Синтез сверхтяжелых элементов в нейтронных звездах. Трансурановые элементы

Петер Армбрустер, Готфрид Мюнцерберг

Тонкие квантовомеханические эффекты стабилизируют ядра, которые намного тяжелее ядер, существующих в природе. Экспериментаторам пришлось пересматривать представления о том, как лучше синтезировать такие сверхтяжелые элементы

В течение последних 20 лет во многих странах мира внимание физиков привлекала проблема получения сверхтяжелых элементов. В Дармштадте в Институте исследований с тяжелыми ионами (ГСИ) нам удалось добиться определенных успехов, синтезировав ядра элементов 107, 108 и 109. Эти ядра находятся за «порогом» 106-го протона, который отмечает предел для существовавших ранее методов получения и идентификации тяжелых элементов.

Экспериментальные измерения масс ядер и теоретический анализ показывают, что стабильность этих новых элементов обусловлена прежде всего микроструктурой их протонных и нейтронных систем, а не макроскопическими свойствами, определяющими стабильность более легких ядер. Однако мы столкнулись с проблемами, которые до сих пор затрудняют достижение целей, поставленных в конце 60-хгодов, когда казалось, что элементы вплоть до 114-го находятся в пределах досягаемости. Преодолевая эти трудности, мы продвинулись В изучении ядерной структуры и динамики реакций слияния ядер.

Нуклеосинтез прошел долгий путь от раннего периода, когда элементы, которые не существуют в природе, получали в ядерных реакторах. Физики применяли все более тяжелые ускоренные ионы для бомбардировки атомов мишени. Последним этапом в этом развитии стал метод «холодного слияния» ядер, в котором массы частиц и энергия бомбардировки должны быть тщательно определены, чтобы возбуждение вновь образующихся ядер было минимальным.

В процессе нашей работы почти все первоначальные представления о синтезе сверхтяжелых элементов пришлось пересмотреть: ядра элементов, которые можно синтезировать, являются деформированными, анесферическими, как это постулировалось в 1966 г. Для слияния мы использовали стабильные, широко распространенные в природе, сферические ядра и ускоренные ионы средних масс вместо искусственных наиболее тяжелых радиоактивных ядер и соответственноподобранных легких ускоренных ионов, как предполагалось ранее. Слияние должно происходить при возможно более низкой энергии бомбардировки - как можно «мягче», без применения «грубой силы» в виде избыточной энергии взаимодействия, которая, как полагали ранее, способствует процессу слияния.

Идея синтеза трансурановых элементов (с атомным номером более 92) возникла в 30-х годах. В 1934 г. Энрико Ферми бомбардировал таллий медленными нейтронами, чтобы после бета-распада (распад нейтрона на протон и электрон) получить свинец. В результате захвата нейтронов и последующего бета-распада образовывались элементы с атомными номерами, на единицу превышавшими исходные.

В период между 1940 г. и серединой 50-х годов путем нейтронного облучения были получены элементы 93, 94, 99 и 100. Фермий, элемент 100, неслучайно оказался последним в серии элементов, которые можно было получить методом нейтронного захвата и бета-распада, предложенным Ферми: ни один из его изотопов не испытывает бета-распад. В течение того же периода при облучении альфа-частицами были получены элементы от 95 до 98 и 101-й. В этом процессе тяжелое ядро поглощает два протона и два нейтрона; при этом атомный номер увеличивается сразу на две единицы. Подобно всем тяжелым элементам, трансурановые элементы содержат больше нейтронов, чем протонов; например, плутоний (элемент 94) содержит 145 нейтронов при полной массе 239; наиболее долгоживущий изотоп фермия имеет 157 нейтронов при полной массе 257.

Естественным способом получения элементов выше 100-го считалось слияние ядер наиболее тяжелых элементов с ядрами легких элементов, содержащих больше протонов и нейтронов, чем гелий. Элементы вплоть до 99-го доступны, поскольку их можно синтезировать в весовых макроскопических количествах. В Беркли (США)и Дубне (СССР) были построены ускорители для получения тяжелых ионов с энергией, достаточной для преодоления препятствующих слиянию ядер электростатических сил. В период между 1958 и 1974 гг. эти ускорители тяжелых ионов позволили синтезировать элементы от 102 до 106. Приоритет открытия этих элементов и, следовательно, право их наименования остаются до сих пор предметом дискуссий.

Методы, столь успешно применявшиеся в Беркли и Дубне, оказались неэффективными для получения элементов тяжелее 100-го. Чтобы понять, почему так трудно синтезировать сверхтяжелые элементы и почему некоторые из них могут быть особенно стабильны, необходимо выяснить, как ядра сохраняются как единое целое или же разваливаются и как баланс различных сил. определяющий их стабильность, изменяется с увеличением массы. Эффекты, которыми для более легких ядер можно пренебречь, определяют различие между полной нестабильностью и относительно большими временами жизни сверхтяжелых ядер.

Особенно важным для всех ядер является взаимосвязь сильных ядерных сил, притягивающих как протоны, так и нейтроны, и электростатических сил, отталкивающих протоны. Чем тяжелее ядра, тем больше в них нейтронов, что в некоторой степени компенсирует влияние сил отталкивания между протонами. Тем не менее сила связи между нуклонами достигает максимума у железа (26 протонов и 30 нейтронов), что соответствует менее четверти пути по периодической таблице, а затем она уменьшается.

Расщепление любого ядра тяжелее железа должно сопровождаться выделением энергии, однако энергия, необходимая для расщепления менее массивных ядер, чем свинец, так велика, что такую реакцию можно осуществлять только в особых условиях. Поскольку ядра тяжелее свинца, могут переходить в более устойчивое состояние, испуская даже небольшую часть своих нуклонов, они нестабильны. Существующие в природе изотопы тория и урана распадаются в основном путем испускания альфа-частиц. Только у урана и более тяжелых элементов невозбужденные ядра могут испытывать спонтанное деление.

В основном с ростом атомного номера (число протонов в ядре) нестабильность атомных ядер увеличивается: периоды их полураспада уменьшаются от нескольких тысяч лет до миллионных долей секунды. Однако из теории строения ядра следует, что элементы, лишь немного тяжелее полученных к настоящему времени, будут не менее, а более стабильны.

Ядра с определенными комбинациями нейтронов и протонов имеют особенно большую энергию связи; гелий-4, кислород-16, кальций-40, кальций-48 и свинец-208 очень стабильны по сравнению с соседними элементами. Эти большие значения обусловлены оболочечной структурой - ядерным эквивалентом оболочек, на которых находятся электроны вокруг ядра. Конфигурации нуклонов, образующие полностью заполненные (замкнутые) оболочки, особенно стабильны. Для свинца оболочечная структура способствует увеличению энергии связи ядра на 11 млн. электронвольт (МэВ) по сравнению с гипотетической ядерной каплей, лишенной структуры и имеющей то же число нейтронов и протонов. Для большинства ядер с энергиями связи до 2 млрд. эВ такое увеличение сравнительно несущественно. Однако для наиболее тяжелых элементов, находящихся на границе стабильности, «оболочечная стабилизация» может приводить к различию между мгновенным распадом и относительно длительным существованием ядер.

Ядра с замкнутыми нейтронными и протонными оболочками особенно стабильны; после свинца такие оболочки появляются при 114 протонах и 184 нейтронах. Успехи теории оболочек в предсказании энергий связи для легких ядер породили надежду, что ядра с массой, близкой к 298, могут быть настолько сильно стабилизированы, что, подобно урану и торию, могут образовать область относительно стабильных элементов. Такие оболочечно-стабилизированные сверхтяжелые элементы в отличие от элементов в области урана-тория должны быть нестабильны как однородные капли ядерного вещества.

Первый из оболочечно-стабилизированных сверхтяжелых элементов, 107-й,свойства которого, как предположил Ферми, должны соответствовать экарению, был идентифицирован в Дармштадте в 1981 г., спустя 47 лет после этого предсказания.

Затем нами были получены и идентифицированы элементы 108 и 109. Измерения их энергий связи показывают, что мы уже вступили в область сверхтяжелых элементов. В настоящее время мы исследуем ограничения, препятствующие получению еще более тяжелых элементов.

Синтез тяжелых элементов в реакциях слияния требует от экспериментатора умения «пройти по тонкой грани» между теми методами бомбардировки, в которых слияния не происходит, и теми методами, которые приводят к делению ядра-продукта, вместо того чтобы оставить его в относительно стабильном состоянии. Снижение нагрева вновь образовавшегося ядра представляет собой наиболее важную причину перехода от бомбардировки тяжелых мишеней сравнительно легкими ионами к бомбардировке менее массивных мишеней относительно более тяжелыми ионами (перехода, начатого Ю.Ц. Оганесяном и его сотрудниками из Объединенного института ядерных исследований в Дубне).

Например, при слиянии свинца-208 или висмута-209 с хромом-54 или железом-58 энергия возбуждения нового ядра составляет около 20 МэВ. В то же время слияние тяжелых актиноидных мишеней (калифорния-249, берклия-249 или кюрия-248) с углеродом-12, азотом-15 или кислородом-18 приводит к энергии возбуждения около 45 МэВ.

Ядро, образованное с использованием легких ионов и мишеней изактиноидов, остывает, испуская четыре нейтрона. В отличие от этого ядро, образованное из свинца или висмута и более тяжелых ионов, остывает, испуская только один нейтрон. Поскольку вероятность того, что ядро охладится, испустив нейтрон, составляет всего несколько процентов вероятности его деления, конечный выход сверхтяжелых ядер значительно снижается на каждой ступени каскада эмиссии нейтронов. Механизм однонейтронной релаксации намного более пригоден для сохранения вновь образованного ядра.

К сожалению, холодное слияние имеет также и недостаток: в данном случае электростатические силы отталкивания между двумя ядрами в большей степени препятствуют их слиянию. Когда два ядра сближаются, часть их кинетической энергии превращается в энергию возбуждения промежуточной системы сталкивающихся ядер и, следовательно, не может быть использована для преодоления барьера слияния, что в свою очередь снижает вероятность слияния. В случае холодного слияния с использованием более тяжелых ионов в процессе сближения и прохождения барьера слияния преобразуется больше кинетической энергии и вероятность преодоления этого барьера снижается по сравнению с реакциями между легкими ионами и наиболее тяжелыми мишенями.

Если для компенсации этих потерь увеличивать начальную энергию, энергия возбуждения возрастет и число образующихся ядер уменьшится. В результате только за 106-м элементом проявляются преимущества метода холодного слияния.

Нами было показано, что максимальные сечения реакций образования тяжелых элементов находятся в узком энергетическом диапазоне - примерно на 5 МэБ выше барьера слияния.

В то время как теория получения сверхтяжелых ядер может быть весьма интересна сама по себе, на практике это гораздо более сложная задача. Теоретические расчеты должны сочетаться с конструированием ускорителя и мишени, а также с разработкой системы детекторов, которая сможет зарегистрировать существование сверхтяжелого ядра сразу же, как оно будет синтезировано. Когда в конце 60-х годов идея получения сверхтяжелых элементов завладела воображением физиков и химиков, никто в ФРГ не имел опыта проведения нуклеосинтеза. Для начинающих в этой области было открыто много «дверей». Можно было многому научиться на основе экспериментов, проведенных ранее в Беркли и Дубне, однако было ясно, что дальнейшего прогресса нельзя достигнуть путем копирования этих исследований. Были необходимы ускоритель тяжелых ионов, экспрессные методы разделения для выделения новых элементов и соответствующая техника их идентификации. Не было ответа и на вопрос о том, какие именно реакции должны привести к успеху.

В 1969 г. правительство ФРГ совместно с правительством земли Гессен решило финансировать создание нового института для исследований с тяжелыми ионами (Общество исследований с тяжелыми ионами, геи) в Дармштадте. Универсальный линейный ускоритель (УНИЛАК), на котором ведутся эксперименты в геи, начал работать в 1975 г.

УНИЛАК может ускорять все ионы до урана включительно до энергий, превышающих кулоновский барьер. С самого начала эта установка предназначалась для получения возможно более интенсивных ионных пучков. Особые усилия были направлены на то, чтобы можно было плавно изменять энергию ионов и устанавливать ее на заданном уровне с достаточно хорошей воспроизводимостью. Первоначально проект ускорителя разрабатывался К. Шмельцером и его сотрудниками в Гейдельберге. При этом учитывался уже накопленный опыт других научных групп: ионные источники представляли собой модификацию источников, использовавшихся в Дубне для получения высокозарядных ионов, а разработанная в Беркли система Альвареца была использована в высокочастотной системе линейного ускорителя.

Когда УНИЛАК был построен, перед многими учеными был поставлен вопрос: как лучше всего использовать ускоритель? Какие реакции и какие экспериментальные методы должны применяться? В начальный период своего существования УНИЛАК использовался для проверки самых разнообразных идей, однако успешной оказалась единственная стратегия - холодное слияние в сочетании с транспортировкой ядер отдачи (продуктов слияния).

Со времени открытия в 1941 г. плутония было синтезировано около 400 т этого элемента, что соответствует 10 30 атомов. С другой стороны, было получено и идентифицировaно всего несколько атомов 109-го элемента. Почему наиболее тяжелые элементы получают в таких исчезающе малых количествах? Ответ заключается в следующем: для производства плутония тонны нейтронов бомбардируют блоки урана-238 толщиной несколько сантиметров или более, а на УНИЛАКе ускоряется всего 100 мкг железа-58 для бомбардировки мишени из свинца-208 толщиной несколько сотен нанометров. Кроме того, поперечное сечение реакции нейтронного захвата, в которой образуется плутоний-239, приблизительно в 10 триллионов раз больше поперечного сечения реакции слияния, в которой образуется 109-й элемент.

Трудности при получении более тяжелых элементов составляют только часть проблемы. Будучи синтезированными, такие элементы, как 109-й, распадаются столь быстро, что синтез «не поспевает» за распадом. Наиболее тяжелые элементы настолько короткоживущи, что к концу облучения все образовавшиеся атомы уже распадаются. Поэтому эти атомы следует детектировать и идентифицировать в процессе их получения.

Методы получения и регистрации элементов вплоть до 106-го основывались главным образом на механических средствах транспортировки образующихся атомов из зоны реакции к детекторам. Время транспортировки между образованием и детектированием продуктов реакций определялось скоростями их переноса в потоке газа, временем их диффузии из твердых поверхностей или скоростью вращающихся мишеней. Эти методы, однако, были недостаточно хороши для регистрации элементов тяжелее 106-го, вынуждая идти на неприемлемый выбор, между скоростью и точностью детектирования, так что, используя более быстрые методы, оказалось невозможно надежно идентифицировать новые изотопы.

Для транспортировки образующихся ядер к детекторам мы выбрали методику, основанную на использовании скорости отдачи, которую продукты реакции приобретают от тяжелых ионов. Когда тяжелый ион сталкивается с атомом мишени и сливается с ним, образовавшееся ядро движется по направлению первоначального движения иона со скоростью, составляющей около нескольких процентов скорости света. В результате можно детектировать ядра с периодами полураспада до 100 нс.

Хотя методика транспортировки ядер отдачи позволяет детектировать и идентифицировать очень короткоживущие ядра, техника детектирования становится при этом более сложной. Из зоны реакции с высокой скоростью выходят не только отдельные ядра, образовавшиеся в реакции слияния, но и триллионы тяжелых ионов, а также тысячи атомов, выбитых из мишени. Чтобы отделить сверхтяжелые ядра от остаточного пучка, мы построили специальный фильтр скоростей - сепаратор продуктов реакций с тяжелыми ионами SHIP (Separator for Heavy-Ion Reaction Products), разработанный совместно со специалистами Второго физического института Университета в Гиссене. На основе кинематики столкновения и слияния ядер скорость отдачи продуктов слияния можно рассчитать заранее. Следовательно, их можно выделить относительно прямым способом.

Фильтр скоростей состоит из двух ступеней, каждая из которых включает как электрическое, так и магнитное поля. Эти два поля отклоняют заряженные частицы в противоположных направлениях; только для ядра, имеющего определенную скорость, влияние полей взаимно исключается, и оно продолжает движение в медианной плоскости установки. Такой фильтр-тандем уменьшает число ускоренных ионов, попадающих в область детектирования в 100 млрд. раз а число выбитых ядер мишенн - в 1000 раз. Исключая из пучка почти полностью все нежелательные частицы, спектрометр SHIP пропускает более 40070 продуктов слияния. Детекторы, расположенные за спектрометром, регистрируют цепочки распада частиц, прошедших через спектрометр, что позволяет однозначно идентифицировать продукты слияния.

Первым элементом детектирующей системы является время-пролетное устройство, которое позволяет измерить скорость частицы в третий раз (первые два измерения заложены в принципе действия фильтра скоростей). После прохождения этого устройства частица имплантируется в позиционно-чувствительные кремниевые поверхностно-барьерные детекторы, которые регистрируют ее энергию и место попадания. Поскольку комбинация времени пролета и энергии дает возможность приблизительно определить массу частицы, можно отличать продукты слияния от рассеянных ионов и выбитых ядер мишени.

Для надежной идентификации ядра необходимо тем не менее установить корреляцию его распада с распадом его радиоактивных дочерних продуктов. Акты распада, обусловленные одним и тем же ядром, должны иметь одинаковые пространственные координаты, а тип, энергия и период полураспада дочерних ядер известны из предшествующих измерений.

Устанавливая такие коррелированные акты распада, можно однозначно идентифицировать каждое ядро-продукт слияния. Хотя случайное ядро, попавшее в одно и то же место с исследуемым продуктом слияния, может испытывать распад и вызвать пространственно коррелированный сигнал, весьма маловероятно, чтобы его энергия распада, период полураспада и тип распада совпали с ожидаемыми для продукта слияния. Мы наблюдали такие цепочки распада вплоть до четвертого поколения; вероятность того, что подобные серии коррелированных событий случайны, составляет от 10 –15 до 10 –18 . Если коррелированные события, обусловленные исследуемым изотопом, наблюдаются раз в сутки, то случайного появления событий, имитирующих четыре поколения актов распада, можно ждать в течение времени, в 100 раз превышающего возраст Земли. В результате даже одиночное событие может однозначно указывать на существование данного сверхтяжелого изотопа.

В период между 1981 и 1986 гг. совместно с нашими коллегами П. Хессбергером, З. Хофманом, М. Лейно, В. Райсдорфом и К.-Х. Шмидтом мы использовали УНИЛАК, SHIP и его систему детектирования для синтеза и идентификации элементов 107 109. В этих экспериментах было синтезировано 14 изотопов элементов 104 109 (пять из которых были известны ранее), а также еще два изотопа 107-го и 108-го элементов с массовыми числами 261 и 264 соответственно.

В 1981 г. нами был получен изотоп 107-го элемента с массовым числом 262 путем бомбардировки висмута 209 ионами хрома-54. Для нечетно-нечетного изотопа 107-го элемента (имеющего нечетное число и протонов, и нейтронов) мы установили пять значений энергии альфа-частиц, что дает представление об энергетических ядерных уровнях; мы можем сообщить также, что этот изотоп имеет изомер (долгоживущее возбужденное состояние).

109-й элемент был идентифицирован на основе наблюдения единственной цепочки распада, зарегистрированной в 16 ч 10 мин 29 августа 1982 г. в реакции между железом-58 и висмутом-209. Ядро 266 109 существовало 5 мс, прежде чем испустить альфачастицу с энергией 11,1 МэВ; образовавшееся при этом ядро 107-го элемента распалось на 105-й элемент через 22 мс; 105-й элемент распался на 104-й элемент с последовавшим через 12,9 с спонтанным делением его ядра. Из этого единственного события можно было, хотя и с ограниченной точностью, определить энергию распада, период полураспада и поперечное сечение реакции. Еще две цепочки распада наблюдались в начале 1988 г. - через шесть лет после идентификации 100-го элемента. Они подтвердили интерпретацию события, зарегистрированного в 1982 г.

В 1984г. мы идентифицировали три цепочки распада изотопа 265 108 в реакции между железом-58 и свинцом-208. Два идентифицированных изотопа 107-го и 109-го элементов являются нечетно-нечетными и вероятность их деления сильно снижена, однако изотоп 108-го элемента имеет четное число протонов и нечетное число нейтронов. Хотя у четно-нечетных изотопов вероятность деления значительно выше, изотоп 265 108 также испытывает альфа-распад.

Особенно интересно, что ни один из изотопов элементов 107–109 не делится спонтанно, а все четно-четные изотопы 265 104, 260 106 и 264 108 имеют примерно одинаковую стабильность относительно спонтанного деления.

Приблизительно постоянный уровень стабильности показывает, как стабилизирующие обол очечные эффекты конкурируют с общим падением стабильности при увеличении массы ядер.

За 104-м и 105-м элементами находится небольшой «остров» ядер, которые при испускании альфа-частиц распадаются с образованием известных изотопов более легких элементов. Такие акты альфа-распада позволяют определить энергию связи этих сверхтяжелых элементов. Если энергия связи дочернего ядра известна, то на каждой стадии по энергии альфа-распада можно рассчитать энергию связи материнского ядра. Если известна энергия связи конечного продукта, то по цепочке актов альфа-распада можно прийти в энергии-связи начального ядра цепочки. Поскольку был зарегистрирован распад 108-го и 100-го элементов (по одному событию в каждом случае) и 106-го элемента (по нескольким событиям), можно реконструировать цепочку 264 108 260 106 256 104 252 102. Энергии связи этих ядер составляют 120, 106 и 94 МэВ соответственно.

Оболочечная поправка к энергии связи постепенно растет у всех изотопов от урана-232 до 264 108, которые связаны процессом альфа-распада; соответствующие значения увеличиваются от 1-2 до 6-7 МэВ. Фактически все элементы от урана до 108-го элемента имеют одинаково высокие барьеры деления - около 6 МэВ. В отличие от урана, еще стабильного, как ядерная капля, стабильность 100-го и 108-го элементов полностью обусловлена квантовомеханической структурой их многочастичных фермионных систем. В последних теоретических работах предсказываются барьеры деления, которые согласуются с нашими измерениями.

Время жизни элемента относительно деления определяется в основном высотой и шириной барьера деления. Оболочечные поправки увеличивают времена жизни 106-го и 108-го элементов на 15 порядков величины. На логарифмической шкале наблюдаемые времена жизни находятся в середине диапазона между собственным ядерным временем (примерно 10 –21 с для распада несвязанной нуклонной системы) и возрастом Вселенной (10 18 с). Новые элементы нестабильны только по сравнению с продолжительностью человеческой жизни (2·10 9 с). Чтобы соответствовать стабильности по этой шкале, времена жизни должны возрасти на 12 порядков величины. Однако ядерная физика не базируется на человеческом масштабе времени.

Обнаруженный нами «остров» альфа-радиоактивных изотопов является прямым следствием их стабилизации благодаря оболочечным эффектам. Таким образом, предсказанная в конце 60-х годов стабилизация сферических сверхтяжелых ядер вблизи 114-го элемента начинается намного раньше, чем ожидалось, и постепенно нарастает. В узкой области нестабильности за свинцом, между элементами 83 и 90, оболочечные эффекты ослабляются. Однако в интервале между 92-м и 114-м элементами величина оболочечной поправки медленно и монотонно возрастает.

Даже в окрестностях «острова» сверхтяжелых ядер происходит стабилизация вследствие квантовомеханической структуры фермионных систем, в то время как на «материке» стабилизация ядер обусловлена макроскопическими жидкокапельными свойствами. Ядра элементов 107 109 находятся на «дамбе» между «островом» и «материком», поэтому новые изотопы можно отнести и к «острову», и к «материку». В любом случае - подобно сверхтяжелым элементам - их удалось наблюдать только благодаря оболочечной стабилизации их основных состояний.

Из последних теоретических предсказаний для оболочечных поправок к энергиям связи следует, что между элементами 106 и 126 должна быть область примерно из 400 сверхтяжелых ядер, имеющих барьеры деления свыше 4 МэВ. Все эти изотопы должны иметь периоды полураспада более 1 мкс; если их удастся синтезировать, то детектировать их можно будет существующими методами. Особенно стабильные области предполагаются вблизи изотопов 273 109 и 291 115.При числе нейтронов около 166 деформация основного состояния изменяется. Изотопы с меньшим числом нейтронов деформированы, в то время как более тяжелые изотопы имеют сферическую форму.

В течение последних 20 лет все попытки получить изотопы вблизи ожидаемого центра стабильности - ядра 298 114 - оказались безуспешными. Зарегистрировать эти сверхтяжелые изотопы не удалось ни в реакциях слияния, ни в любых других реакциях с участием тяжелых ионов. Тем не менее основная идея о возможности существования оболочечно-стабилизированных нуклонных систем, кроме стабильных ядерных капель, подтверждена экспериментами, описанными выше. Теоретически же сохраняются все основания верить в экстраполяцию к еще более тяжелым элементам.

Теперь возникает интересный вопрос: что в конечном счете препятствует созданию этих «хрупких» объектов? Некоторые важные разъяснения удалось получить в наших интенсивных исследованиях реакций слияния. Оболочечно-стабилизированное ядро, сферическое в основном состоянии, может быть разрушено даже при столь малой энергии возбуждения, как 15 МэВ, это было экспериментально продемонстрировано К.-Х. Шмидтом еще в 1979 г., в то время как деформированные ядра могут сохраняться при энергии возбуждения до 40 МэВ. Даже в реакции между кальцием-48 и кюрием-248 (наиболее подходящей из доступных реакций) энергия возбуждения составляет около 30 МэВ. Отсюда следует, что можно получить сверхтяжелые элементы только с деформированными ядрами. Однако до настоящего времени такие попытки были успешными лишь для элементов с атомными номерами меньше 110.

Как отмечалось ранее, слияние двух ядер, приводящее к образованию сверхтяжелого ядра, с самого начала осложняется необходимостью преодолеть барьер слияния. Для данного ядра-продукта этот барьер минимален, когда наиболее тяжелые мишени бомбардируются по возможности более легкими ионами. Несмотря на это преимущество, такая наиболее асимметричная комбинация имеет недостаток, заключающийся в максимальном нагреве ядра-продукта, что приводит к большим потерям вследствие деления в процессе девозбуждения. Чем менее асимметрична комбинация, тем меньше потери на стадии охлаждения. Наилучший компромисс между малыми потерями на конечной стадии и большой вероятностью образования на начальной представляют собой более симметричные комбинации с ядрами мишени вблизи свинца.

Применение свинца и висмута в качестве мишеней дает двойную пользу от обол очечного эффекта в этих ядрах: сильная связь в этих ядрах с их дважды замкнутыми оболочками приводит к уменьшению более чем на 10 МэВ энергии, передаваемой ядрупродукту, и соответствующему уменьшению потерь из-за деления. Кроме того, вероятность преодолеть барьер слияния увеличивается, если в реакции используются сферические, сильно связанные и относительно жесткие ядра. Здесь снова проявляются сильные оболочечные эффекты у свинца, однако на этот раз в динамике процесса.

Теперь мы начинаем понимать, почему будет очень трудно получить еще более тяжелые элементы. Только сочетание оболочечных поправок у партнеров реакции слияния, имеющих замкнутые оболочки, оболочечных эффектов в динамике и повышенной устойчивости возбужденных деформированных сверхтяжелых ядер позволило нам синтезировать несколько изотопов наиболее легких из сверхтяжелых элементов. Мы должны были распространить первоначальный вопрос о существовании оболочечно-стабилизированных ядер на эффект оболочечных поправок на всех стадиях реакции. Особенно важно при создании этих сложных и «хрупких» объектов ввести уже существующий порядок в процесс слияния, избежав ненужного беспорядка.

Как получить следующие сверхтяжелые элементы? Для 110-го и 111-го элементов можно будет применить разработанные нами методы в реакциях между никелем-62 и свинцом-208 или висмутом-209. Если только эти элементы образуются, для их детектирования потребуются не столько принципиально новые знания, сколько обеспечение потребностей в обогащенном изотопе и терпение для того, чтобы научиться владеть нашей аппаратурой и проводить эксперименты в течение нескольких месяцев.

Работы велись в Лаборатории ядерных реакций (ЛЯР) им. Г.Н. Флёрова дубненского Объединенного института ядерных исследований (ОИЯИ) успешно. Свойства 117-го и ранее синтезированных в Дубне элементов N 112-116 и 118 являются прямым доказательством существования так называемого "острова стабильности" сверхтяжелых элементов, предсказанного теоретиками еще в 60-е годы прошлого века и значительно расширяющего пределы таблицы Менделеева. Редакции "Известий" об уникальном эксперименте еще в марте сообщил руководитель ЛЯР академик Юрий Оганесян, но разрешение на публикацию дал только сейчас. О сути эксперимента обозревателю Петру Образцову рассказал автор открытия академик Юрий Оганесян.

известия: Чем вызван интерес ученых к синтезу сверхтяжелых элементов, которые и существуют-то ничтожно малое время?

юрий оганесян: После открытия в 1940-1941 годах первых искусственных элементов - нептуния и плутония - вопрос о пределах существования элементов стал исключительно интересным для фундаментальной науки о строении материи. К концу прошлого века были открыто 17 искусственных элементов и обнаружено, что их ядерная стабильность резко уменьшается с увеличением атомного номера. При переходе от 92-го элемента - урана - к 102-му элементу - нобелию период полураспада ядра уменьшается на 16 порядков: от 4,5 млрд лет до нескольких секунд. Поэтому считалось, что продвижение в область еще более тяжелых элементов приведет к пределу их существования, по существу обозначит границу существования материального мира. Однако в середине 60-х годов теоретиками неожиданно была выдвинута гипотеза о возможном существовании сверхтяжелых атомных ядер. По расчетам, время жизни ядер с атомными номерами 110-120 должно было существенно возрастать по мере увеличения в них числа нейтронов. Согласно новым представлениям они образуют обширный "остров стабильности" сверхтяжелых элементов, что существенно расширяет границы таблицы элементов.
и: Удалось ли это подтвердить экспериментально?

оганесян: В 1975-1996 годах физикам Дубны, Дармштадта (GSI, Германия), Токио (RIKEN) и Беркли (LBNL, США) удалось исследовать эти реакции и синтезировать шесть новых элементов. Наиболее тяжелые элементы 109-112 были получены впервые в GSI и повторены в RIKEN. Но периоды полураспада наиболее тяжелых ядер, полученных в этих реакциях, составляли всего лишь десятитысячные или даже тысячные доли секунды. Гипотеза о существовании сверхтяжелых элементов впервые получила экспериментальное подтверждение в Дубне, в исследованиях, проводимых нашей группой в сотрудничестве с учеными из Национальной лаборатории им. Лоуренса в Ливерморе (США). Нам удалось кардинально изменить подход к синтезу сверхтяжелых ядер, например, путем обстреливания мишени из искусственного элемента берклия (N 97) пучком снаряда из исключительно редкого и дорогого изотопа кальция (N 20) с массой 48. При слиянии ядер получается элемент N 117 (97 + 20 = 117). Результаты превзошли даже самые оптимистичные ожидания. В 2000-2004 годах, практически в течение пяти лет, именно в таких реакциях впервые были синтезированы сверхтяжелые элементы с атомными номерами 114, 116 и 118.

и: А какой именно научный вклад внесли американские ученые?

оганесян: В ядерной реакции с пучком кальция 117-й элемент может быть получен только с использованием мишени из искусственного элемента берклия. Период полураспада этого изотопа составляет всего 320 дней. Из-за короткого времени жизни наработку берклия в требуемом количестве (20-30 миллиграммов) необходимо вести в реакторе с очень высокой плотностью потока нейтронов. Такая задача по плечу только изотопному реактору Национальной лаборатории США в Ок-Ридже. Кстати, именно в этой лаборатории был впервые произведен плутоний для американской атомной бомбы. Поскольку с момента производства берклия его количество убывает вдвое через 320 дней, необходимо было все работы вести в высоком темпе. И не только в лабораториях, но и в официальных структурах России и США, связанных с сертификацией необычного материала, транспортировкой высокорадиоактивного продукта наземным и воздушным транспортом, техникой безопасности и так далее.

и: Достойно приключенческой повести. А что было дальше?

оганесян: В начале июня 2009 года контейнер прибыл в Москву. Из этого вещества в НИИ атомных реакторов (г. Димитровград) была изготовлена мишень в виде тончайшего слоя берклия (300 нанометров), нанесенного на тонкую титановую фольгу; в июле мишень была доставлена в Дубну. К этому моменту в ЛЯР все подготовительные работы были завершены, и началось непрерывное облучение мишени интенсивным пучком кальция. Уже в первом облучении мишени продолжительностью 70 дней нам сопутствовала удача: детекторы пять раз зарегистрировали картину образования и распада ядер 117-го элемента. Как и ожидалось, ядра этого элемента трансформировались в ядра 115-го элемента, 115-й элемент превращался в 113-й, а затем 113-й элемент переходил в 111-й. А 111-й элемент распадался с периодом полураспада 26 секунд. В ядерном масштабе это огромное время! Теперь таблица Менделеева пополнилась еще одним из самых тяжелых элементов с атомным номером 117.

и: Наших читателей, естественно, заинтересует, какое практическое применение может иметь ваше открытие.

оганесян: Сейчас, конечно, никакого, ведь получено всего несколько атомов элемента N 117. С фундаментальной точки зрения представления о нашем мире теперь должны сильно измениться. Более того, если синтезируются элементы с огромным периодом полураспада, то не исключено, что они существуют и в природе и могли "дожить" до нашего времени с момента образования Земли - 4,5 млрд лет. И эксперименты по их поиску нами ведутся, в глубине Альпийских гор стоит наша установка.

и: Вопрос из другой плоскости. Как вы считаете, почему очевидные успехи в ядерной физике за последние лет 20 так и не были отмечены Нобелевскими премиями?

оганесян: Физика - большая. Видимо, для членов Нобелевского комитета более интересны другие области этой науки. А достойных ученых действительно немало. Кстати, должен назвать участников нашего эксперимента: Национальная лаборатория в Ок-Ридже (проф. Джеймс Роберто), Университет им. Вандербильта (проф. Джозеф Гамильтон), Национальная лаборатория им. Лоуренса в Ливерморе (Доун Шонесси), НИИ атомных реакторов, г. Димитровград (Михаил Рябинин) и Лаборатория ядерных реакций ОИЯИ (руководитель Юрий Оганесян).

От редакции. Временно элемент N 117 получит название "один-один-семь" по-латыни, то есть унунсептий. Группа академика Юрия Оганесяна - авторы открытия - имеет полное право дать настоящее имя этому элементу, а также открытым ими элементам N 114-116 и 118. В "Неделе" от 26 марта мы предложили читателям представить свои предложения по наименованию "наших" элементов. Пока разумным представляется только "курчатовий" для одного из этих элементов. Конкурс продолжается.

Сначала статья о том, что такое "остров стабильности".

Остров стабильности: российские ядерщики лидируют в гонке

Синтез сверхтяжелых элементов, составляющих так называемых "остров стабильности", - амбициозная задача современной физики, в решении которой российские ученые опережают весь мир.

3 июня 2011 года экспертная комиссия, в которую вошли специалисты Международных союзов теоретической и прикладной химии (IUPAC) и физики (IUPAP), официально признала открытие 114-го и 116-го элементов таблицы Менделеева. Приоритет открытия отдан группе физиков под руководством академика РАН Юрия Оганесяна из Объединенного института ядерных исследований при содействии американских коллег из Ливероморской национальной лаборатории им. Лоуренса.

Академик РАН Юрий Оганесян, руководитель лаборатории ядерных реакций в ОИЯИ

Новые элементы стали самыми тяжелыми из тех, что включены в периодическую таблицу Менделеева, и получили временные названия унунквидия и унунгексия, образованные по порядковому номеру в таблице. Российские физики предложили назвать элементы "флеровием" в честь Георгия Флерова - советского физика-ядерщика, специалиста в области деления ядер и синтеза новых элементов, и "московием" в честь Московской области. Помимо 114-го и 116-го элементов в ОИЯИ ранее были синтезированы химические элементы с порядковыми номерами 104, 113, 115, 117 и 118. А 105-му элементу таблицы в честь признания вклада дубненских физиков в современную науку присвоено название "дубний".

Элементы, которых нет в природе

В настоящее время весь окружающий нас мир состоит из 83 химических элементов, от водорода (Z=1, Z — количество протонов в ядре) до урана (Z=92), время жизни которых больше времени жизни солнечной системы (4,5 миллиарда лет). Более тяжелые элементы, появившиеся во время нуклеосинтеза незадолго после Большого взрыва, уже распались и не дожили до наших дней. Уран, период полураспада которого составляет около 4,5×10 8 лет, еще распадется и радиоактивен. Однако в середине прошлого века исследователи научились получать элементы, которых нет в природе. В качестве примера такого элемента можно привести вырабатываемый в ядерных реакторах плутоний (Z=94), который производится сотнями тонн и является одним из мощнейших источников энергии. Период полураспада плутония существенно меньше, чем период полураспада урана, но все же достаточно велик, чтобы предположить возможность существования более тяжелых химических элементов. Концепция атома, состоящего из ядра, несущего в себе положительный заряд и основную массу, и электронных орбиталей, предполагает возможность существования элементов с порядковым номером до Z=170. Но на самом деле за счет нестабильности процессов, происходящих в самом ядре, граница существования тяжелых элементов намечается значительно раньше. В природе стабильные образования (ядра элементов, состоящие из разного числа протонов и нейтронов) встречаются только до свинца и висмута, затем следует небольшой полуостров, включающий в себя торий и уран, обнаруженные на Земле. Но как только порядковый номер элемента превышает номер урана, время его жизни резко уменьшается. Например, ядро 100-го элемента в 20 раз менее стабильно, чем ядро урана, а в дальнейшем эта нестабильность только усиливается из-за спонтанного деления ядер.

"Остров стабильности"

Эффект спонтанного деления был объяснен Нильсом Бором. Согласно его теории, ядро представляет собой каплю заряженной жидкости, то есть некую материю, не имеющую собственной внутренней структуры. Чем больше количество протонов в ядре, тем сильнее влияние кулоновских сил, под действием которых капля деформируется и делится на части. Такая модель предсказывает возможность существования элементов до 104-го - 106-го порядковых номеров. Однако в 60-х годах в Лаборатории ядерных реакций Объединенного института ядерных исследований был проведен ряд экспериментов по изучению свойств деления ядер урана, результаты которых невозможно было объяснить при помощи теории Бора. Оказалось, что ядро не является полным аналогом капли заряженной жидкости, а имеет внутреннюю

структуру. Причем чем тяжелее ядро, тем сильнее становится выражено влияние этой структуры, и картина распада будет выглядеть совсем не так, как прогнозирует модель капли жидкости. Так возникла гипотеза о существовании некой области стабильных сверхтяжелых ядер, далеких от известных сегодня элементов. Область получила название "острова стабильности", и после предсказания ее существования крупнейшие лаборатории США, Франции и Германии начали ряд экспериментов для подтверждения теории. Однако их попытки не увенчались успехом. И только эксперименты на дубненском циклотроне, результатом которых стало открытие 114-го и 116-го элементов, дают возможность утверждать, что область стабильности сверхтяжелых ядер действительно существует.

На рисунке ниже показана карта тяжелых нуклидов. Периоды полураспада ядер представлены различным цветом (правая шкала). Черные квадраты - изотопы стабильных элементов, обнаруженных в земной коре (время полураспада более 10 9 лет). Темно-синий цвет - "море нестабильности", где ядра живут менее 10 −6 секунды. "Острова стабильности", следующие за "полуостровом" тория, урана и трансурановых элементов - предсказания микроскопической теории ядра. Два ядра с атомными номерам 112 и 116, полученные в различных ядерных реакциях и их последовательный распад, показывают, насколько близко можно подойти к "островам стабильности" при искусственном синтезе сверхтяжелых элементов.

Карта тяжелых нуклидов

Для того чтобы синтезировать стабильное тяжелое ядро, необходимо внедрить в него как можно больше нейтронов, поскольку именно нейтроны являются тем "клеем", который удерживает нуклоны в составе ядра. Первой идеей стало облучение некого исходного вещества потоком нейтронов от реактора. Но с помощью этого метода ученые смогли синтезировать только фермий, элемент с 100-м атомным номером. Причем вместо необходимых 60 нейтронов, в ядро удалось внедрить только 20. Не увенчались успехом и попытки американских ученых синтезировать сверхтяжелые элементы в процессе ядерного взрыва (по сути, в мощном импульсном потоке нейтронов), результатом их экспериментов стал все тот же изотоп фермия. С этого момента начал развиваться другой способ синтеза - столкнуть два тяжелых ядра в надежде на то, что результатом их столкновения станет ядро суммарной массы. Для проведения эксперимента нужно одно из ядер разогнать до скорости, составляющей примерно 0,1 скорости света при помощи ускорителя тяжелых ионов. Все тяжелые ядра, полученные сегодня, были синтезированы именно таким образом. Как уже было отмечено, остров стабильности находится в области нейтроно-избыточных сверхтяжелых ядер, поэтому ядра мишени и пучка также должны содержать избыток нейтронов. Подобрать такие элементы довольно сложно, поскольку практически все существующие стабильные нуклиды имеют строго определенное отношение числа протонов и нейтронов.

В эксперименте по синтезу 114-го элемента в качестве мишени был использован самый тяжелый изотоп плутония с атомной массой 244, выработанный в реакторе Ливерморской национальной лаборатории (США) и кальций-48 в качестве ядра-снаряда. Кальций-48 - стабильный изотоп кальция, которого в обычном кальции содержится всего 0,1%. Экспериментаторы надеялись на то, что такая конфигурация позволит почувствовать эффект увеличения времени жизни сверхтяжелых элементов. Для проведения опыта требовался ускоритель с мощностью пучка кальция-48, превосходящей все известные ускорители в десятки раз. В течение пяти лет такой ускоритель был создан в Дубне, он дал возможность поставить эксперимент в несколько сот раз более точный, чем эксперименты в других странах на протяжении последних 25 лет.

Получив пучок кальция необходимой интенсивности, экспериментаторы облучают плутониевую мишень. Если в результате слияния двух ядер образуются атомы нового элемента, то они должны вылететь из мишени и вместе с пучком продолжить движение вперед. Но их надо отделить от ионов кальция и других продуктов реакции. Эту функцию выполняет сепаратор.

MASHA (Mass Analyzer of Super Heavy Atoms) — установка для сепарации ядер

Ядра отдачи, вылетающие из мишенного слоя, останавливаются в графитовом сборнике на глубине несколько микрометров. Вследствие высокой температуры сборника они диффундируют в камеру ионного источника, вытягиваются из плазмы, ускоряются электрическим полем и анализируются по массе магнитными полями по ходу движения к детектору. В данной конструкции масса атома может быть определена с точностью 1/3000. Задача детектора - определить, что в него попало тяжелое ядро, зарегистрировать его энергию, скорость и место его остановки с высокой точностью.

Схема работы сепаратора

Для проверки теории существования "острова стабильности" ученные наблюдали за продуктами распада ядра 114-го элемента. Если теория справедлива, то получившиеся ядра 114-го элемента должны быть устойчивы к спонтанному делению, и быть альфа-радиоактивны, то есть испускать альфа-частицу, состоящую из двух протонов и двух нейтронов. Для реакции с участием 114-го элемента должен наблюдаться переход 114-го в 112-й. Затем ядра 112-го также испытывают альфа-распад и переходят в ядра 110-го и так далее. Причем время жизни нового элемента должно быть на несколько порядков больше времени жизни более легких ядер. Именно такие долгоживущие события, существование которых было предсказано теоретически, и увидели дубненские физики. Это является прямым указанием на то, что 114-й элемент уже испытывает действие структурных сил, формирующих остров стабильности сверхтяжелых элементов.

Примеры цепочек распада 114-го и 116-го элементов

В опыте по синтезу 116-го элемента в качестве мишени использовали уникальное вещество - кюрий-248, полученный на мощном реакторе НИИ атомных реакторов в г. Димитровграде. В остальном эксперимент проходил по той же схеме, что и поиск 114-го элемента. Наблюдение цепочки распадов 116-го элемента стало еще одним доказательством существования 114-го элемента, на этот раз он был получен в результате распада более тяжелого "родителя". В случае со 116-м элементом экспериментальные данные также показали существенное увеличение времени жизни при увеличении количества нейтронов в ядре. То есть современная физика синтеза тяжелых элементов вплотную подошла к границе "острова стабильности". Кроме того, образовавшиеся вследствие распада 116-го элемента элементы с атомными номерами 108, 109 и 110 имеют время жизни, исчисляемое минутами, что даст возможность изучать химические свойства этих веществ методами современной радиохимии и экспериментально проверить фундаментальность закона Менделеева относительно периодичности химических свойств элементов в таблице. Применительно к тяжелым элементам можно предположить, что 112-й элемент обладает свойствами кадмия и ртути, а 114-й - олова, свинца и т.д. Вероятно, на вершине острова стабильности существуют сверхтяжелые элементы, время жизни которых составляет миллионы лет. Эта цифра не дотягивает до возраста Земли, но все же не исключено присутствие сверхтяжелых элементов в природе, в нашей Солнечной системе, либо в космических лучах, то есть в других системах нашей Галактики. Но пока эксперименты по поиску "природных" сверхтяжелых элементов не увенчались успехом.

В настоящее время в ОИЯИ идет подготовка эксперимента по поиску 119-го элемента таблицы Менделеева, а Лаборатория ядерных реакций является мировым лидером в области физики тяжелых ионов и синтеза сверхтяжелых элементов.

Анна Максимчук,
научный сотрудник ОИЯИ,
специально для R&D.CNews.ru

Интересно, конечно. Оказывается, что много ещё может быть открыто химических элементов и даже почти стабильных.

Возникает вопрос: а в чём практический смысл всего этого довольно дорогого мероприятия по поиску новых почти стабильных элементов?

Кажется так, что когда найдут способ производить эти элементы, тогда и будет видно.

Но кое-что просматривается уже и сейчас. Например, если кто смотрел фильм "Хищник", то у хищника есть устройство самоуничтожения в браслете на руке и взрыв довольно мощный получается. Так вот. Эти новые химические элементы подобны урану-235, но при этом критическая масса может исчисляться граммами (при этом 1 грамм этого вещества эквивалентен взрыву 10 тонн тротила -- неплохая такая бомбочка размером всего с пятикопеечную монету).

Так что уже есть большой смысл учёным трудиться в поте лица, а государству не скупиться на расходы.

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели предсказывают исчезновение барьера деления для ядер с Z2/A ≈ 46 (примерно 112 элемент). В проблеме синтеза сверхтяжелых ядер следует выделить два круга вопросов.

  1. Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N. Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  2. Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения компаунд-ядра и каналы снятия возбуждения?

Так как образование сверхтяжелых ядер происходит в результате полного слияния ядра мишени и налетающей частицы необходимо создание теоретических моделей, описывающих динамику процесса слияния двух сталкивающихся ядер в компаунд-ядро.
Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z,N = 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным модам радиоактивного распада. Это явление объясняется в рамках оболочечной модели − магические числа соответствуют заполненным оболочкам. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области N-Z-диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. В работе на основе расчетов, выполненных с использованием потенциала Вудса-Саксона с учетом спин-орбитального взаимодействия, было показано, что повышение стабильности ядер следует ожидать для ядра с Z = 114, то есть следующая заполненная протонная оболочка соответствует Z = 114, заполненная нейтронная оболочка соответствует числу N ~ 184. Замкнутые оболочки могут существенно увеличить высоту барьера деления и соответственно увеличить время жизни ядра. Таким образом в этой области ядер (Z = 114, N ~ 184) следует искать Остров Стабильности. Этот же результат был независимо получен в работе .
Ядра с Z = 101–109 были открыты до 1986 года и получили названия: 101 - Md (Menelevium), 102 - No (Nobelium), 103 - Lr (Lawrencium), 104 - Rf (Rutherfordium, 106 - Sg (Seaborgium), 107 - Ns (Nielsborium), 108 - Hs (Hassium), 109 - Mt (Meitnerium). Учитывая заслуги исследователей из Дубны в открытии большого числа изотопов тяжелых элементов (102-105), в 1997 году решением Генеральной Ассамблеи чистой и прикладной химии элементу с Z = 105 было присвоено имя Dubnium (Db). Этот элемент ранее назывался Ha (Hannium).


Рис. 12.3. Цепочки распадов изотопов Ds (Z = 110), Rg (Z = 111), Cn (Z = 112).

Новый этап в исследовании сверхтяжелых ядер начался в 1994 году, когда была существенно повышена эффективность регистрации и усовершенствована методика наблюдения сверхтяжелых ядер. Как результат были обнаружены изотопы Ds (Z = 110), Rg (Z = 111) и Cn (Z = 112) .
Для получения сверхтяжелых ядер использовались ускоренные пучки 50 Ti, 51 V, 58 Fe, 62 Ni, 64 Ni, 70 Zn и 82 Se. В качестве мишеней применялись изотопы 208 Pb и 209 Bi. Различные изотопы 110 элемента были синтезированы в Лаборатории ядерных реакций им. Г.Н. Флерова с помощью реакции 244 Pu(34 S,5n) 272 110 и в GSI (Дармштадт) в реакции 208 Pb(62 Ni,n) 269 110. Изотопы 269 Ds, 271 Ds, 272 Rg и 277 Cn регистрировались по их цепочкам распада (рис. 12.3).
Большую роль в получении сверхтяжелых элементов играют теоретические модели, с помощью которых рассчитываются ожидаемые характеристики химических элементов, реакции, в которых они могут образовываться.
На основе различных теоретических моделей были рассчитаны распадные характеристики сверхтяжелых ядер. Результаты одного из таких расчетов показаны на рис. 12.4. Приведены периоды полураспада четно-четных сверхтяжелых ядер относительно спонтанного деления (а), α-распада (б), β-распада (в) и для всех возможных процессов распада (г). Наиболее устойчивым ядром по отношению к спонтанному делению (рис. 12.4а) является ядро с Z = 114 и N = 184. Для него период полураспада по отношению к спонтанному делению ~10 16 лет. Для изотопов 114-го элемента, отличающихся от наиболее устойчивого на 6-8 нейтронов, периоды полураспада уменьшаются на
10-15 порядков. Периоды полураспада по отношению к α-распаду приведены на рис. 12.5б. Наиболее устойчивое ядро расположено в области Z = 114 и N = 184 (T 1/2 = 10 15 лет).
Стабильные по отношению к β-распаду ядра показаны на рис. 12.4в темными точками. На рис. 12.4г приведены полные периоды полураспада, которые для четно-четных ядер, расположенных внутри центрального контура, составляют ~10 5 лет. Таким образом, после учета всех типов распада оказывается, что ядра в окрестности Z = 110 и N = 184 образуют «остров стабильности». Ядро 294 110 имеет период полураспада около 10 9 лет. Отличие величины Z от предсказываемого оболочечной моделью магического числа 114 связано с конкуренцией между делением (относительно которого ядро с Z = 114 наиболее стабильно) и α-распадом (относительно которого устойчивы ядра с меньшими Z). У нечетно-четных и четно-нечетных ядер периоды полураспада по отношению к
α-распаду и спонтанному делению увеличиваются, а по отношению к β-распаду уменьшаются. Следует отметить, что приведенные оценки сильно зависят от параметров, использованных в расчетах, и могут рассматриваться лишь как указания на возможность существования сверхтяжелых ядер, имеющих времена жизни достаточно большие для их экспериментального обнаружения.


Рис. 12.4. Периоды полураспада, вычисленные для четно-четных сверхтяжелых ядер (числа обозначают периоды полураспада в годах):
а − относительно спонтанного деления, б − α-распада, в − е-захвата и β-распада, г − для всех процессов распада

Результаты еще одного расчета равновесной формы сверхтяжелых ядер и их периодов полураспада показаны на рис. 12.5, 12.6 . На рис. 12.5 показана зависимость энергии равновесной деформации от количества нейтронов и протонов для ядер с Z = 104-120. Энергия деформации определяется как разность энергий ядер в равновесной и сферической форме. Из этих данных видно, что в области Z = 114 и N = 184 должны располагаться ядра, имеющие в основном состоянии сферическую форму. Все обнаруженные на сегодня сверхтяжелые ядра (они показаны на рис. 12.5 темными ромбами) деформированы. Светлыми ромбами показаны ядра стабильные по отношению к β-распаду. Эти ядра должны распадаться в результате α-распада или деления. Основным каналом распада должен быть α-распад.

Периоды полураспада для четно-четных β-стабильных изотопов показаны на рис. 12.6. Согласно этим предсказаниям для большинства ядер ожидаются периоды полураспада гораздо большие, чем наблюдались для уже обнаруженных сверхтяжелых ядер (0.1–1 мс). Так например, для ядра 292 Ds предсказывается время жизни ~ 51 год.
Таким образом, согласно современным микроскопическим расчетам, стабильность сверхтяжелых ядер резко возрастает по мере приближения к магическому числу по нейтронам N = 184. До недавнего времени единственным изотопом элемента Z = 112 Cn (коперниций) был изотоп 277 Cn, имеющий период полураспада 0.24 мс. Более тяжелый изотоп 283 Cn был синтезирован в реакции холодного слияния 48 Ca + 238 U. Время облучения 25 дней. Полное число ионов 48 Ca на мишени − 3.5·10 18 . Зарегистрированы два случая, которые были интерпретированы как спонтанное деление образовавшегося изотопа 283 Cn. Для периода полураспада этого нового изотопа получена оценка T 1/2 = 81 c. Таким образом, видно, что увеличение числа нейтронов в изотопе 283 Cn по сравнению с изотопом 277 Cn на 6 единиц увеличивает время жизни на 5 порядков.
На рис. 12.7 взятом из работы экспериментально измеренные периоды α-распада сравниваются с результатами теоретических расчетов на основе модели жидкой капли без учета оболочечной структуры ядер. Видно, что для всех тяжелых ядер, за исключением лёгких изотопов урана, оболочечные эффекты увеличивают период полураспада на 2–5 порядков для большинства ядер. Ещё более сильное влияние оболочечная структура ядра оказывает на периоды полураспада относительно спонтанного деления. Увеличение периода полураспада для изотопов Pu составляет несколько порядков и увеличивается для изотопа 260 Sg.

Рис. 12.7. Экспериментально измеренные (● exp) и теоретически рассчитанные (○ Y) периоды полураспада трансурановых элементов на основе модели жидкой капли без учета оболочечной структуры ядра. Верхний рисунок − периоды полураспада для α-распада, нижний рисунок − периоды полураспада для спонтанного деления.

На рис. 12.8 показано измеренное время жизни изотопов сиборгия Sg (Z = 106) в сравнении с предсказаниями различных теоретических моделей . Обращает на себя внимание уменьшение почти на порядок времени жизни изотопа с N = 164 по сравнению с временем жизни изотопа с N = 162.
Наибольшего приближения к острову стабильности можно достичь в реакции 76 Ge + 208 Pb. Сверхтяжелое почти сферическое ядро может образоваться в реакции слияния с последующим испусканием γ-квантов или одного нейтрона. Согласно оценкам образующееся ядро 284 114 должно распадаться с испусканием α-частиц с периодом полураспада ~ 1 мс. Дополнительную информацию о заполненности оболочки в районе N = 162 можно получить, изучая α-распады ядер 271 Hs и 267 Sg. Для этих ядер предсказываются периоды полураспада 1 мин. и 1 час. Для ядер 263 Sg, 262 Bh, 205 Hs, 271,273 Ds ожидается проявление изомерии, причиной которой является заполнение подоболочек с j = 1/2 и j = 13/2 в районе N = 162 для ядер деформированных в основном состоянии.

На рис. 12.9 показаны экспериментально измеренные функции возбуждения реакции образования элементов Rf (Z = 104) и Hs (Z = 108)для реакций слияния налетающих ионов 50 Ti и 56 Fe с ядром-мишенью 208 Pb.
Образовавшееся компаунд-ядро охлаждается испусканием одного или двух нейтронов. Информация о функциях возбуждения реакций слияния тяжелых ионов особенно важны для получения сверхтяжелых ядер. В реакции слияния тяжелых ионов необходимо точно сбалансировать действие кулоновских сил и сил поверхностного натяжения. Если энергия налетающего иона недостаточно большая, то расстояние минимального сближения будет недостаточно для слияния двойной ядерной системы. Если энергия налетающей частицы будет слишком большой, то образовавшаяся в результате система будет иметь большую энергию возбуждения и с большой вероятностью произойдет развал ее на фрагменты. Эффективно слияние происходит в довольно узком диапазоне энергий сталкивающих частиц.


Рис.12.10. Схема потенциалов при слиянии 64 Ni и 208 Pb.

Реакции слияния с испусканием минимального числа нейтронов (1–2) представляют особый интерес, т.к. в синтезируемых сверхтяжелых ядрах желательно иметь максимально большое отношение N/Z. На рис. 12.10 показан потенциал слияния для ядер в реакции 64 Ni + 208 Pb → 272 Ds. Простейшие оценки показывают, что вероятность туннельного эффекта для слияния ядер составляет ~ 10 –21 , что существенно ниже наблюдаемой величины сечения. Это можно объяснить следующим образом. На расстоянии 14 Фм между центрами ядер первоначальная кинетическая энергия 236.2 МэВ полностью компенсируется кулоновским потенциалом. На этом расстоянии находятся в контакте только нуклоны, расположенные на поверхности ядра. Энергия этих нуклонов мала. Следовательно существует высокая вероятность того, что нуклоны или пары нуклонов покинут орбитали в одном ядре и переместятся на свободные состояния ядра-партнера. Передача нуклонов от налетающего ядра ядру-мишени особенно привлекательна в случае, когда в качестве мишени используется дважды магический изотоп свинца 208 Pb. В 208 Pb заполнены протонная подоболочка h 11/2 и нейтронные подоболочки h 9/2 и i 13/2 . Вначале передача протонов стимулируется силами притяжения протон-протон, а после заполнения подоболочки h 9/2 - силами притяжения протон-нейтрон. Аналогично нейтроны перемещаются в свободную подоболочку i 11/2 , притягиваясь нейтронами из уже заполненной подоболочки i 13/2 . Из-за энергии спаривания и больших орбитальных моментов передача пары нуклонов более вероятна, чем передача одного нуклона. После передачи двух протонов от 64 Ni 208 Pb кулоновский барьер уменьшается на 14 МэВ, что способствует более тесному контакту взаимодействующих ионов и продолжению процесса передачи нуклонов.
В работах [В.В. Волков. Ядерные реакции глубоконеупругих передач. М. Энергоиздат, 1982; В.В. Волков. Изв. АН СССР серия физич., 1986 т. 50 с. 1879] был детально исследован механизм реакции слияния. Показано, что уже на стадии захвата формируется двойная ядерная система после полной диссипации кинетической энергии налетающей частицы и нуклоны одного из ядер постепенно оболочка за оболочкой передаются другому ядру. То есть оболочечная структура ядер играет существенную роль в образовании компаунд-ядра. На основе этой модели удалось достаточно хорошо описать энергию возбуждения составных ядер и сечение образования элементов Z = 102–112 в реакциях холодного синтеза.
Таким образом, прогресс в синтезе трансурановых элементов Z = 107–112 был связан с «открытием» реакций холодного синтеза, в которых магические изотопы 208 Pb и 209 Bi облучались ионами с Z = 22–30. Образующееся в реакции холодного синтеза ядро нагрето слабо и охлаждается в результате испускания одного нейтрона. Так впервые были получены изотопы химических элементов с Z = 107–112. Эти химические элементы были получены в период 1978–1998 гг. в Германии на специально построенном ускорителе исследовательского центра GSI в Дармштадте. Однако, дальнейшее продвижение − к более тяжелым ядрам − таким методом оказывается затруднительным из-за роста величины потенциаль­ного барьера между сталкивающимися ядрами. Поэтому в Дубне был реали­зован другой метод получения сверхтяжелых ядер. В качестве мишеней использовались наиболее тяжелые изотопы искусственно полученных химических элементов плутония Pu (Z = 94), америция Am (Z = 95), кюрия Cm (Z = 96), берклия Bk (Z = 97) и калифорния Cf (Z = 98). В качестве ускоренных ионов был выбран изотоп кальция 48 Ca (Z = 20). Схематический вид сепаратора и детектора ядер отдачи показан на рис. 12.11.


Рис. 12.11. Схематический вид сепаратора ядер отдачи, на котором проводятся эксперименты по синтезу сверхтяжелых элементов в Дубне.

Магнитный сепаратор ядер отдачи уменьшает фон побочных продуктов реакции в 10 5 –10 7 раз. Регистрация продуктов реакции осуществлялась с помощью позиционно-чувствительного кремниевого детектора. Измерялись энергия, координаты и время пролета ядер отдачи. После остановки все последующие сигналы от регистрируемых частиц распада должны исходить из точки остановки имплантированного ядра. Созданная методика позволяла с высокой степенью надёжности (≈ 100%) установить связь между остановившимся в детекторе сверхтяжелым ядром и продуктами его распада. С помощью такой методики были надёжно идентифицированы сверхтяжелые элементы с
Z = 110–118 (табл. 12.2).
В таблице 12.2 приведены характеристики сверхтяжелых химических элементов с Z = 110–118: массовое число A, m − наличие изомерного состояния в изотопе с массовым числом A, спин-четность J P , энергия связи ядра E св, удельная энергия связи ε, энергии отделения нейтрона B n и протона B p , период полураспада T 1/2 и основные каналы распада.
Химические элементы Z > 112 пока не имеют названий и приводятся в принятых международных обозначениях.

Таблица 12.2

Характеристики сверхтяжелых химических элементов Z = 110–118

XX-A-m J P Масса
ядра,
MэВ
E св,
MэВ
ε,
MэВ
B n ,
MэВ
B p ,
MэВ
T 1/2 Моды распада
Z = 110 − дармштадтий
Ds-267 248787.19 1934.5 7.2 0.7 2.8 ас α ≈100%
Ds-268 0 + 249718.08 1943.2 7.3 8.7 1.3 100 ас α ≈
Ds-269 250650.86 1950.0 7.2 6.8 1.3 179 ас α 100%
Ds-270 0 + 251581.97 1958.4 7.3 8.5 0.10 мс α ≈100%, SF < 0.20%
Ds-270-m 251583.07 1957.3 7.2 6.0 мс α >70%, IT ≤ 30%
Ds-271 252514.72 1965.2 7.3 6.8 2.2 1.63 мс α ≈100%
Ds-271-m 252514.72 1965.2 7.3 69 мс IT?, α >0%
Ds-272 0 + 253446.46 1973.1 7.3 7.8 2.5 1 с SF
Ds-273 254380.32 1978.8 7.2 5.7 2.5 0.17 мс α ≈100%
Ds-274 0 + 255312.45 1986.2 7.2 7.4 3.0 2 с α?,
SF?
Ds-275 256246.44 1991.8 7.2 5.6 2.9 2 с α?
Ds-276 0 + 257178.73 1999.1 7.2 7.3 3.2 5 с SF?,
α?
Ds-277 258112.63 2004.7 7.2 5.7 3.1 5 с α?
Ds-278 0 + 259044.92 2012.0 7.2 7.3 10 с SF?,
α?
Ds-279 259978.62 2017.9 7.2 5.9 0.18 с SF ≈90%,
α ≈10%
Ds-281 261844.60 2031.0 7.2 9.6 с SF ≈100%
Z =111 − рентгений
Rg-272 253452.75 1965.5 7.2 0.2 3.8 мс α ≈100%
Rg-273 254384.34 1973.5 7.2 8.0 0.4 5 мс α?
Rg-274 255317.74 1979.6 7.2 6.2 0.9 6.4 мс α ≈100%
Rg-275 256249.53 1987.4 7.2 7.8 1.2 10 мс α?
Rg-276 257183.22 1993.3 7.2 5.9 1.5 100 мс SF?,
α?
Rg-277 258115.72 2000.4 7.2 7.1 1.3 1 с α?,
SF?
Rg-278 259049.11 2006.5 7.2 6.2 1.8 4.2 мс α ≈100%,
SF
Rg-279 259981.41 2013.8 7.2 7.3 1.8 0.17 с α ≈100%
Rg-280 260914.80 2020.0 7.2 6.2 2.1 3.6 с α ≈100%
Rg-281 261847.09 2027.2 7.2 7.3 1 м α?, SF?
Rg-282 262780.59 2033.3 7.2 6.1 2.3 4 м SF?, α?
Rg-283 263712.98 2040.5 7.2 7.2 10 м SF?, α?
Z = 112 − коперниций
Cn-277 258119.32 1995.5 7.2 2.2 0.69 мс α ≈100%
Cn-278 0 + 259051.20 2003.1 7.2 7.7 2.8 10 мс SF?, α?
Cn -279 259984.69 2009.2 7.2 6.1 2.7 0.1 с SF?, α?
Cn -280 0 + 260916.69 2016.8 7.2 7.6 3.0 1 с α?, SF?
Cn -282 0 + 262782.18 2030.4 7.2 3.2 0.50 мс SF ≈100%
Cn -283 263715.57 2036.6 7.2 6.2 3.3 4.0 с α ≥90%, SF ≤10%
Cn -284 0 + 264647.66 2044.1 7.2 7.5 3.6 101 мс SF ≈100%
Cn -285 265580.76 2050.5 7.2 6.5 34 с α ≈100%
Z = 113
Uut-278 0.24 мс α 100%
Uut-283 263719.46 2031.4 7.2 1.0 100 мс α 100%
Uut-284 264652.45 2038.0 7.2 6.6 1.4 0.48 с α ≈100%
Uut-285 265584.55 2045.5 7.2 7.5 1.4 2 м α?, SF?
Uut-286 266517.64 2051.9 7.2 6.5 1.4 5 м α?, SF?
Uut-287 267449.64 2059.5 7.2 7.6 20 м α?, SF?
Z = 114
Uuq-286 0 + 266520.33 2048.0 7.2 2.5 0.16 с SF ≈60%, α ≈40%
Uuq-287 267453.42 2054.4 7.2 6.5 2.5 0.51 с α ≈100%
Uuq-288 0 + 268385.02 2062.4 7.2 8.0 2.9 0.80 с α ≈100%
Uuq-289 269317.91 2069.1 7.2 6.7 2.7 с α ≈100%
Z = 115
Uup-287 267458.11 2048.4 7.1 0.5 32 мс α 100%
Uup-288 268390.81 2055.3 7.1 6.9 0.9 87 мс α 100%
Uup-289 269322.50 2063.2 7.1 7.9 0.8 10 с SF?, α?
Uup-290 270255.30 2070.0 7.1 6.8 0.9 10 с SF?, α?
Uup-291 271187.09 2077.7 7.1 7.8 1 м α?, SF?
Z = 116
Uuh-290 0 + 270258.98 2065.0 7.1 1.8 15 мс α ≈100%
Uuh-291 271191.78 2071.7 7.1 6.8 1.8 6.3 мс α 100%
Uuh-292 0 + 272123.07 2080.0 7.1 8.3 2.3 18 мс α ≈100%
Uuh-293 53 мс α ≈100%
Z = 117
Uus-291 271197.37 2064.9 7.1 -0.1 10 мс SF?, α?
Uus-292 272129.76 2072.0 7.1 7.2 0.3 50 мс SF?, α?
Z = 118
Uuo-294 0 + 1.8 мс α ≈100%

На рис. 12.12 показаны все известные наиболее тяжелые изотопы с Z = 110–118, полученные в реакциях синтеза с указанием экспериментально измеренного периода полураспада. Здесь же показано теоретически предсказанное положение острова стабильности (Z = 114, N = 184).


Рис. 12.12. N-Z-диаграмма элементов Z = 110–118.

Полученные результаты однозначно указывают на рост стабильности изотопов при приближении к дважды магическому ядру (Z = 114, N = 184). Добавление к ядрам с Z = 110 и 112 7–8 нейтронов увеличивает период полураспада от 2.8 ас (Ds-267) до ≈ 10 с (Ds-168, Ds 271). Период полураспада T 1/2 (272 Rg, 273 Rg) ≈ 4–5 мс увеличивается до T 1/2 (283 Rg) ≈ 10 мин. Наиболее тяжелые изотопы элементов Z = 110–112 содержат ≈ 170 нейтронов, что ещё далеко от магического числа N = 184. Все наиболее тяжелые изотопы с Z > 111 и N > 172 распадаются преимущественно в результате
α-распада, спонтанное деление – более редкий распад. Эти результаты находятся в хорошем согласии с теоретическими предсказаниями.
В Лаборатории ядерных реакций им. Г.Н. Флерова (Дубна) синтезирован элемент с Z = 114. Была использована реакция

Идентификация ядра 289 114 проводилась по цепочке α-распадов. Экспериментальная оценка периода полураспада изотопа 289 114 ~30 с. Полученный результат находится в хорошем согласии с ранее выполненными расчетами .
При синтезе 114 элемента в реакции 48 Cu + 244 Pu максимальный выход изотопов с Z = 114 наблюдался в канале с испарением трех нейтронов. При этом энергии возбуждения составного ядра 289 114 была 35 МэВ.
Теоретически предсказываемая последовательность распадов, происходящих с ядром 296 116, образующемся в реакции 248 Cm + 48 Ca → 296 116, приведена на рис.12.13


Рис. 12.13. Схема распада ядра 296 116.

Изотоп 296 116 охлаждается в результате испускания четырех нейтронов и превращается в изотоп 292 116, который далее с 5% -ой вероятностью в результате двух последовательных e-захватов превращается в изотоп 292 114. В результате α-распада (T 1/2 = 85 дней) изотоп 292 114 превращается в изотоп 288 112. Образование изотопа 288 112 происходит и по каналу

Конечное ядро 288 112, образующееся в результате обеих цепочек, имеет период полураспада около 1 часа и распадается в результате спонтанного деления. Примерно с 10%-ой вероятностью в результате α-распада изотопа 288 114 может образовываться изотоп 284 112. Приведенные выше периоды и каналы распада получены расчетным путем.
На рис. 12.14 приведена цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне. ER − энергия ядра отдачи, имплантированного в позиционно-чувствительный кремниевый детектор. Можно отметить хорошее совпадение в периодах полураспада и энергиях α-распадов в трёх экспериментах, что свидетельствует о надёжности метода идентификации сверхтяжелых элементов с помощью измерений спектров α-частиц.


Рис. 12.14. Цепочка последовательных α-распадов изотопа 288 115, измеренная в экспериментах в Дубне.

Самый тяжелый, полученный в лабораторных условиях элемент с Z = 118, был синтезирован в реакции

48 Ca + 249 Cf → 294 118 + 3n.

При энергии ионов вблизи кулоновского барьера наблюдалось три случая образования 118 элемента. Ядра 294 118 имплантировались в кремниевый детектор и наблюдалась цепочка последовательных α-распадов. Сечение образования 118 элемента составляло ~2 пикобарна. Период полураспада изотопа 293 118 равен 120 мс.
На рис. 12.15 показана теоретически рассчитанная цепочка последовательных α-распадов изотопа 293 118 и приведены периоды полураспада дочерних ядер, образующихся в результате α-распадов.


Рис. 12.15. Цепочка последовательных α-распадов изотопа 293 118.
Приведены средние времена жизни дочерних ядер, образующихся в результате α-распадов.

Анализируя различные возможности образования сверхтяжелых элементов в реакциях с тяжелыми ионами нужно учитывать следующие обстоятельства.

  1. Необходимо создать ядро с достаточно большим отношением числа нейтронов к числу протонов. Поэтому в качестве налетающей частицы надо выбирать тяжелые ионы, имеющие большое N/Z.
  2. Необходимо, чтобы образующееся компаунд-ядро имело малую энергию возбуждения и небольшую величину момента количества движения, так как в противном случае будет снижаться эффективная высота барьера деления.
  3. Необходимо, чтобы образующееся ядро имело форму близкую к сферической, так как даже небольшая деформация будет приводить к быстрому делению сверхтяжелого ядра.

Весьма перспективным методом получения сверхтяжелых ядер являются реакции типа 238 U + 238 U, 238 U + 248 Cm, 238 U + 249 Cf, 238 U + 254 Es. На рис. 12.16 приведены оценочные сечения образования трансурановых элементов при облучении ускоренными ионами 238 U мишеней из 248 Cm, 249 Cf и 254 Es. В этих реакциях уже получены первые результаты по сечениям образования элементов с Z > 100. Для увеличения выходов исследуемых реакций толщины мишеней выбирались таким образом, чтобы продукты реакции оставались в мишени. После облучения из мишени сепарировались отдельные химические элементы. В полученных образцах в течение нескольких месяцев регистрировались продукты α-распада и осколки деления. Данные, полученные с помощью ускоренных ионов урана, ясно указывают на увеличение выхода тяжелых трансурановых элементов по сравнению с более легкими бомбардирующими ионами. Этот факт чрезвычайно важен для решения проблемы синтеза сверхтяжелых ядер. Несмотря на трудности работы с соответствующими мишенями прогнозы продвижения к большим Z выглядят довольно оптимистично.


Рис. 12.16. Оценки сечений образования трансурановых элементов в реакциях 238 U с 248 Cm, 249 Cf и 254 Es

Продвижение в область сверхтяжелых ядер в последние годы оказалось ошеломляюще впечатляющим. Однако все попытки обнаружить Остров Стабильности пока не увенчались успехом. Поиск его интенсивно продолжается.
Оболочечная структура атомных ядер играет существенную роль в повышении стабильности сверхтяжелых ядер. Магические числа Z ≈ 114 и N ≈ 184, если они действительно существуют, могут привести к значительному повышению стабильности атомных ядер. Существенным является также то, что распад сверхтяжелых ядер будет происходить в результате α-распада, что важно для разработки экспериментальных методов детектирования и идентификации новых сверхтяжелых ядер.