтрино - есть малая частица вещества, засечь которую практически невозможно. Её заряд всегда равен 0.

Возникает вопрос, не найдут ли физики ещё несколько поколений частиц, которые будут еще более массивными, по сравнению с предыдущими. На него ответить трудно, однако теоретики считают, что поколения лептонов и кварков исчерпываются тремя.

Не находите никакого сходства? И кварки, и лептоны делятся на две группы, которые отличаются друг от друга зарядом на единицу? Но об этом позже...

Бозоны

Без них бы фермионы сплошным потоком летали по вселенной. Но обмениваясь бозонами, фермионы сообщают друг другу какой-либо вид взаимодействия. Сами бозоны же с друг другом практически не взаимодействуют.
На самом деле, некоторые бозоны всё же взаимодействуют друг с другом, но об этом будет рассказано более подробно в следующих статьях о проблемах микромира

Взаимодействие, передаваемое бозонами, бывает:

  • Электромагнитным , частицы - фотоны. С помощью этих безмассовых частиц передаётся свет.
  • Сильным ядерным , частицы - глюоны. С их помощью кварки из ядра атома не распадаются на отдельные частицы.
  • Слабым ядерным , частицы - ±W и Z бозоны. С их помощью фермионы перекидываются массой, энергией, и могут превращаться друг в друга.
  • Гравитационным , частицы - гравитоны . Чрезвычайно слабая в масштабах микромира сила. Становится видимой только на сверхмассивных телах.
Оговорка о гравитационном взаимодействии.
Существование гравитонов экспериментально ещё не подтверждено. Они существуют лишь в виде теоретической версии. В стандартной модели в большинстве случаев их не рассматривают.

Вот и всё, стандартная модель собрана.

Проблемы только начались

Несмотря на очень красивое представление частиц на схеме, осталось два вопроса. Откуда частицы берут свою массу и что такое Бозон Хиггса , который выделяется из остальных бозонов.

Для того, что бы понимать идею применения бозона Хиггса, нам необходимо обратиться к квантовой теории поля. Говоря простым языком, можно утверждать, что весь мир, вся Вселенная, состоит не из мельчайших частиц, а из множества различных полей: глюонного, кваркового, электронного, электромагнитного и.т.д. Во всех этих полях постоянно возникают незначительные колебания. Но наиболее сильные из них мы воспринимаем как элементарные частицы. Да и этот тезис весьма спорный. С точки зрения корпускулярно-волнового дуализма, один и тот же объект микромира в различных ситуациях ведёт себя то как волна, то как элементарная частица, это зависит лишь от того, как физику, наблюдающему за процессом, удобнее смоделировать ситуацию.

Поле Хиггса
Оказывается, существует так называемое поле Хиггса, среднее значение которого не хочет стремиться к нулю. В результате чего, это поле старается принять некоторое постоянное ненулевое значение во всей Вселенной. Поле составляет вездесущий и постоянный фон, в результате сильных колебаний которого и появляется Бозон Хиггса.
И именно благодаря полю Хиггса, частицы наделяются массой.
Масса элементарной частицы, зависит от того, насколько сильно она взаимодействует с полем Хиггса , постоянно пролетая внутри него.
И именно из-за Бозона Хиггса, а точнее из-за его поля, стандартная модель имеет так много похожих групп частиц. Поле Хиггса вынудило сделать множество добавочных частиц, таких, например, как нейтрино.

Итоги

То, что было рассказано мною, это самые поверхностные понятия о природе стандартной модели и о том, зачем нам нужен Бозон Хиггса. Некоторые учёные до сих пор в глубине души надеются, что частица, найденная в 2012 году и похожая на Бозон Хиггса в БАКе, была просто статистической погрешностью. Ведь поле Хиггса нарушает многие красивые симметрии природы, делая расчёты физиков более запутанными.
Некоторые даже считают, что стандартная модель доживает свои последние годы из-за своего несовершенства. Но экспериментально это не доказано, и стандартная модель элементарных частиц остаётся действующим образцом гения человеческой мысли.

Стандартная модель элементарных частиц считается крупнейшим достижением физики второй половины XX века. Но что лежит за ее пределами?

Стандартная модель (СМ) элементарных частиц, базирующаяся на калибровочной симметрии , — великолепное творение Мюррея Гелл-Манна, Шелдона Глэшоу, Стивена Вайнберга, Абдуса Салама и целой плеяды блестящих ученых. СМ прекрасно описывает взаимодействия между кварками и лептонами на дистанциях порядка 10−17 м (1% диаметра протона), которые можно изучать на современных ускорителях. Однако она начинает буксовать уже на расстояниях в 10−18 м и тем более не обеспечивает продвижения к заветному планковскому масштабу в 10−35 м.

Считается, что именно там все фундаментальные взаимодействия сливаются в квантовом единстве. На смену СМ когда-нибудь придет более полная теория, которая, скорее всего, тоже не станет последней и окончательной. Ученые пытаются найти замену Стандартной модели. Многие считают, что новая теория будет построена путем расширения списка симметрий, образующих фундамент СМ. Один из наиболее перспективных подходов к решению этой задачи был заложен не только вне связи с проблемами СМ, но даже до ее создания.


Частицы, подчиняющиеся статистике Ферми-Дирака (фермионы с полуцелым спином) и Бозе-Эйнштейна (бозоны с целым спином). В энергетическом колодце все бозоны могут занимать один и тот же нижний энергетический уровень, образуя конденсат Бозе-Эйнштейна. Фермионы же подчиняются принципу запрета Паули, и поэтому две частицы с одинаковыми квантовыми числами (в частности, однонаправленными спинами) не могут занимать один и тот же энергетический уровень.

Смесь противоположностей

В конце 1960-х старший научный сотрудник теоротдела ФИАН Юрий Гольфанд предложил своему аспиранту Евгению Лихтману обобщить математический аппарат, применяемый для описания симметрий четырехмерного пространства-времени специальной теории относительности (пространства Минковского).

Лихтман обнаружил, что эти симметрии можно объединить с внутренними симметриями квантовых полей с ненулевыми спинами. При этом образуются семейства (мультиплеты), объединяющие частицы с одинаковой массой, обладающие целым и полуцелым спином (иначе говоря, бозоны и фермионы). Это было и новым, и непонятным, поскольку те и другие подчиняются разным типам квантовой статистики. Бозоны могут накапливаться в одном и том же состоянии, а фермионы следуют принципу Паули, строго запрещающему даже парные союзы этого рода. Поэтому возникновение бозонно-фермионных мультиплетов выглядело математической экзотикой, не имеющей отношения к реальной физике. Так это и было воспринято в ФИАН. Позже в своих «Воспоминаниях» Андрей Сахаров назвал объединение бозонов и фермионов великой идеей, однако в то время она не показалась ему интересной.

За пределами стандарта

Где же пролегают границы СМ? «Стандартная модель согласуется почти со всеми данными, полученными на ускорителях высоких энергий. — объясняет ведущий научный сотрудник Института ядерных исследований РАН Сергей Троицкий. — Однако в ее рамки не вполне укладываются результаты экспериментов, свидетельствующие о наличии массы у двух типов нейтрино, а возможно, что и у всех трех. Этот факт означает, что СМ нуждается в расширении, а в каком именно, никто толком не знает. На неполноту СМ указывают и астрофизические данные. Темная материя, а на нее приходится более пятой части массы Вселенной, состоит из тяжелых частиц, которые никак не вписываются в СМ. Кстати, эту материю точнее было бы называть не темной, а прозрачной, поскольку она не только не излучает света, но и не поглощает его. Кроме того, СМ не объясняет почти полного отсутствия антивещества в наблюдаемой Вселенной».
Есть также возражения эстетического порядка. Как отмечает Сергей Троицкий, СМ устроена весьма некрасиво. Она содержит 19 численных параметров, которые определяются экспериментом и, с точки зрения здравого смысла, принимают весьма экзотические значения. Например, вакуумное среднее поля Хиггса, несущее ответственность за массы элементарных частиц, равно 240 ГэВ. Непонятно, почему этот параметр в 1017 раз меньше параметра, определяющего гравитационное взаимодействие. Хотелось бы иметь более полную теорию, которая даст возможность определить это отношение из каких-то общих принципов.
СМ не объясняет и огромной разницы между массами самых легких кварков, из которых сложены протоны и нейтроны, и массой top-кварка, превышающей 170 ГэВ (во всем остальном он ничем не отличается от u-кварка, который почти в 10 тысяч раз легче). Откуда берутся вроде бы одинаковые частицы со столь различными массами, пока непонятно.

Лихтман в 1971 году защитил диссертацию, а потом ушел в ВИНИТИ и почти забросил теорфизику. Гольфанда уволили из ФИАН по сокращению штатов, и он долго не мог найти работы. Однако сотрудники Украинского физико-технического института Дмитрий Волков и Владимир Акулов тоже открыли симметрию между бозонами и фермионами и даже воспользовались ею для описания нейтрино. Правда, никаких лавров ни москвичи, ни харьковчане тогда не обрели. Лишь в 1989 году Гольфанд и Лихтман получили премию АН СССР по теоретической физике имени И.Е. Тамма. В 2009 году Владимир Акулов (сейчас он преподает физику в Техническом колледже Городского университета Нью-Йорка) и Дмитрий Волков (посмертно) удостоились Национальной премии Украины за научные исследования.


Элементарные частицы Стандартной модели делятся на бозоны и фермионы по типу статистики. Составные частицы — адроны — могут подчиняться либо статистике Бозе-Эйнштейна (к таким относятся мезоны — каоны, пионы), либо статистике Ферми-Дирака (барионы — протоны, нейтроны).

Рождение суперсимметрии

На Западе смеси бозонных и фермионных состояний впервые появились в зарождающейся теории, представляющей элементарные частицы не точечными объектами, а вибрациями одномерных квантовых струн.

В 1971 году была построена модель, в которой с каждой вибрацией бозонного типа сочеталась парная ей фермионная вибрация. Правда, эта модель работала не в четырехмерном пространстве Минковского, а в двумерном пространстве-времени струнных теорий. Однако уже в 1973 году австриец Юлиус Весс и итальянец Бруно Зумино доложили в ЦЕРН (а годом позже опубликовали статью) о четырехмерной суперсимметричной модели с одним бозоном и одним фермионом. Она не претендовала на описание элементарных частиц, но демонстрировала возможности суперсимметрии на наглядном и чрезвычайно физичном примере. Вскоре эти же ученые доказали, что обнаруженная ими симметрия является расширенной версией симметрии Гольфанда и Лихтмана. Вот и получилось, что в течение трех лет суперсимметрию в пространстве Минковского независимо друг от друга открыли три пары физиков.

Результаты Весса и Зумино подтолкнули разработку теорий с бозонно-фермионными смесями. Поскольку эти теории связывают калибровочные симметрии с симметриями пространства-времени, их назвали суперкалибровочными, а потом суперсимметричными. Они предсказывают существование множества частиц, ни одна из которых еще не открыта. Так что суперсимметричность реального мира все еще остается гипотетической. Но даже если она и существует, то не может быть строгой, иначе электроны обладали бы заряженными бозонными родичами с точно такой же массой, которых легко можно было бы обнаружить. Остается предположить, что суперсимметричные партнеры известных частиц чрезвычайно массивны, а это возможно лишь при нарушении суперсимметрии.


Суперсимметричная идеология вошла в силу в середине 1970-х годов, когда уже существовала Стандартная модель. Естественно, что физики принялись строить ее суперсимметричные расширения, иными словами, вводить в нее симметрии между бозонами и фермионами. Первая реалистичная версия суперсимметричной СМ, получившая название минимальной (Minimal Supersymmetric Standard Model, MSSM), была предложена Говардом Джорджи и Савасом Димопулосом в 1981 году. Фактически это та же Стандартная модель со всеми ее симметриями, но к каждой частице добавлен партнер, чей спин отличается от ее спина на ½, — бозон к фермиону и фермион к бозону.

Поэтому все взаимодействия СМ остаются на месте, но обогащаются взаимодействиями новых частиц со старыми и друг с другом. Позднее возникли и более сложные суперсимметричные версии СМ. Все они сопоставляют уже известным частицам тех же партнеров, но различным образом объясняют нарушения суперсимметрии.

Частицы и суперчастицы

Названия суперпартнеров фермионов строятся с помощью приставки «с» — сэлектрон, смюон, скварк. Суперпартнеры бозонов обзаводятся окончанием «ино»: фотон — фотино, глюон — глюино, Z-бозон — зино, W-бозон — вино, бозон Хиггса — хиггсино.

Спин суперпартнера любой частицы (за исключением бозона Хиггса) всегда на ½ меньше ее собственного спина. Следовательно, партнеры электрона, кварков и прочих фермионов (а также, естественно, и их античастиц) имеют нулевой спин, а партнеры фотона и векторных бозонов с единичным спином — половинный. Это связано с тем, что количество состояний частицы тем больше, чем больше ее спин. Поэтому замена вычитания на сложение привела бы к появлению избыточных суперпартнеров.


Слева — Стандартная модель (СМ) элементарных частиц: фермионы (кварки, лептоны) и бозоны (переносчики взаимодействий). Справа — их суперпартнеры в Минимальной суперсимметричной стандартной модели, MSSM: бозоны (скварки, слептоны) и фермионы (суперпартнеры переносчиков взаимодействий). Пять бозонов Хиггса (на схеме обозначены одним синим символом) также имеют своих суперпартнеров — пятерку хиггсино.

Возьмем для примера электрон. Он может находиться в двух состояниях — в одном его спин направлен параллельно импульсу, в другом — антипараллельно. С точки зрения СМ это разные частицы, поскольку они не вполне одинаково участвуют в слабых взаимодействиях. Частица с единичным спином и ненулевой массой может пребывать в трех различных состояниях (как говорят физики, имеет три степени свободы) и потому не годится в партнеры электрону. Единственным выходом будет приписать каждому из состояний электрона по одному суперпартнеру с нулевым спином и считать эти сэлектроны различными частицами.

Суперпартнеры бозонов Стандартной модели возникают несколько хитрее. Поскольку масса фотона равна нулю, то и при единичном спине он имеет не три, а две степени свободы. Поэтому ему без проблем сопоставляется фотино, суперпартнер с половинным спином, который, как и электрон, обладает двумя степенями свободы. По этой же схеме возникают глюино. С хиггсами ситуация посложнее. В MSSM есть два дублета хиггсовских бозонов, которым соответствует четверка суперпартнеров — два нейтральных и два разноименно заряженных хиггсино. Нейтралы смешиваются разными способами с фотино и зино и образуют четверку физически наблюдаемых частиц с общим именем нейтралино. Подобные же смеси со странным для русского уха названием чарджино (по-английски — chargino) образуют суперпартнеры положительного и отрицательного W-бозонов и пары заряженных хиггсов.


Своей спецификой обладает и ситуация с суперпартнерами нейтрино. Если бы эта частица не имела массы, ее спин всегда был бы направлен противоположно импульсу. Поэтому у безмассового нейтрино можно было бы ожидать наличие единственного скалярного партнера. Однако реальные нейтрино все же не безмассовы. Не исключено, что существуют также нейтрино с параллельными импульсами и спинами, но они очень тяжелы и еще не обнаружены. Если это действительно так, то каждой разновидности нейтрино соответствует свой суперпартнер.

Как говорит профессор физики Мичиганского университета Гордон Кейн, самый универсальный механизм нарушения суперсимметрии связан с тяготением.

Однако величина его вклада в массы суперчастиц еще не выяснена, а оценки теоретиков противоречивы. Кроме того, он вряд ли является единственным. Так, Next-to-Minimal Supersymmetric Standard Model, NMSSM, вводит еще два хиггсовских бозона, вносящих свои добавки в массу суперчастиц (а также увеличивает число нейтралино с четырех до пяти). Такая ситуация, отмечает Кейн, резко умножает число параметров, заложенных в суперсимметричные теории.


Даже минимальное расширение Стандартной модели требует около сотни дополнительных параметров. Этому не стоит удивляться, поскольку все эти теории вводят множество новых частиц. По мере появления более полных и согласованных моделей число параметров должно уменьшиться. Как только детекторы Большого адронного коллайдера отловят суперчастицы, новые модели не заставят себя ждать.

Иерархия частиц

Суперсимметричные теории позволяют устранить ряд слабых мест Стандартной модели. Профессор Кейн на первое место ставит загадку, связанную с бозоном Хиггса, которую называют проблемой иерархии .

Эта частица приобретает массу в ходе взаимодействия с лептонами и кварками (подобно тому, как они сами обретают массы при взаимодействии с хиггсовским полем). В СМ вклады от этих частиц представлены расходящимися рядами с бесконечными суммами. Правда, вклады бозонов и фермионов имеют разные знаки и в принципе могут почти полностью погасить друг друга. Однако такое погашение должно быть практически идеальным, поскольку масса хиггса, как теперь известно, равна лишь 125 ГэВ. Это не невозможно, но крайне маловероятно.


Для суперсимметричных теорий в этом нет ничего страшного. При точной суперсимметрии вклады обычных частиц и их суперпартнеров должны полностью компенсировать друг друга. Поскольку суперсимметрия нарушена, компенсация оказывается неполной, и бозон Хиггса обретает конечную и, главное, вычисляемую массу. Если массы суперпартнеров не слишком велики, она должна измеряться одной-двумя сотнями ГэВ, что и соответствует действительности. Как подчеркивает Кейн, физики стали серьезно относиться к суперсимметрии именно тогда, когда было показано, что она решает проблему иерархии.

На этом возможности суперсимметрии не заканчиваются. Из СМ вытекает, что в области очень высоких энергий сильное, слабое и электромагнитное взаимодействия хотя и обладают примерно одинаковой силой, но никогда не объединяются. А в суперсимметричных моделях при энергиях порядка 1016 ГэВ такое объединение имеет место, и это выглядит намного естественней. Эти модели предлагают также и решение проблемы темной материи. Суперчастицы при распадах порождают как суперчастицы, так и обычные частицы — естественно, меньшей массы. Однако суперсимметрия, в отличие от СМ, допускает быстрый распад протона, которого, на наше счастье, реально не происходит.


Протон, а вместе с ним и весь окружающий мир можно спасти, предположив, что в процессах с участием суперчастиц сохраняется квантовое число R-четности, которое для обычных частиц равно единице, а для суперпартнеров — минус единице. В таком случае самая легкая суперчастица должна быть полностью стабильной (и электрически нейтральной). Распасться на суперчастицы она не может по определению, а сохранение R-четности запрещает ей распадаться на частицы. Темная материи может состоять именно из таких частиц, возникших сразу вслед за Большим взрывом и избежавших взаимной аннигиляции.

В ожидании экспериментов

«Незадолго до открытия бозона Хиггса на основе М-теории (наиболее продвинутой версии теории струн) его массу предсказали с ошибкой всего в два процента! — говорит профессор Кейн. — Были также вычислены массы сэлектронов, смюонов и скварков, которые оказались слишком велики для современных ускорителей — порядка нескольких десятков ТэВ. Суперпартнеры фотона, глюона и прочих калибровочных бозонов намного легче, и поэтому есть шансы их обнаружить на БАК».

Конечно, правильность этих вычислений ничем не гарантирована: М-теория — дело тонкое. И все же, можно ли обнаружить на ускорителях следы суперчастиц? «Массивные суперчастицы должны распадаться сразу после рождения. Эти распады происходят на фоне распадов обычных частиц, и однозначно выделить их очень непросто, — объясняет главный научный сотрудник Лаборатории теоретической физики ОИЯИ в Дубне Дмитрий Казаков. — Было бы идеально, если бы суперчастицы проявляли себя уникальным образом, который невозможно спутать ни с чем другим, но теория этого не предсказывает.


Приходится анализировать множество различных процессов и искать среди них те, которые не вполне объясняются Стандартной моделью. Эти поиски пока не увенчались успехом, но у нас уже есть ограничения на массы суперпартнеров. Те из них, которые участвуют в сильных взаимодействиях, должны тянуть как минимум на 1 ТэВ, в то время как массы прочих суперчастиц могут варьировать между десятками и сотнями ГэВ.

В ноябре 2012 года на симпозиуме в Киото были доложены результаты экспериментов на БАК, в ходе которых впервые удалось надежно зарегистрировать очень редкий распад Bs-мезона на мюон и антимюон. Его вероятность составляет приблизительно три миллиардных, что хорошо соответствует предсказаниям СМ. Поскольку ожидаемая вероятность этого распада, вычисленная на основе MSSM, может оказаться в несколько раз большей, кое-кто решил, что с суперсимметрией покончено.

Однако эта вероятность зависит от нескольких неизвестных параметров, которые могут давать как большой, так и малый вклад в конечный результат, здесь еще много неясного. Поэтому ничего страшного не произошло, и слухи о кончине MSSM сильно преувеличены. Но из этого вовсе не следует, что она неуязвима. БАК пока не работает на полную мощность, он выйдет на нее лишь через два года, когда энергию протонов доведут до 14 ТэВ. И вот если тогда не найдется никаких проявлений суперчастиц, то MSSM, скорее всего, умрет естественной смертью и настанет время новых суперсимметричных моделей.

Числа Грассмана и супергравитация

Еще до создания MSSM суперсимметрию объединили с гравитацией. Неоднократное применение преобразований, связывающих бозоны и фермионы, перемещает частицу в пространстве-времени. Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. Когда физики это поняли, они начали строить суперсимметричные обобщения ОТО, которые называются супергравитацией. Эта область теоретической физики активно развивается и сейчас.
Тогда же выяснилось, что суперсимметричным теориям необходимы экзотические числа, придуманные в XIX столетии немецким математиком Германом Гюнтером Грассманом. Их можно складывать и вычитать как обычные, но произведение таких чисел изменяет знак при перестановке сомножителей (поэтому квадрат и вообще любая целая степень грассманова числа равна нулю). Естественно, что функции от таких чисел нельзя дифференцировать и интегрировать по стандартным правилам математического анализа, нужны совершенно другие приемы. И они, к счастью для суперсимметричных теорий, уже были найдены. Их придумал в 1960-е годы выдающийся советский математик из МГУ Феликс Березин, который создал новое направление — суперматематику.

Однако есть и другая стратегия, не связанная с БАК. Пока в ЦЕРН работал электронно-позитронный коллайдер LEP, на нем искали наиболее легкие из заряженных суперчастиц, чьи распады должны порождать наилегчайших суперпартнеров. Эти частицы-предшественники легче зарегистрировать, поскольку они заряжены, а легчайший суперпартнер нейтрален. Эксперименты на LEP показали, что масса таких частиц не превышает 104 ГэВ. Это не так уж много, но их трудно обнаружить на БАК из-за высокого фона. Поэтому сейчас началось движение за постройку для их поиска сверхмощного электрон-позитронного коллайдера. Но это очень дорогая машина, в скором времени ее уж точно не построят».


Закрытия и открытия

Однако, как считает профессор теоретической физики Университета Миннесоты Михаил Шифман, измеренная масса бозона Хиггса слишком велика для MSSM, и эта модель, скорее всего, уже закрыта:

«Правда, ее пытаются спасти с помощью различных надстроек, но они столь неизящны, что имеют малые шансы на успех. Возможно, что другие расширения сработают, но когда и как, пока неизвестно. Но этот вопрос выходит за рамки чистой науки. Нынешнее финансирование физики высоких энергий держится на надежде обнаружить на БАК что-то действительно новое. Если этого не произойдет, финансирование урежут, и денег не хватит для строительства ускорителей нового поколения, без которых эта наука не сможет реально развиваться». Так что суперсимметричные теории по‑прежнему подают надежды, но ждут не дождутся вердикта экспериментаторов.

«Мы задаёмся вопросом, почему группа талантливых и преданных своему делу людей готова посвятит жизнь погоне за такими малюсенькими объектами, которые даже невозможно увидеть? На самом деле, в занятиях физиков элементарных частиц проявляется человеческое любопытство и желание узнать, как устроен мир, в котором мы живём» Шон Кэрролл

Если вы всё ещё боитесь фразы квантовая механика и до сих пор не знаете, что такое стандартная модель - добро пожаловать под кат. В своей публикации я попытаюсь максимально просто и наглядно объяснить азы квантового мира, а так же физики элементарных частиц. Мы попробуем разобраться, в чём основные отличия фермионов и бозонов, почему кварки имеют такие странные названия, и наконец, почему все так хотели найти Бозон Хиггса.

Из чего мы состоим?

Ну что же, наше путешествие в микромир мы начнём с незатейливого вопроса: из чего состоят окружающие нас предметы? Наш мир, как дом, состоит из множества небольших кирпичиков, которые особым образом соединяясь, создают что-то новое, не только по внешнему виду, но ещё и по своим свойствам. На деле, если сильно к ним приглядеться, то можно обнаружить, что различных видов блоков не так уж и много, просто каждый раз они соединяются друг с другом по-разному, образуя новые формы и явления. Каждый блок - это неделимая элементарная частица, о которой и пойдёт речь в моём рассказе.

Для примера, возьмём какое-нибудь вещество, пусть у нас это будет второй элемент периодической системы Менделеева, инертный газ, гелий . Как и остальные вещества во Вселенной, гелий состоит из молекул, которые в свою очередь образованы связями между атомами. Но в данном случае, для нас, гелий немного особенный, потому что он состоит всего из одного атома.

Из чего состоит атом?

Атом гелия, в свою очередь, состоит из двух нейтронов и двух протонов, составляющих атомное ядро, вокруг которого вращаются два электрона. Самое интересное, что абсолютно неделимым здесь является лишь электрон .

Интересный момент квантового мира

Чем меньше масса элементарной частицы, тем больше места она занимает. Именно по этой причине электроны, которые в 2000 раз легче протона, занимают гораздо больше места по сравнению с ядром атома.

Нейтроны и протоны относятся к группе так называемых адронов (частиц, подверженных сильному взаимодействию), а если быть ещё точнее, барионов .

Адроны можно разделить на группы
  • Барионов, которые состоят из трёх кварков
  • Мезонов, которые состоят из пары: частица-античастица

Нейтрон, как ясно из его названия, является нейтрально заряженным, и может быть поделён на два нижних кварка и один верхний кварк. Протон, положительно заряженная частица, делится на один нижний кварк и два верхних кварка.

Да, да, я не шучу, они действительно называются верхний и нижний. Казалось бы, если мы открыли верхний и нижний кварк, да ещё электрон, то сможем с их помощью описать всю Вселенную. Но это утверждение было бы очень далеко от истины.

Главная проблема - частицы должны как-то между собой взаимодействовать. Если бы мир состоял лишь из этой троицы (нейтрон, протон и электрон), то частицы бы просто летали по бескрайним просторам космоса и никогда бы не собирались в более крупные образования, вроде адронов.

Фермионы и Бозоны

Достаточно давно учёными была придумана удобная и лаконичная форма представления элементарных частиц, названная стандартной моделью. Оказывается, все элементарные частицы делятся на фермионы , из которых и состоит вся материя, и бозоны , которые переносят различные виды взаимодействий между фермионами.

Разница между этими группами очень наглядна. Дело в том, что фермионам для выживания по законам квантового мира необходимо некоторое пространство, а для бозонов почти не важно наличие свободного места.

Фермионы
Группа фермионов, как было уже сказано, создаёт видимую материю вокруг нас. Что бы мы и где ни увидели, создано фермионами. Фермионы делятся на кварки , сильно взаимодействующие между собой и запертые внутри более сложных частиц вроде адронов, и лептоны , которые свободно существуют в пространстве независимо от своих собратьев.

Кварки делятся на две группы.

  • Верхнего типа. К кваркам верхнего типа, с зарядом +2\3, относят: верхний, очарованный и истинный кварки
  • Нижнего типа. К кваркам нижнего типа, с зарядом -1\3, относят: нижний, странный и прелестный кварки
Истинный и прелестный являются самыми большими кварками, а верхний и нижний - самыми маленькими. Почему кваркам дали такие необычные названия, а говоря более правильно, «ароматы», до сих пор для учёных предмет споров.

Лептоны также делятся на две группы.

  • Первая группа, с зарядом «-1», к ней относят: электрон, мюон (более тяжёлую частицу) и тау-частицу (самую массивную)
  • Вторая группа, с нейтральным зарядом, содержит: электронное нейтрино, мюонное нейтрино и тау-нейтрино
Нейтрино - есть малая частица вещества, засечь которую практически невозможно. Её заряд всегда равен 0.

Возникает вопрос, не найдут ли физики ещё несколько поколений частиц, которые будут еще более массивными, по сравнению с предыдущими. На него ответить трудно, однако теоретики считают, что поколения лептонов и кварков исчерпываются тремя.

Не находите никакого сходства? И кварки, и лептоны делятся на две группы, которые отличаются друг от друга зарядом на единицу? Но об этом позже...

Бозоны
Без них бы фермионы сплошным потоком летали по вселенной. Но обмениваясь бозонами, фермионы сообщают друг другу какой-либо вид взаимодействия. Сами бозоны же с друг другом практически не взаимодействуют.
На самом деле, некоторые бозоны всё же взаимодействуют друг с другом, но об этом будет рассказано более подробно в следующих статьях о проблемах микромира

Взаимодействие, передаваемое бозонами, бывает:

  • Электромагнитным , частицы - фотоны. С помощью этих безмассовых частиц передаётся свет.
  • Сильным ядерным , частицы - глюоны. С их помощью кварки из ядра атома не распадаются на отдельные частицы.
  • Слабым ядерным , частицы - ±W и Z бозоны. С их помощью фермионы перекидываются массой, энергией, и могут превращаться друг в друга.
  • Гравитационным , частицы - гравитоны . Чрезвычайно слабая в масштабах микромира сила. Становится видимой только на сверхмассивных телах.
Оговорка о гравитационном взаимодействии.
Существование гравитонов экспериментально ещё не подтверждено. Они существуют лишь в виде теоретической версии. В стандартной модели в большинстве случаев их не рассматривают.

Вот и всё, стандартная модель собрана.

Проблемы только начались

Несмотря на очень красивое представление частиц на схеме, осталось два вопроса. Откуда частицы берут свою массу и что такое Бозон Хиггса , который выделяется из остальных бозонов.

Для того, что бы понимать идею применения бозона Хиггса, нам необходимо обратиться к квантовой теории поля. Говоря простым языком, можно утверждать, что весь мир, вся Вселенная, состоит не из мельчайших частиц, а из множества различных полей: глюонного, кваркового, электронного, электромагнитного и.т.д. Во всех этих полях постоянно возникают незначительные колебания. Но наиболее сильные из них мы воспринимаем как элементарные частицы. Да и этот тезис весьма спорный. С точки зрения корпускулярно-волнового дуализма, один и тот же объект микромира в различных ситуациях ведёт себя то как волна, то как элементарная частица, это зависит лишь от того, как физику, наблюдающему за процессом, удобнее смоделировать ситуацию.

Поле Хиггса
Оказывается, существует так называемое поле Хиггса, среднее значение которого не хочет стремиться к нулю. В результате чего, это поле старается принять некоторое постоянное ненулевое значение во всей Вселенной. Поле составляет вездесущий и постоянный фон, в результате сильных колебаний которого и появляется Бозон Хиггса.
И именно благодаря полю Хиггса, частицы наделяются массой.
Масса элементарной частицы, зависит от того, насколько сильно она взаимодействует с полем Хиггса , постоянно пролетая внутри него.
И именно из-за Бозона Хиггса, а точнее из-за его поля, стандартная модель имеет так много похожих групп частиц. Поле Хиггса вынудило сделать множество добавочных частиц, таких, например, как нейтрино.

Итоги

То, что было рассказано мною, это самые поверхностные понятия о природе стандартной модели и о том, зачем нам нужен Бозон Хиггса. Некоторые учёные до сих пор в глубине души надеются, что частица, найденная в 2012 году и похожая на Бозон Хиггса в БАКе, была просто статистической погрешностью. Ведь поле Хиггса нарушает многие красивые симметрии природы, делая расчёты физиков более запутанными.
Некоторые даже считают, что стандартная модель доживает свои последние годы из-за своего несовершенства. Но экспериментально это не доказано, и стандартная модель элементарных частиц остаётся действующим образцом гения человеческой мысли.

Уравнение Дирака для электрона стало для физики поворотным пунктом во многих отношениях. В 1928 году, когда Дирак предложил свое уравнение, из всех элементарных частиц науке были известны лишь электроны, протоны и фотоны. Свободные уравнения Максвелла описывают фотоны, предсказанные Эйнштейном в 1905 году. Эта ранняя работа была постепенно развита Эйнштейном, Бозе и другими, и 1927 году Иордан и Паули создали полную математическую схему для описания свободных фотонов путем введения квантования в максвелловскую теорию свободного поля. Казалось также, что протон, как и электрон, достаточно хорошо описывается уравнением Дирака. В теорию Дирака отлично укладывалось электромагнитное взаимодействие, описывающее, как воздействуют фотоны на электроны и протоны, благодаря идее калибровки (введенной Вейлем в 1918 году). Начало формулировке полной теории электронов (или протонов), взаимодействующих с фотонами (т.е. квантовой электродинамике), было положено самим Дираком в 1927 году. Таким образом, казалось, что имеются под руками все более или менее основные средства для описания всех частиц, существующих в Природе, а также наиболее очевидных взаимодействий между ними.

Истоки современной физики элементарных частиц

И все же физики того времени в большинстве своем были не настолько глупы, чтобы предполагать, что все это вот-вот приведет их к «теории всего». Они сознавали, что ни силы, удерживающие ядро от распада (ныне это называется сильным взаимодействием), ни механизм, ответственный за радиоактивный распад (теперь это называется слабым взаимодействием), не могут быть объяснены без дальнейшего продвижения вперед. Если бы единственными составными частями атомов, включая атомные ядра, были дираковские протоны и электроны, взаимодействующие лишь через электромагнитное поле, тогда все обычные ядра (за исключением одиночного протона, составляющего ядро атома водорода) должны были мгновенно распадаться из-за электростатического отталкивания вследствие преобладания положительных зарядов. Должно было существовать нечто дотоле не известное, создающее сильное притяжение между частицами внутри ядра!

В 1932 году Чедвик открыл нейтрон, и это в итоге привело к замене ранее популярной протонно-электронной модели ядра новой моделью, согласно которой ядро содержит протоны и нейтроны, сильное взаимодействие между которыми удерживает ядро от распада. Но даже это сильное взаимодействие было еще не все, что ускользало от понимания в то время. Радиоактивность урана, известная со времени наблюдения Анри Беккереля в 1896 году, оказалась результатом еще одного - слабого - взаимодействия, отличного и от сильного, и от электромагнитного взаимодействия. Даже сам нейтрон, будучи предоставлен самому себе, распадается приблизительно за 15 минут.

Одним из загадочных продуктов радиоактивного распада оказалось неуловимое нейтрино, пробная гипотеза о существовании которого была выдвинута Паули в 1929 году, но которое не было непосредственно обнаружено вплоть до 1956 года. Именно изучение радиоактивности в конечном счете принесло физикам неожиданную популярность и влиятельность к концу Второй мировой войны и после нее...

Многое изменилось с той поры первоначального проникновения в физику элементарных частиц в первой трети XX века. Сейчас, в начале XXI века, мы имеем гораздо более полную картину, известную под названием стандартной модели физики элементарных частиц. Эта модель описывает почти все наблюдаемое поведение широкого класса известных ныне элементарных частиц. К фотону, электрону, протону, позитрону, нейтрону и нейтрино в дальнейшем присоединились разные другие сорта нейтрино, мюон, пионы (эффектно предсказанные Юкавой в 1934 году), каоны, ламбда- и сигма-частицы, а также омега-минус- частица, знаменитая благодаря истории ее предсказания. В 1955 году был экспериментально обнаружен антипротон, в 1956 году - антинейтрон. Существуют объекты нового типа - кварки, глюоны и W- и Z-бозоны, а также целая стая частиц, существование которых столь быстротечно, что они никогда не наблюдались непосредственно, их относят к «резонансам». Формализм современной теории требует также существования нестационарных объектов, называемых «виртуальными частицами», а также величин, именуемых «духами», относительно которых исключается возможность непосредственного наблюдения.

Существует также вызывающее замешательство изобилие гипотетических (и пока не обнаруженных) частиц, предсказываемых некоторыми теоретическими моделями, но пока не укладывающихся в общепринятую схему элементарных частиц, - «Х-бозоны», «аксионы», «фотино», «скварки», «глюино», «магнитные монополи», «дилатоны» и т. д. Есть еще призрачная частица Хиггса, не обнаруженная к моменту написания этой книги, существование которой в той или иной форме (возможно, не в качестве одиночной частицы) существенно для сегодняшней физики элементарных частиц, в которой связанное с этой частицей поле Хиггса определяет массу каждой элементарной частицы.

Уравнение Дирака

$$\left(i\hbar c \, \gamma^\mu \, \partial_\mu - mc^2 \right) \psi = 0$$ Из уравнения Дирака следует, что электрон обладает собственным механическим моментом количества движения - спином, равным ħ/2, а также собственным магнитным моментом, равным магнетону Бора $e\hbar/2Мc$, которые ранее (1925) были открыты экспериментально (e и m - заряд и масса электрона, с - скорость света, $\hbar$ - постоянная Дирака (редуцированная постоянная Планка)). С помощью уравнения Дирака была получена более точная формула для уровней энергии атома водорода (и водородоподобных атомов), включающая тонкую структуру уровней, а также объяснён эффект Зеемана. На основе уравнения Дирака были найдены формулы для вероятностей рассеяния фотонов свободными электронами (комптон-эффекта) и излучения электрона при его торможении (тормозного излучения), получившие экспериментальное подтверждение. Однако последовательное релятивистское описание движения электрона даётся квантовой электродинамикой.

Характерная особенность уравнения Дирака - наличие среди его решений таких, которые соответствуют состояниям с отрицательными значениями энергии для свободного движения частицы (что соответствует отрицательной массе частицы). Это представляло трудность для теории, так как все механические законы для частицы в таких состояниях были бы неверными, переходы же в эти состояния в квантовой теории возможны. Действительный физический смысл переходов на уровни с отрицательной энергией выяснился в дальнейшем, когда была доказана возможность взаимопревращения частиц. Из уравнения Дирака следовало, что должна существовать новая частица (античастица по отношению к электрону) с массой электрона и электрическим зарядом противоположного знака; такая частица была действительно открыта в 1932 К. Андерсоном и названа позитроном. Это явилось огромным успехом теории электрона Дирака. Переход электрона из состояния с отрицательной энергией в состояние с положительной энергией и обратный переход интерпретируются как процесс образования пары электрон-позитрон и аннигиляция такой пары.

Уравнение Дирака справедливо и для др. частиц со спином 1/2 (в единицах $\hbar$) - фермионов, например мюонов, нейтрино, при этом хорошее соответствие опыту получается при прямом применении уравнения Дирака к простым (а не составным) частицам, как те, которые только что упомянуты. Для протона и нейтрона (составных частиц, состоящих из кварков, связанных глюонным полем, но также обладающих спином 1/2) оно при прямом применении (как к простым частицам) приводит к неправильным значениям магнитных моментов: магнитный момент «дираковского» протона «должен быть» равен ядерному магнетону $e\hbar/2Мc$ (М - масса протона), а нейтрона (поскольку он не заряжен) - нулю. Опыт же даёт, что магнитный момент протона примерно в 2,8 раза больше ядерного магнетона, а магнитный момент нейтрона отрицателен и по абсолютной величине составляет около 2/3 от магнитного момента протона. Аномальные магнитные моменты этих частиц обусловлены их составной природой и сильными взаимодействиями.

В действительности данное уравнение применимо для кварков, которые также являются элементарными частицами со спином 1/2. Модифицированное уравнение Дирака можно использовать для описания протонов и нейтронов, которые не являются элементарными частицами (они состоят из кварков). Другую модификацию уравнения Дирака - уравнение Майорана, применяют в некоторых расширениях Стандартной модели для описания нейтрино.

Зигзаг-представление электрона

В этой и ряде последующих статей предлагается краткий путеводитель по стандартной модели современной физики элементарных частиц.
Начнем несколько нестандартным образом, переформулировав уравнение Дирака в «2-спинорном представлении. Спинор Паули, описывающий частицу со спином -, представляет собой двухкомпонентную величину $\psi_a$- (Компонентами служат $\psi_0$- и $\psi_1$.) При учете требований теории относительности нам потребуются также величины со штрихованными индексами $A", B", C’$,..., которые появляются при комплексном сопряжении, применяемом к нештрихованным индексам. Оказывается, что описанный выше дираковский спинор $\psi$ с его четырьмя комплексными компонентами можно представить в виде пары 2-спиноров, $\alpha_a$ и $\beta_{a’}$, один из которых имеет нештрихованный индекс, а другой - штрихованный:
$$\psi=(\alpha_a,\beta_{a’}) $$

Тогда уравнение Дирака можно записать в виде уравнения, связывающего эти два 2-спинора, при этом каждый из них играет в отношении другого роль «источника» с «константой связи» $2^{-1/2}M$, определяющей «силу взаимодействия» между ними:
$$\nabla^{A}_{B’ }\alpha_a =2^{-1/2}M\beta_{B’}, ~~\nabla ^{B’}_{A }\beta_{B’} =2^{-1/2}M,\alpha _{A’}, $$

Операторы $\nabla^{A}_{B’ }$, и $\nabla^{B}_{A’ }$ представляют собой 2-спинорные трансляции обычного оператора градиента $\nabla$ . Не следует придавать большого значения всем этим индексам, множителям $2^{-1/2}$ и точной форме этих уравнений, - я привожу их здесь лишь для того, чтобы показать, как можно ввести уравнение Дирака в общие рамки 2-спинорного анализа и как это может помочь, коль скоро это сделано, в обретении некоторого нового взгляда на природу уравнения Дирака.

Форма этих уравнений показывает, что дираковский электрон можно считать состоящим из двух ингредиентов - $\alpha_A$ и $\beta_{A’}$. Им можно придать некоторый физический смысл.

Можно представить себе картину, в которой существуют две «частицы», одна из которых описывается величиной а $\alpha_A$ а другая - $\beta_{A’}$, причем обе они не имеют массы и каждая из них непрерывно превращается в другую. Дадим этим частицам имена «зиг» и «заг», так что $\alpha_A$ будет описывать частицу «зиг», а $\beta_{A’}$ - частицу «заг». Будучи безмассовыми, они должны перемещаться со скоростью света, однако вместо этого можно считать, что они «качаются» взад-вперед, причем движение вперед частицы «зиг» непрерывно превращается в движение назад частицы «заг» и наоборот. Фактически это есть реализация явления, называемого «zitterbewegung» («дрожание») и состоящего в том, что мгновенное движение электрона из-за участия в таких колебаниях всегда происходит со скоростью света, хотя полное усредненное движение электрона характеризуется скоростью, меньшей скорости света. Каждый из указанных ингредиентов имеет спин величиной $\frac{1}{2}\hbar$ в направлении движения, соответствующий левому вращению в случае частицы «зиг» и правому для частицы «заг». (Это связано с тем обстоятельством, что частица «зиг» $\alpha_A$ имеет нештрихованный индекс, соответствующий отрицательной спиральности, а частица «заг» $\beta_{A’}$ - штрихованный индекс, отвечающий положительной спиральности.

Заметим, что хотя скорость все время меняется, направление спина в системе покоя электрона остается постоянным (рис. 1). При такой интерпретации частица «зиг» выступает как источник для частицы «заг», а частица «заг» - как источник в отношении частицы «зиг», сила связи между ними определяется величиной $M$.

Рис. 1. Зигзаг-представление электрона, а) Электрон (или другую массивную частицу со спином $\frac{1}{2}\hbar$) можно рассматривать как осциллирующую в пространстве-времени между безмассовой частицей «зиг» с левой спиральностью (спиральность $-\frac{1}{2}$ описывается нештрихованным 2-спинором $\alpha_A$ или, в обозначениях, более привычных для физиков, частью, проектируемой оператором -$\frac{1}{2}(1-\gamma_5)$)) и безмассовой частицей «заг» с правой спиральностью (спиральность $+\frac{1}{2}$ описывается штрихованным 2-спинором $\beta_{A"}$ или частью, проектируемой оператором $\frac{1}{2}(1+\gamma_5)$. Каждая из частиц служит источником для другой с массой покоя в качестве константы связи, б) С точки зрения 3-пространства, в системе покоя электрона происходит непрерывное изменение скорости (всегда равной по величине скорости света), однако направление спина остается постоянным. (Для большей наглядности изображена картина не вполне в системе покоя электрона - вместо этого электрон медленно смещается вправо.)

На рис. 2 дано диаграммное представление вклада этого процесса в полный «фейнмановский пропагатор. Каждый отдельный зигзаг-процесс имеет конечную длину, однако вся их совокупность, включающая зигзаги все нарастающей длины, дает вклад в полный процесс распространения электрона в соответствии с матрицей $2\times2$, изображенной на рис. 2. При этом частица «зиг» становится частицей «заг», затем «заг» превращается в «зиг», та снова в «заг» и так далее на некотором конечном отрезке.

Рассматривая процесс в целом, мы обнаружим, что средняя частота, с которой это происходит, связана обратным соотношением с параметром связи - массой М; фактически это есть «де-бройлевская частота» электрона.
Необходимо, однако, сделать замечание относительно того, как следует интерпретировать фейнмановские диаграммы. Изображаемый процесс можно на законных основаниях рассматривать как пространственно-временное описание происходящего, однако при рассмотрении на квантовом уровне необходимо иметь в виду, что даже в случае одной частицы одновременно протекает множество таких процессов. Каждый из них следует рассматривать как один из вкладов в некоторую квантовую суперпозицию огромного числа различных процессов. Реальное квантовое состояние определяется всей суперпозицией в целом. Каждая отдельная фейнмановская диаграмма - это всего лишь одна из ее компонент.

Необходимо, однако, сделать замечание относительно того, как следует интерпретировать фейнмановские диаграммы. Изображаемый процесс можно на законных основаниях рассматривать как пространственно-временное описание происходящего, однако при рассмотрении на квантовом уровне необходимо иметь в виду, что даже в случае одной частицы одновременно протекает множество таких процессов. Каждый из них следует рассматривать как один из вкладов в некоторую квантовую суперпозицию огромного числа различных процессов. Реальное квантовое состояние определяется всей суперпозицией в целом. Каждая отдельная фейнмановская диаграмма - это всего лишь одна из ее компонент.

В таком же духе следует понимать и приведенное выше описание движения электрона как качания взад-вперед, при котором «зиг» непрерывно превращается в «заг» и наоборот. Реальное движение слагается из большого (фактически бесконечно большого) числа таких отдельных процессов, так что наблюдаемое движение электрона можно рассматривать как результат некоторого их «усреднения» (хотя, строго говоря, здесь имеет место квантовая суперпозиция). Так обстоит дело в случае всего лишь свободного электрона. В действительности электрон непрерывно взаимодействует с другими частицами (например, с фотонами - квантами электромагнитного поля). Все подобные процессы взаимодействия также должны быть включены в общую суперпозицию.

Имея все это в виду, зададимся вопросом: насколько «реальны» частицы «зиг» и «заг»? Или это всего лишь артефакты некоторого математического формализма, которым я вос пользовался здесь при описании уравнения Дирака для электрона? Возникает вопрос более общего характера: насколько оправданно с физической точки зрения руководствоваться соображениями изящества некоторого математического описания, а затем пытаться выдать это за описание «реальности»? В данном случае следует начать с постановки вопроса о важности (а также изяществе) самого 2-спинорного формализма как математического метода. Я должен предупредить читателя, что этот формализм не относится к числу широко используемых физиками, которые занимаются уравнением Дирака и его приложениями, в частности, квантовой электродинамикой (КЭД) - наиболее успешным разделом квантовой теории поля.

Рис.2. Каждый зигзаг-процесс в отдельности вносит вклад, как часть бесконечной квантовой суперпозиции, в полный «пропагатор» наподобие фейнмановских диаграмм. Изображенный слева стандартный фейнмановский пропагатор в виде прямой линии представляет целую матрицу из бесконечных сумм конечных зигзагов, показанную справа.

Читателя, который уже немного знаком с фейнмановскими диаграммами, может смутить используемое здесь вертикальное упорядочение во времени. В квантовой теории поля обычно рисуют диаграммы, на которых временная переменная увеличивается слева направо. Этот выбор, при котором время течет снизу вверх, согласуется с принятым в теории относительности, поскольку такое направление времени выбирается для большинства пространственно-временных диаграмм.

Большинство физиков пользуется формализмом «дираковских спиноров» (или 4-спиноров), в котором спинорные индексы отбрасываются. Вместо 2-спинора $\alpha_A$ они используют 4-спинор $(1-\gamma_5)\psi$ (называя его «левоспиральной частью дираковского электрона» или
как-нибудь в этом роде, вместо моей частицы «зиг») LINK8. Величина $\gamma_5$ представляет собой произведение
$$\gamma_5=-i\gamma_0\gamma_1\gamma_2\gamma_3$$
и обладает свойством антикоммутировать с каждым из элементов алгебры Клиффорда, при этом $\gamma_5^2=1$ Аналогично вместо $\beta_{A’}$ используется $(1+\gamma_5)\psi$ (правоспиральная часть).

Кто-то может заметить, что это всего лишь вопрос обозначений, и действительно можно переходить от 2-спинорного формализма к 4-спинорному и обратно. Зигзаг-представление определенно применимо (хотя и не всегда применяется) к любому формализму, однако к 2-спинорному формализму оно ближе, чем к 4-спинорному. Так реальны ли частицы «зиг» и «заг»? Можно сказатьчто они реальны в той же мере, в какой реален сам «дираковский электрон», - как в высшей степени полезное идеализированное математическое описание одного из наиболее фундаментальных элементов Вселенной. Но есть ли это реальная «реальность»?

Вся материя состоит из кварков, лептонов и частиц - переносчиков взаимодействий.

Стандартной моделью сегодня принято называть теорию, наилучшим образом отражающую наши представления об исходном материале, из которого изначально построена Вселенная. Она же описывает, как именно материя образуется из этих базовых компонентов, и силы и механизмы взаимодействия между ними.

Со структурной точки зрения элементарные частицы, из которых состоят атомные ядра (нуклоны ), и вообще все тяжелые частицы - адроны (барионы и мезоны ) - состоят из еще более простых частиц, которые принято называть фундаментальными. В этой роли по-настоящему фундаментальных первичных элементов материи выступают кварки , электрический заряд которых равен 2/3 или –1/3 единичного положительного заряда протона. Самые распространенные и легкие кварки называют верхним и нижним и обозначают, соответственно, u (от английского up ) и d (down ). Иногда их же называют протонным и нейтронным кварком по причине того, что протон состоит из комбинации uud , а нейтрон - udd. Верхний кварк имеет заряд 2/3; нижний - отрицательный заряд –1/3 . Поскольку протон состоит из двух верхних и одного нижнего, а нейтрон - из одного верхнего и двух нижних кварков, вы можете самостоятельно убедиться, что суммарный заряд протона и нейтрона получается строго равным 1 и 0, и удостовериться, что в этом Стандартная модель адекватно описывает реальность. Две другие пары кварков входят в состав более экзотических частиц. Кварки из второй пары называют очарованным - c (от charmed ) и странным - s (от strange ). Третью пару составляют истинный - t (от truth , или в англ. традиции top ) и красивый - b (от beauty , или в англ. традиции bottom ) кварки. Практически все частицы, предсказываемые Стандартной моделью и состоящие из различных комбинаций кварков, уже открыты экспериментально.

Другой строительный набор состоит из кирпичиков, называемых лептонами. Самый распространенный из лептонов - давно нам знакомый электрон , входящий в структуру атомов, но не участвующий в ядерных взаимодействиях, ограничиваясь межатомными. Помимо него (и парной ему античастицы под названием позитрон ) к лептонам относятся более тяжелые частицы - мюон и тау-лептон с их античастицами. Кроме того, каждому лептону сопоставлена своя незаряженная частица с нулевой (или практически нулевой) массой покоя; такие частицы называются, соответственно, электронное, мюонное или таонное нейтрино .

Итак, лептоны, подобно кваркам, также образуют три «семейных пары». Такая симметрия не ускользнула от наблюдательных глаз теоретиков, однако убедительного объяснения ей до сих пор не предложено. Как бы то ни было, кварки и лептоны представляют собой основной строительный материал Вселенной.

Чтобы понять оборотную сторону медали - характер сил взаимодействия между кварками и лептонами, - нужно понять, как современные физики-теоретики интерпретируют само понятие силы. В этом нам поможет аналогия. Представьте себе двух лодочников, гребущих на встречных курсах по реке Кэм в Кэмбридже. Один гребец от щедрости душевной решил угостить коллегу шампанским и, когда они проплывали друг мимо друга, кинул ему полную бутылку шампанского. В результате действия закона сохранения импульса, когда первый гребец кинул бутылку, курс его лодки отклонился от прямолинейного в противоположную сторону, а когда второй гребец поймал бутылку, ее импульс передался ему, и вторая лодка также отклонилась от прямолинейного курса, но уже в противоположную сторону. Таким образом, в результате обмена шампанским обе лодки изменили направление. Согласно законам механики Ньютона это означает, что между лодками произошло силовое взаимодействие. Но ведь лодки не вступали между собой в прямое соприкосновение? Здесь мы и видим наглядно, и понимаем интуитивно, что сила взаимодействия между лодками была передана носителем импульса - бутылкой шампанского. Физики назвали бы ее переносчиком взаимодействия.

В точности так же и силовые взаимодействия между частицами происходят посредством обмена частицами-переносчиками этих взаимодействий. Фактически, различие между фундаментальными силами взаимодействия между частицами мы и проводим лишь постольку, поскольку в роли переносчиков этих взаимодействий выступают разные частицы. Таких взаимодействий четыре: сильное (именно оно удерживает кварки внутри частиц), электромагнитное , слабое (именно оно приводит к некоторым формам радиоактивного распада) игравитационное. Переносчиками сильного цветового взаимодействия являются глюоны , не обладающие ни массой, ни электрическим зарядом. Этот тип взаимодействия описывается квантовой хромодинамикой . Электромагнитное взаимодействие происходит посредством обмена квантами электромагнитного излучения, которые называются фотонами и также лишены массы. Слабое взаимодействие, напротив, передается массивными векторными или калибровочными бозонами , которые «весят» в 80-90 раз больше протона, - в лабораторных условиях их впервые удалось обнаружить лишь в начале 1980-х годов. Наконец, гравитационное взаимодействие передается посредством обмена не обладающими собственной массой гравитонами - этих посредников пока что экспериментально обнаружить не удалось.

В рамках Стандартной модели первые три типа фундаментальных взаимодействий удалось объединить, и они более не рассматриваются по отдельности, а считаются тремя различными проявлениями силы единой природы. Возвращаясь к аналогии, предположим, что другая пара гребцов, проплывая друг мимо друга по реке Кэм, обменялась не бутылкой шампанского, а всего лишь стаканчиком мороженого. От этого лодки также отклонятся от курса в противоположные стороны, но значительно слабее. Стороннему наблюдателю может показаться, что в этих двух случаях между лодками действовали разные силы: в первом случае произошел обмен жидкостью (бутылку я предлагаю во внимание не принимать, поскольку большинству из нас интересно ее содержимое), а во втором - твердым телом (мороженым). А теперь представьте, что в Кембридже в тот день стояла редкостная для северных мест летняя жара, и мороженое в полете растаяло. То есть, достаточно некоторого повышения температуры, чтобы понять, что, фактически, взаимодействие не зависит от того, жидкое или твердое тело выступает в роли его переносчика. Единственная причина, по которой нам представлялось, что между лодками действуют различные силы, состояла во внешнем отличии переносчика-мороженого, вызванном недостаточной для его плавления температурой. Поднимите температуру - и силы взаимодействия предстанут наглядно едиными.

Силы, действующие во Вселенной, также сплавляются воедино при высоких энергиях (температурах) взаимодействия, после чего различить их невозможно. Первыми объединяются (именно так это принято называть) слабое ядерное и электромагнитное взаимодействия. В результате мы получаем так называемое электрослабое взаимодействие , наблюдаемое даже лабораторно при энергиях, развиваемых современными ускорителями элементарных частиц. В ранней Вселенной энергии были столь высоки, что в первые 10 –10 секунды после Большого взрыва не было грани между слабыми ядерными и электромагнитными силами. Лишь после того, как средняя температура Вселенной понизилась до 10 14 K, все четыре наблюдаемые сегодня силовые взаимодействия разделились и приняли современный вид. Пока температура была выше этой отметки, действовали лишь три фундаментальные силы: сильного, объединенного электрослабого и гравитационного взаимодействий.

Объединение электрослабого и сильного ядерного взаимодействия происходит при температурах порядка 10 27 К. В лабораторных условиях такие энергии сегодня недостижимы. Самый мощный современный ускоритель - строящийся в настоящее время на границе Франции и Швейцарии Большой адронный коллайдер (Large Hadron Collider) - сможет разгонять частицы до энергий, которые составляют всего 0,000000001% от необходимой для объединения электрослабого и сильного ядерного взаимодействий. Так что, вероятно, экспериментального подтверждения этого объединения ждать нам придется долго. Таких энергий нет и в современной Вселенной, однако в первые 10 –35 с ее существования температура Вселенной была выше 10 27 К, и во Вселенной действовало всего две силы - электросильного и гравитационного взаимодействия. Теории, описывающие эти процессы, называют «теориями Великого объединения» (ТВО). Напрямую проверить ТВО нельзя, но они дают определенные прогнозы и относительно процессов, протекающих при более низких энергиях. На сегодняшний день все предсказания ТВО для относительно низких температур и энергий подтверждаются экспериментально.

Итак, Стандартная модель, в обобщенном виде, представляет собой теорию строения Вселенной, в которой материя состоит из кварков и лептонов, а сильные, электромагнитные и слабые взаимодействия между ними описываются теориями великого объединения. Такая модель, очевидно, не полна, поскольку не включает гравитацию. Предположительно, более полная теория со временем все-таки будет разработана (см. Универсальные теории), а на сегодня Стандартная модель - это лучшее из того, что мы имеем.

«Элементы»