Неорганические полимеры сообщение. Неорганические полимеры

Полимеры - это высокомолекулярные соединения, состоящие из множества повторяющихся различных или одинаковых по строению атомных групп - звеньев. Эти звенья соединяются между собой координационными или химическими связями в разветвленные или длинные линейные цепи и в пространственные трехмерные структуры.

Полимеры бывают:

  • синтетическими,
  • искусственными,
  • органическими.

Органические полимеры в природе образуются в животных и растительных организмах. Самые важные из них - это белки, полисахариды, нуклеиновые кислоты, каучук и другие природные соединения.

Человек давно и широко применяет органические полимеры в своей повседневной жизни. Кожа, шерсть, хлопок, шелк, меха - все это используется для производства одежды. Известь, цемент, глина, органическое стекло (плексиглас) - в строительстве.

Органические полимеры присутствуют и в самом человеке. Например, нуклеиновые кислоты (их называют еще ДНК), а также рибонуклеиновые кислоты (РНК).

Свойства органических полимеров

У всех органических полимеров есть особые механические свойства:

  • малая хрупкость кристаллических и стеклообразных полимеров (органическое стекло, пластмассы);
  • эластичность, то есть высокая обратимая деформация при небольших нагрузках (каучук);
  • ориентирование макромолекул под действием механического направленного поля (производство пленок и волокон);
  • при малой концентрации большая вязкость растворов (полимеры вначале набухают, а потом растворяются);
  • под действием небольшого количества реагента способны быстро изменить свои физико-механические характеристики (например, дубление кожи, вулканизация каучука).

Таблица 1. Характеристики горения некоторых полимеров.

Полимеры Поведение материала при внесении в пламя и горючесть Характер пламени Запах
Полиэтилен (ПЭ) Плавится течет по каплям, горит хорошо, продолжает гореть при удалении из пламени. Светящееся, вначале голубоватое, потом желтое Горящего парафина
Полипропилен (ПП) То же То же То же
Поликарбонат (ПК) То же Коптящее
Полиамид (ПА) Горит, течет нитью Синеватое снизу, с желтыми краями Паленых волос илигорелых растений
Полиуретан (ПУ) Горит, течет по каплям Желтое, синеватое снизу, светящееся, серый дым Резкий, неприятный
Полистирол (ПС) Самовоспламеняется, плавится Ярко-желтое, светящееся, коптящее Сладковатый цветочный,с оттенком запаха стирола
Полиэтилентерефталат(ПЭТФ) Горит, капает Желто-оранжевое, коптящее Сладкий, ароматный
Эпоксидная смола (ЭД) Горит хорошо, продолжает гореть при удалении из пламени Желтое коптящее Специфический свежий(в самом начале нагревания)
Полиэфирная смола (ПН) Горит, обугливается Светящееся, коптящее, желтое Сладковатый
Поливинилхлорид жесткий (ПВХ) Горит с трудом и разбрасыванием, при удалении из пламени гаснет, размягчается Ярко-зеленое Резкий, хлористого водорода
ПВХ пластифицированный Горит с трудом и при удалении из пламени, с разбрасыванием Ярко-зеленое Резкий, хлористого водорода
Фенолоформальдегидная смола (ФФС) Загорается с трудом, горит плохо, сохраняет форму Желтое Фенола, формальдегида

Таблица 2. Растворимость полимерных материалов.

Таблица 3. Окраска полимеров по реакции Либермана - Шторха - Моравского.

Статьи по теме

Среди большинства материалов наиболее популярными и широко известными являются полимерные композиционные материалы (ПКМ). Они активно применяются практически в каждой сфере человеческой деятельности. Именно данные материалы являются основным компонентом для изготовления различных изделий, применяемых с абсолютно разными целями, начиная от удочек и корпусов лодок, и заканчивая баллонами для хранения и транспортировки горючих веществ, а также лопастей винтов вертолетов. Такая широкая популярность ПКМ связана с возможностью решения технологических задач любой сложности, связанных с получением композитов, имеющих определенные свойства, благодаря развитию полимерной химии и методов изучения структуры и морфологии полимерных матриц, которые используются при производстве ПКМ.

Полимеры с неорганической (не содержащей атомов углерода) главной цепью макромолекулы (См. Макромолекула). Боковые (обрамляющие) группы - обычно тоже неорганические; однако полимеры с органическими боковыми группами часто также относят к Н. п. (строгого деления по этому признаку нет).

Аналогично органическим полимерам Н. п. подразделяют по пространственной структуре на линейные, разветвленные, лестничные и сетчатые (двух- и трёхмерные), по составу главной цепи - на гомоцепные типа [-M-] n и гетероцепные типа [-M-M"-] n или [- М- M"- М"-] n (где М, M", М" - различные атомы). Например, полимерная сера [-S-] n - гомоцепной линейный Н. п. без боковых групп.

Многие неорганические вещества в твёрдом состоянии представляют собой единую макромолекулу, однако, для отнесения их к Н. п. необходимо наличие некоторой анизотропии пространственного строения (и, следовательно, свойств). Этим кристаллы Н. п. отличаются от полностью изотропных кристаллов обычных неорганических веществ (например, NaCI, ZnS). Большинство химических элементов не способно к образованию устойчивых гомоцепных Н. п., и лишь примерно 15 (S, Р, Se, Te, Si и др.) образуют не очень длинные (олигомерные) цепи, значительно уступающие по устойчивости гомоцепным олигомерам со связями С-С. Поэтому наиболее типичны гетероцепные Н. п., в которых чередуются электроположительные и электроотрицательные атомы, например В и N, Р и N, Si и О, образующие между собой и с атомами боковых групп полярные (частично ионные) химические связи.

Полярные связи обусловливают повышенную реакционную способность Н. п., прежде всего склонность к гидролизу. Поэтому многие Н. п. малоустойчивы на воздухе; кроме того, некоторые из них легко деполимеризуются с образованием циклических структур. На эти и др. химические свойства Н. п. можно отчасти влиять, направленно меняя боковое обрамление, от которого главным образом зависит характер межмолекулярного взаимодействия, определяющего эластичные и др. механические свойства полимера. Так, линейный эластомер Полифосфонитрилхлорид [-CI 2 PN-] n в результате гидролиза по связи Р-Сl (и последующей поликонденсации) превращается в трёхмерную структуру, не обладающую эластическими свойствами. Устойчивость к гидролизу этого эластомера можно повысить при замене атомов Cl на некоторые органические радикалы. Многие гетероцепные Н. п. отличаются высокой термостойкостью, значительно превышающей термостойкость органических и элементоорганических полимеров (например, полимерный оксонитрид фосфора n не изменяется при нагревании до 600 °С). Однако высокая термостойкость Н. п. редко сочетается с ценными механическими и электрическими свойствами. По этой причине число Н. п., нашедших практическое применение, сравнительно невелико. Однако Н. п. - важный источник получения новых термостойких материалов.

Е. М. Шусторович.

  • - соли борных к-т: метаборной НВО 2, ортоборной Н 3 ВО 3 и не выделенных в своб. состоянии полиборных Н 3m-2n В mO3m-n. По числу атомов бора в молекуле делятся на моно-, ди-, тетра-, гексабораты и т. д. Бораты называют также...

    Химическая энциклопедия

  • - соли угольной к-ты. Существуют средние карбонаты с анионом СО 32- и кислые, или гидрокарбонаты, с анионом HCO3-. К. - кристаллич...

    Химическая энциклопедия

  • - клеи на основе клеящих в-в неорг. природы. Минеральные клеи производят в виде порошков, р-ров и дисперсий...

    Химическая энциклопедия

  • - соли азотной к-ты HNO3. Известны почти для всех металлов; существуют как в виде безводных солей Mn , так и в виде кристаллогидратов Mn.x>H2O ...

    Химическая энциклопедия

  • - соли азотистой к-ты HNO2. Используют прежде всего нитриты щелочных металлов и аммония, меньше-щел.-зем. и 3d-металлов, Рb и Ag. О Н. остальных металлов имеются только отрывочные сведения...

    Химическая энциклопедия

  • - ярко-красные твердые соед. общей ф-лы Мn, где п заряд катиона М. Ион О -3 имеет симметричную треугольную конфигурацию; в молекуле RbO3 длина связи ОЧО 0,134 нм, угол ООО 114°...

    Химическая энциклопедия

  • - см. Гидроксиды, Кислоты и основания...

    Химическая энциклопедия

  • - см. Фосфаты конденсированные...

    Химическая энциклопедия

  • - соли серной к-ты. Известны средние сульфаты с анионом, кислые, или гидросульфаты, с анионом, основные, содержащие наряду с анионом группы ОН, напр. Zn22SO4...

    Химическая энциклопедия

  • - соед. серы с металлами, а также с более электроположит. неметаллами. Бинарные сульфиды могут рассматриваться как соли сероводородной к-ты H2S -средние, напр. , и кислые, или гидросульфиды, MHS, M2...

    Химическая энциклопедия

  • - соли сернистой к-ты H2SO3. Различают средние сульфиты с анионом и кислые с анионом. Средние С.-кристаллич. в-ва. С. аммония и щелочных металлов хорошо раств. в воде; р-римость: 2SO3 40,0 , K2SO3 106,7 ...

    Химическая энциклопедия

  • - ...

    Энциклопедический словарь нанотехнологий

  • - см. Органические вещества...

    Энциклопедический словарь Брокгауза и Евфрона

  • - К неорганическим относятся соединения всех химических элементов, за исключением большинства соединений углерода...

    Энциклопедия Кольера

  • - неорганические вещества с функциональными свойствами. Различают металлические, неметаллические и композиционные материалы. Примеры - сплавы, неорганические стекла, полупроводники, керамика, керметы, диэлектрики...
  • - НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов...

    Большой энциклопедический словарь

"Неорганические полимеры" в книгах

Глава 9 Полимеры вечны

Из книги Земля без людей автора Вейсман Алан

Глава 9 Полимеры вечны Портовый город Плимут в юго-западной Англии уже не входит в число живописных городов Британских островов, хотя до Второй мировой войны он им являлся. За шесть ночей в марте и апреле 1941 года бомбы нацистов разрушли 75 тысяч зданий во время того, что

Полимеры

Из книги Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры автора Онищенко Владимир

Полимеры В технологии производства строительных пластмасс полимеры, получаемые синтезом из простейших веществ (мономеров), по способу производства подразделяются на два класса: класс А – полимеры, получаемые цепной полимеризацией, класс Б – полимеры, получаемые

Карбоцепные полимеры

Из книги Большая Советская Энциклопедия (КА) автора БСЭ

Гетероцепные полимеры

Из книги Большая Советская Энциклопедия (ГЕ) автора БСЭ

Полимеры

Из книги Большая Советская Энциклопедия (ПО) автора БСЭ

Кремнийорганические полимеры

Из книги Большая Советская Энциклопедия (КР) автора БСЭ

Из книги Большая Советская Энциклопедия (ИЗ) автора БСЭ

Синдиотактические полимеры

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

ПОЛИМЕРЫ

Из книги Эксперимент в хирургии автора Кованов Владимир Васильевич

ПОЛИМЕРЫ В начале нашего столетия химики синтезировали особую группу высокомолекулярных соединений и полимеров. Обладая высокой степенью химической инертности, они сразу же привлекли внимание многочисленных исследователей и хирургов. Так химия пришла на помощь

52. Полимеры, пластмассы

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

52. Полимеры, пластмассы Полимеры – это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000.В молекулах полимеров различают

Органические полимеры играют значительную роль в природе. К тому же их широко используют в промышленности. Далее рассмотрен состав, свойства, применение органических полимеров.

Особенности

Рассматриваемые материалы состоят из мономеров, представленных повторяющимися фрагментами структуры из нескольких атомов. Они соединяются в трехмерные структуры либо цепи разветвленной или линейной формы вследствие поликонденсации либо полимеризации. Нередко в строении они четко проявлены.

Следует сказать, что термин «полимеры» относится в основном к органическим вариантам, хотя существуют и неорганические соединения.

Принцип наименования рассматриваемых материалов состоит в присоединении приставки поли- к названию мономера.

Свойства полимеров определяются строением и размерами макромолекул.

Помимо макромолекул, большинство полимеров включает прочие вещества, служащие для улучшения функциональных характеристик путем модификации свойств. Они представлены:

  • стабилизаторами (предотвращают реакции старения);
  • наполнителями (включения различного фазового состояния, служащие для придания специфических свойств);
  • пластификаторами (повышают морозостойкость, снижают температуру переработки и улучшают эластичность);
  • смазками (позволяют избежать прилипания металлических элементов используемого в переработке оборудования);
  • красителями (служат в декоративных целях и для создания маркировок);
  • антипиренами (уменьшают горючесть некоторых полимеров);
  • фунгицидами, антисептиками, инсектицидами (придают антисептические свойства и устойчивость к воздействию насекомых и грибковой плесени).

В природной среде рассматриваемые материалы формируются в организмах.

Кроме того, существуют близкие к полимерам по строению соединения, называемые олигомерами. Их отличия состоят в меньшем количестве звеньев и изменении исходных свойств при удалении или добавлении одного либо нескольких из них, в то время как параметры полимеров при этом сохраняются. К тому же нет однозначного мнения относительно отношений между данными соединениями. Одни считают олигомеры низкомолекулярными вариантами полимеров, другие - отдельным типом соединений, не относящимся к высокомолекулярным.

Классификация

Полимеры дифференцируют по составу звеньев на:

  • органические;
  • элементоорганические;
  • неорганические.

Первые служат основой большинства пластмасс.

Вещества второго типа включают в звеньях углеводородные (органические) и неорганические фрагменты.

По строению их дифференцируют на:

  • варианты, в которых атомы разных элементов находятся в обрамлении органических групп;
  • вещества, где углеродные атомы чередуются с прочими;
  • материалы с углеродными цепями в обрамлении элементоорганических групп.

Все представленные типы имеют основные цепи.

Наиболее часто встречающимися среди неорганических полимеров являются алюмосиликаты и силикаты. Это основные минеральные вещества коры планеты.

На основе происхождения полимеры классифицируют на:

  • природные;
  • синтетические (синтезируемые);
  • модифицированные (измененные варианты первой группы).

Последние подразделяют по способу получения на:

  • поликонденсационные;
  • полимеризационные.

Поликонденсацией называют процесс формирования макромолекул из содержащих более одной функциональной группы молекул мономера с выделением NH 3 , воды и прочих веществ.

Под полимеризацией понимают процесс формирования из мономера макромолекул с кратными связями.

Классификация по макромолекулярному строению включает:

  • разветвленные;
  • линейные;
  • трехмерные сшитые;
  • лестничные.

По реакции на термическое воздействие полимеры дифференцируют на:

  • термореактивные;
  • термопластичные.

Вещества первого типа представлены пространственными вариантами с жестким каркасом. При нагреве с ними происходит деструкция, некоторые загораются. Это обусловлено равной прочностью внутренних связей и связей цепей. Вследствие этого термическое воздействие ведет к разрыву как цепей, так и структуры, следовательно, происходит необратимое разрушение.

Термопластичные варианты представлены линейными полимерами, обратимо размягчаемыми при нагреве и отверждаемыми при охлаждении. Их свойства после этого сохраняются. Пластичность данных веществ обусловлена разрывом при умеренном нагреве межмолекулярных и водородных связей цепей.

Наконец, по особенностям строения органические полимеры подразделяют на несколько классов.

  1. Слабо- и неполярные термопласты. Представлены вариантами с симметричной молекулярной структурой или со слабополярными связями.
  2. Полярные термопласты. К данному типу относят вещества с несимметричной молекулярной структурой и собственными дипольными моментами. Иногда их называют низкочастотными диэлектриками. Ввиду полярности они хорошо притягивают влагу. Также большинство из них способны смачиваться. Данные вещества отличаются от предыдущего класса также меньшим электросопротивлением. При этом многие из полярных термопластов характеризуются высокими показателями эластичности, химической стойкости, механической прочности. Дополнительная обработка позволяет превратить данные соединения в гибкие резинообразные материалы.
  3. Термореактивные полимеры. Как упоминалось выше, это вещества с пространственной системой ковалентных связей. Они отличаются от термопластичных вариантов твердостью, нагревоустойчивостью и хрупкостью, большим модулем упругости и меньшим коэффициентом линейного расширения. К тому же такие полимеры не подвержены воздействию обычных растворителей. Они служат основой для многих веществ.
  4. Слоистые пластмассы. Представлены слоистыми материалами из пропитанных смолой листов бумаги, стеклоткани, древесного шпона, ткани и др. Такие полимеры характеризуются наибольшей анизотропией характеристик и прочностью. Но они малопригодны для создания предметов сложной конфигурации. Применяются в радио-, электротехнике, приборостроении.
  5. Металлопласты. Это полимеры, включающие металлические наполнители в виде волокон, порошков, тканей. Данные добавки служат для придания специфических свойств: магнитных, улучшения демпфирования, электро- и теплопроводности, поглощения и отражения радиоволн.

Свойства

Многие органические полимеры отличаются хорошими электроизоляционными параметрами в обширном интервале напряжений, частот и температур, при большой влажности. К тому же они имеют хорошие звуко- и теплоизоляционные характеристики. Также обычно органические полимеры характеризуются высокой стойкостью к химическому воздействию, не подвержены гниению и коррозии. Наконец, данные материалы обладают большой прочностью при малой плотности.

Приведенные выше примеры демонстрируют общие для органических полимеров характеристики. Помимо этого, некоторые из них отличаются специфическими особенностями: прозрачностью и малой хрупкостью (органическое стекло, пластмассы), макромолекулярным ориентированием при направленном механическом влиянии (волокна, пленки), большой эластичностью (каучук), быстрым изменением физико-механических параметров под воздействием реагента в малом количестве (каучук, кожа и т. д.), а также большой вязкостью при малой концентрации, радиопрозрачностью, антифрикционными характеристиками, диамагнетизмом, и т. д.

Применение

Благодаря названным выше параметрам, органические полимеры имеют обширную сферу применения. Так, сочетание большой прочности с небольшой плотностью позволяет получить материалы большой удельной прочности (ткани: кожа, шерсть, мех, хлопок и т. д.; пластмассы).

Помимо названных, из органических полимеров выпускают прочие материалы: резины, лакокрасочные материалы, клеи, электроизоляционные лаки, волокнистые и пленочные вещества, компаунды, связующие материалы (известь, цемент, глина). Их применяют для промышленных и бытовых нужд.

Однако органические полимеры обладают существенным практическим недостатком - старением. Под этим термином понимают изменение их характеристик и размеров в результате физико-химических преобразований, происходящих под воздействием различных факторов: истирания, нагрева, облучения и т. д. Старение происходит путем протекания определенных реакций в зависимости от вида материала и воздействующих факторов. Наиболее распространенной среди них является деструкция, подразумевающая формирование более низкомолекулярных веществ вследствие разрыва химической связи главной цепи. На основе причин деструкцию подразделяют на термическую, химическую, механическую, фотохимическую.

История

Исследование полимеров начало развиваться к 40 гг. XX в. и сформировалось в качестве самостоятельной научной области в середине столетия. Это было связано с развитием знаний о роли данных веществ в органическом мире и выяснением возможностей их применения в промышленности.

При этом цепные полимеры производили еще в начале XX столетия.

К середине века освоили выпуск электроизолирующих полимеров (поливинилхлорида и полистирола), плексигласа.

В начале второй половины столетия расширилось производство полимерных тканей за счет возврата выпускавшихся прежде материалов и появления новых вариантов. Среди них - хлопок, шерсть, шелк, лавсан. В тот же период, благодаря применению катализаторов, начали выпуск полиэтилена и полипропилена при малом давлении и кристаллизующихся стереорегулярных вариантов. Немного позже освоили массовый выпуск самых известных герметиков, пористых и адгезивных материалов, представленных полиуретанами, а также элементоорганических полимеров, отличающихся от органических аналогов большей эластичностью и термостойкостью (полисилоксаны).

В 60 - 70 гг. были созданы уникальные органические полимеры с ароматическими компонентами, характеризующиеся высокой термостойкостью и прочностью.

Производство органических полимеров интенсивно развивается и сейчас. Это обусловлено возможностью использования дешевых материалов, таких как уголь, попутные газы нефтепереработки и добычи и природные газы, в совокупности с водой и воздухом в виде исходного сырья для большинства из них.

Неорганические полимеры

  • Неорганические полимеры - полимеры, не содержащие в повторяющемся звене связей C-C, но способные содержать органический радикал как боковые заместители.


Классификация полимеров

1. Гомоцепные полимеры

Углерод и халькогены (пластическая модификация серы).

Минеральное волокно асбест


Характеристика асбеста

  • Асбест (греч. ἄσβεστος, - неразрушимый) - собирательное название группы тонковолокнистых минералов из класса силикатов. Состоят из тончайших гибких волокон.

  • Ca2Mg5Si8O22(OH)2 -формула

  • Два основных типа асбестов - серпентин-асбест (хризотил-асбест, или белый асбест) и амфибол-асбесты


Химический состав

  • По химическому составу асбесты представляют собой водные силикаты магния, железа, отчасти кальция и натрия. К классу хризотил-асбестов относятся следующие вещества:

  • Mg6(OH)8

  • 2Na2O*6(Fe,Mg)O*2Fe2O3*17SiO2*3Н2О


Безопасность

  • Асбест практически инертен и не растворяется в жидких средах организма, но обладает заметным канцерогенным эффектом. У людей, занятых на добыче и переработке асбеста, вероятность возникновения опухолей в несколько раз больше, чем у основного населения. Чаще всего вызывает рак лёгких, опухоли брюшины, желудка и матки.

  • На основе результатов всесторонних научных исследований канцерогенных веществ, Международное агентство по изучению рака отнесло асбест к первой, наиболее опасной категории списка канцерогенов.


Применение асбеста

  • Производства огнеупорных тканей (в том числе для пошива костюмов для пожарных).

  • В строительстве (в составе асбесто-цементных смесей для производства труб и шифера).

  • В местах, где требуется снизить влияние кислот.


Роль неорганических полимеров в формировании литосферы


Литосфера

  • Литосфера - твёрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы.

  • Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, её толщина составляет 5-10 км, а гранитный слой полностью отсутствует.



Химический состав

    Основными компонентами земной коры и поверхностного грунта Луны являются оксиды Si и Al и их производные. Такой вывод можно сделать исходя из существующих представлений о распространенности базальтовых пород. Первичным веществом земной коры является магма - текучая форма горной породы, содержащая наряду с расплавленными минералами значительное количество газов. При выходе на поверхность магма образует лаву, последняя застывая образует базальтовые породы. Основной химический компонент лавы - кремнезем, или диоксид кремния, SiO2 . Однако при высокой температуре атомы кремния могут легко замещаться на другие атомы, например алюминия, образуя различного рода алюмосиликаты. В целом литосфера представляет собой силикатную матрицу с включением других веществ, образовавшихся в результате физических и химических процессов, протекавших в прошлом в условиях высокой температуры и давления. Как сама силикатная матрица, так и включения в нее содержат по преимуществу вещества в полимерной форме, то есть гетероцепные неорганические полимеры.


Гранит

  • Гранит - кислая магматическая интрузивная горная порода. Состоит из кварца, плагиоклаза, калиевого полевого шпата и слюд - биотита и мусковита. Граниты очень широко распространены в континентальной земной коре.

  • Наибольшие объёмы гранитов образуются в зонах коллизии, где сталкиваются две континентальные плиты и происходит утолщение континентальной коры. По мнению некоторых исследователей, в утолщённой коллизионной коре образуется целый слой гранитного расплава на уровне средней коры (глубина 10-20 км). Кроме того, гранитный магматизм характерен для активных континентальных окраин,и в меньшей степени, для островных дуг.

  • Минеральный состав гранита:

  • полевые шпаты - 60-65 %;

  • кварц - 25-30 %;

  • темноцветные минералы (биотит, редко роговая обманка) - 5-10 %.


Базальт

  • Минеральный состав . Основная масса сложена микролитами плагиоклазов, клинопироксена, магнетита или титаномагнетита, а также вулканическим стеклом. Наиболее распространенным акцессорным минералом является апатит.

  • Химический состав . Содержание кремнезёма (SiO2) колеблется от 45 до 52-53 %, сумма щелочных оксидов Na2O+K2O до 5 %,в щелочных базальтах до 7 %. Прочие оксиды могут распределяться так: TiO2=1.8-2.3 %; Al2O3=14.5-17.9 %; Fe2O3=2.8-5.1 %; FeO=7.3-8.1 %; MnO=0.1-0.2 %; MgO=7.1-9.3 %; CaO=9.1-10.1 %; P2O5=0.2-0.5 %;


Кварц (Оксид кремния(IV), кремнезем)


Формула: SiO2

  • Формула: SiO2

  • Цвет: бесцветный, белый, фиолетовый, серый, жёлтый, коричневый

  • Цвет черты: белая

  • Блеск: стеклянный, в сплошных массах иногда жирный

  • Плотность: 2,6-2,65 г/см³

  • Твердость: 7





Химические свойства





Корунд (Al2O3 , глинозем)


Формула: Al2O3

  • Формула: Al2O3

  • Цвет: голубой, красный, жёлтый, коричневый, серый

  • Цвет черты: белая

  • Блеск: стеклянный

  • Плотность: 3,9-4,1 г/см³

  • Твердость: 9







Теллур


Теллур цепочечного строения

  • Кристаллы - гексагональные, атомы в них образуют спиральные цепи и связаны ковалентными связями с ближайшими соседями. Поэтому элементарный теллур можно считать неорганическим полимером. Кристаллическому теллуру свойствен металлический блеск, хотя по комплексу химических свойств его скорее можно отнести к неметаллам.


Применение теллура

  • Производстве полупроводниковых материалов

  • Производство резины

  • Высокотемпературная сверхпроводимость


Селен


Селен цепочечного строения

Черный Серый Красный

Серый селен

    Серый селен (иногда его называют металлическим) имеет кристаллы гексагональной системы. Его элементарную решетку можно представить как несколько деформированный куб. Все его атомы как бы нанизаны на спиралевидные цепочки, и расстояния между соседними атомами в одной цепи примерно в полтора раза меньше расстояния между цепями. Поэтому элементарные кубики искажены.


Применение серого селена

  • Обычный серый селен обладает полупроводниковыми свойствами, это полупроводник p-типа, т.е. проводимость в нем создается главным образом не электронами, а «дырками».

  • Другое практически очень важное свойство селена-полупроводника – его способность резко увеличивать электропроводность под действием света. На этом свойстве основано действие селеновых фотоэлементов и многих других приборов.


Красный селен

  • Красный селен представляет собой менее устойчивую аморфную модификацию.

  • Полимер цепного строения, но малоупорядоченной структуры. В температурном интервале 70-90°С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние.

  • Не имеет определенной температуры плавления.

  • Красный аморфный селен при повышении температуры (- 55) начинает переходить в серый гексагональный селен


Сера



Особенности строения

  • Пластическая модификация серы образована спиральными цепями из атомов серы с левой и правой осями вращения. Эти цепочки скручены и вытянуты в одном направлении.

  • Пластическая сера неустойчива и самопроизвольно превращаются в ромбическую.



Получение пластической серы


Применение серы

  • Получение серной кислоты;

  • В бумажной промышленности;

  • в сельском хозяйстве (для борьбы с болезнями растений, главным образом винограда и хлопчатника);

  • в производстве красителей и светящихся составов;

  • для получения черного (охотничьего) пороха;

  • в производстве спичек;

  • мази и присыпки для лечения некоторых кожных заболеваний.


Аллотропные модификации углерода


Сравнительная характеристика


Применение аллотропных модификаций углерода

  • Алмаз – в промышленности: его используют для изготовления ножей, свёрл, резцов; в ювелирном деле. Перспектива – развитие микроэлектроники на алмазных подложках.

  • Графит – для изготовления плавильных тиглей, электродов; наполнитель пластмасс; замедлитель нейтронов в ядерных реакторах; компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином)

Теоретически возможно существование неорганических полимеров, образованных химическими элементами III-VI групп системы элементов.

Наиболее важным химическим элементом для создания неорганических полимеров является кислород - самый распространенный на земле элемент. Он легко создает гетероцепные элементооксановые высокомолекулярные соединения, поэтому полиэлементооксаны являются основным классом гетероцепных безуглеродных, или неорганических, полимеров.

К неорганическим полимерам относят все безуглеродные полиэлементооксаны со связями типа Р-О, В-О, S-О, Si-О, А1-О и др., а также многие безуглеродные гетероядерные соединения типа боридов, сульфидов, силицидов, карбидов и др.

Общепринято, что к высокомолекулярным соединениям относятся вещества, состоящие из атомов, связанных в макромолекулярную структуру ковалентными связями. Установлено, что содержание ковалентных связей в неорганических полимерах составляет от 50 до 80%.

Макромолекулы неорганических полимеров могут быть не только гетероцепными, но и гомоатомными. Хорошо известны органические гомоатомные полимеры углерода - алмаз и графит, о которых говорилось выше (гл. 4).

Менее известны гомоатомные неорганические полимеры серы, селена, теллура. Гомоатомные полимеры серы имеют молекулярную массу от 5000 до 300 000, температуру стеклования 248-250 К и проявляют высокоэластические свойства при температуре 273-353 К. Но большинство химических элементов не способно к образованию устойчивых гомоатомных высокомолекулярных соединений.

Гетероцепные неорганические полимеры известны значительно шире. Благодаря своему строению они более стабильны и устойчивы к различным воздействиям.

Гетероцепные неорганические полимеры, так же как и органические, могут иметь линейное и сетчатое строение. К линейным относятся силикатные стекла на основе оксида кремния, полифосфаты и полибораты (соединения на основе солей полифосфорной и поли- борной кислот соответственно). Высокомолекулярную природу силикатов наш великий соотечественник Д.И. Менделеев предсказал еще в XIX в. и писал о кремнеземе как о полимере.

Другой неорганический гетероцепной полимер на основе диоксида кремния - кварц - имеет трехмерное сетчатое строение.

Хорошо известны другие природные неорганические полимерные материалы на основе силикатов - асбест, слюда, тальк. Разработаны технологии синтеза этих полимеров, причем технические характеристики искусственных материалов выше, чем природных.

Важнейшую группу неорганических гетероцепных полимерных материалов составляют керамики различного состава.

Что же позволяет считать эти материалы полимерными? Прежде всего, наличие высокой анизотропии макромолекулы и соединение атомов между собой прочными ковалентными связями. Наряду с этим для безуглеродных полимеров так же, как и для органических полимеров, неизвестно газообразное состояние. Так же как и органические высокомолекулярные соединения, безуглеродные полимеры делятся на термопласты (например, силикатные стекла) и реактопла- сты (например, оксидная керамика).

Растворы и расплавы неорганических полимеров по сравнению с растворами низкомолекулярных веществ имеют повышенную вязкость, которая возрастает с увеличением молекулярной массы. Сетчатые неорганические полимеры так же, как и сетчатые органические полимеры, не способны к растворению.

Неорганические полимерные материалы линейного строения способны находиться в трех физических состояниях: стеклообразном, высокоэластическом и вязкотекучем. На рис. 17.1 показаны термомеханические кривые органических и неорганических полимеров. Кривые построены путем измерения при различных температурах угла кручения ф круглого стержня из исследуемого материала.

Из приведенных данных видно, что неорганические стекла, так же как и органические полимеры, имеют два температурных перехо-

Рис. 17.1. Термомеханические кривые органических и неорганических полимеров: 1 - оргстекла; 2- эбонита; 3, 4, 5 - силикатных стекол (свинцового, щелочного и малощелочного соответственно)

да, при которых их свойства (в данном случае угол закручивания стержня) резко изменяются, что связано с их переходами из стеклообразного в высокоэластическое и из высокоэластического в вязкотекучее состояние.

Многие неорганические полимеры имеют сетчатое строение и, как органические реактопласты, не могут проявить высокоэластич- ность. Для сетчатых неорганических полимеров, как и для органических, имеющих трехмерную сетку, понятие «макромолекула» теряет смысл, поскольку все их атомы соединены в единую сетчатую структуру, образующую гигантскую сверхмакромолекулу.

Технология получения неорганических высокомолекулярных соединений, так же как и органических, основана на полимеризации и поликонденсации. Синтез неорганических полимеров сетчатого строения и формование из них изделий происходят одновременно, так же как и при изготовлении изделий из реактопластов.

Пластификация неорганических полимеров производится низкомолекулярными веществами и позволяет снизить температуру стеклования, аналогично тому, как это происходит при пластификации органических полимеров органическими пластификаторами. В качестве пластификаторов неорганических полимеров используют воду, спирты, аммиак, газы - азот и кислород, позволяющие снизить уровень межмолекулярного взаимодействия и увеличить интервал между температурами стеклования и текучести.

Неорганические полимеры склонны к образованию надмолекулярных структур. Различными методами установлено, что в структуре стекол имеются микронеоднородности, обладающие строгой упорядоченностью. Один структурно-упорядоченный элемент в стекле приходится на объем 1(Г 28 см 3 . Размеры таких элементов, как правило, чрезвычайно малы (от 1 до 300 нм), поэтому существенного влияния на свойства стекол они не оказывают. В некоторых материалах с помощью зародышей кристаллизации специально создается двухфазная аморфно-кристаллическая структура, которая позволяет получать материалы с заданными свойствами.

На рис. 17.2 приведены фотографии микроструктуры неорганических полимеров на основе оксидов металлов, на которых отчетливо видны надмолекулярные образования, свидетельствующие о структурной упорядоченности этих материалов.

Рис. 17.2. Надмолекулярные структуры неорганических полимеров (х10 000): а - топливной таблетки U0 2 ; б - шпинели MgAl 2 0 4

Макромолекулы безуглеродных линейных полиэлементооксанов, так же как и органических полимеров, обладают гибкостью. Распространенное мнение об отсутствии гибкости у макромолекул неорганических полимеров основано на том, что большинство безуглеродных природных полимеров (силикатов) имеют трехмерную структуру, жестко ограничивающую сегментальную подвижность макромолекул.

Физические и химические свойства неорганических полимеров принципиально отличаются от свойств органических и элементоорганических полимеров, что является следствием различий в структуре главной цепи. Они обладают высокой прочностью и твердостью, тугоплавкостью и жаростойкостью, износостойкостью и отличными диэлектрическими свойствами, химически и биологически инертны.

Благодаря этим свойствам неорганические полимеры находят широкое применение в качестве огнеупорных, жаропрочных и сверхпрочных конструкционных материалов. Из них делают катализаторы и адсорбенты, клеи и герметики с высокой теплостойкостью, эти материалы применяются при изготовлении лазерного и электронного оборудования. Широко используются неорганические полимеры в качестве строительных материалов, а также в ортопедии и стоматологии. И это только начало.

Таблица 17.1. Прогноз развития исследований и разработок в области керамических материалов и стекла

Новые технологии и открытия

Области промышленности

Социальный или технический эффект

Научные принципы конвергенции неорганических, органических и биологических материалов

Производство энергетических установок; утилизация отходов; производство сельскохозяйственной продукции; создание био- функциональных и «интеллектуальных» материалов

Повышение безопасности энергетических установок (в том числе атомных); увеличение продолжительности здоровой жизни; создание новых технологий сельскохозяйственного производства, экологически здоровой среды обитания человека

Научные принципы стандарта рО для расплавов оксидных систем (по аналогии с pH для водных растворов); мониторинг оксидных расплавов

Принципиально новые технологии производства цемента, стекла, металлов

Сокращение энергозатрат на единицу продукции, снижение стоимости строительных материалов; разработка новых типов стекол и ситаллов; изменение условий жизни человека

Физико-химические процессы в системах с наноразмерами; теоретические представления, учитывающие размер как физико-химический фактор, и представления о «пятом» состоянии вещества

Новые технологии производства материалов; новые машины и оборудование; многофункциональные микропроцессоры

Промышленное производство дешевых и долговечных бытовых предметов; развитие городской инфраструктуры

Принципы структурно-энергетического моделирования строения и свойств материалов; программы компьютерного моделирования большинства конструкционных материалов, изделий и конструкций

Дизайн и конструирование новых машин и механизмов

Резкое изменение условий и содержания труда материаловедов и конструкторов, сокращение числа работающих в неблагоприятных условиях; автоматизированное производство материалов и механизмов

В табл. 17.1 приведены прогнозы развития исследований в области неорганических полимерных материалов, которые показывают, что это направление материаловедческой науки должно привести к революционным изменениям в области создания новой техники.

Дальнейшее развитие использования этих материалов связано с необходимостью снижения их стоимости и расширения объемов производства.

Контрольные вопросы

  • 1. Какие химические элементы могут образовывать неорганические полимерные материалы?
  • 2. Какими связями соединены атомы в неорганических полимерных материалах?
  • 3. Приведите примеры неорганических конструкционных материалов.
  • 4. Какими важнейшими свойствами, присущими высокомолекулярным соединениям, обладают неорганические полимеры?
  • 5. Какие физические состояния известны для неорганических полимеров?
  • 6. Как можно классифицировать неорганические полимеры по отношению к нагреванию?
  • 7. Можно ли пластифицировать неорганические полимеры?
  • 8. Применимо ли понятие о надмолекулярной структуре к неорганическим полимерам?
  • 9. Каковы отличительные свойства неорганических конструкционных материалов?