Мольная доля единицы измерения. Количественный и качественный состав раствора

Массовая доля - отношение массы растворённого вещества к массе раствора. Массовая доля измеряется в долях единицы.

    m 1 - масса растворённого вещества, г;

    m - общая масса раствора, г.

Массовое процентное содержание компонента, m%

m % =(m i /Σm i)*100

В бинарных растворах часто существует однозначная (функциональная) зависимость между плотностью раствора и его концентрацией (при данной температуре). Это даёт возможность определять на практике концентрации важных растворов с помощью денсиметра (спиртометра, сахариметра, лактометра). Некоторые ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора (спирта, жира в молоке, сахара). Следует учитывать, что для некоторых веществ кривая плотности раствора имеет максимум, в этом случае проводят 2 измерения: непосредственное, и при небольшом разбавлении раствора.

Часто для выражения концентрации (например, серной кислоты в электролите аккумуляторных батарей) пользуются просто их плотностью. Распространены ареометры(денсиметры, плотномеры), предназначенные для определения концентрации растворов веществ.

Объёмная доля

Объёмная доля - отношение объёма растворённого вещества к объёму раствора. Объёмная доля измеряется в долях единицы или в процентах.

V 1 - объём растворённого вещества, л;

V - общий объём раствора, л.

Как было указано выше, существуют ареометры, предназначенные для определения концентрации растворов определённых веществ. Такие ареометры проградуированы не в значениях плотности, а непосредственно концентрации раствора. Для распространённых растворов этилового спирта, концентрация которых обычно выражается в объёмных процентах, такие ареометры получили название спиртомеров или андрометров.

Молярность (молярная объёмная концентрация)

Молярная концентрация - количество растворённого вещества (число молей) в единице объёма раствора. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л. Также распространено выражение в «молярности». Возможно другое обозначение молярной концентрации C M , которое принято обозначать М. Так, раствор с концентрацией 0,5 моль/л называют 0,5-молярным. Примечание: единица «моль» не склоняется по падежам. После цифры пишут «моль», подобно тому, как после цифры пишут «см», «кг» и т. д.

V - общий объём раствора, л.

Нормальная концентрация (мольная концентрация эквивалента)

Нормальная концентрация - количество эквивалентов данного вещества в 1 литре раствора. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов). Для записи концентрации таких растворов используют сокращения «н » или «N ». Например, раствор содержащий 0,1 моль-экв/л, называют децинормальным и записывают как 0,1 н .

ν - количество растворённого вещества, моль;

V - общий объём раствора, л;

z - число эквивалентности.

Нормальная концентрация может отличаться в зависимости от реакции, в которой участвует вещество. Например, одномолярный раствор H 2 SO 4 будет однонормальным, если он предназначается для реакции со щёлочью с образованием гидросульфата KHSO 4 , и двухнормальным в реакции с образованием K 2 SO 4 .

КОЛИЧЕСТВО И КОНЦЕНТРАЦИЯ ВЕЩЕСТВА:

ВЫРАЖЕНИЕ И ПЕРЕСЧЕТЫ ИЗ ОДНОЙ ФОРМЫ В ДРУГУЮ

Основы теории

1. Основные термины и определения

Масса и количества вещества . Массу вещества (m ) измеряют в граммах, а количество вещества (n ) в молях. Если обозначить вещество буквой Х , то тогда его масса может быть обозначена как m (X) , а количество – n (X) .

Моль количество вещества, которое содержит столько определенных структурных единиц (молекул, атомов, ионов и т.д.), сколько атомов содержится в 0,012 кг изотопа углерода-12.

При использовании термина моль следует указывать частицы, к которым относится этот термин. Соответственно, можно говорить «моль молекул», «моль атомов», «моль ионов» и т.д. (например, моль молекул водорода, моль атомов водорода, моль ионов водорода). Так как 0,012 кг углерода-12 содержит ~ 6,022х10 23 атомов углерода (постоянная Авогадро), то моль – такое количество вещества, которое содержит 6,022х10 23 структурных элементов (молекул, атомов, ионов и др.).

Отношение массы вещества к количеству вещества называют молярной массой.

M ( X ) = m ( X ) / n( X )

То есть, молярная масса (М) это масса одного моля вещества . Основной системной 1 единицей молярной массы является кг/моль, а на практике – г/моль. Например, молярная масса самого легкого металла лития М (Li) = 6,939 г/моль, молярная масса газа метана М (СН 4) = 16,043 г/моль. Молярная масса серной кислоты рассчитывается следующим образом M (Н 2 SО 4 ) = 196 г / 2 моль = 96 г/моль.

Любое соединение (вещество), кроме молярной массы, характеризуется относительной молекулярной или атомной массой . Существует и эквивалентная масса Е , равная молекулярной, умноженной на фактор эквивалентности (см. далее).

Относительная молекулярная масса (M r ) – это молярная масса соединения, отнесенная к 1/12 молярной массы атома углерода-12. Например, М r (СН 4) = 16,043. Относительная молекулярная масса – величина безразмерная.

Относительная атомная масса (A r ) – это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 . Например, A r (Li) = 6,039.

Концентрация . Отношение количества или массы вещества, содержащегося в системе, к объему или массе этой системы называют концентрацией . Известно несколько способов выражения концентрации. В России чаще всего концентрацию обозначают заглавной буквой С, имея в виду прежде всего массовую концентрацию , которая по праву считается наиболее часто применяемой в экологическом мониторинге форма выражения концентрации (именно в ней измеряют величины ПДК).

Массовая концентрация или β) отношение массы компонента, содержащегося в системе (растворе), к объему этой системы (V ). Это самая распространенная у российских аналитиков форма выражения концентрации.

β (Х) = m ( X ) / V (смеси )

Единица измерения массовой концентрации – кг/м 3 или г/м 3 , кг/дм 3 или г/дм 3 (г/л), кг/см 3 , или г/см 3 (г/мл), мкг/л или мкг/мл и т.д. Арифметические пересчеты из одних размерностей в другие не представляет большой сложности, но требуют внимательности. Например, массовая концентрация хлористоводородной (соляной) кислоты С (HCl) = 40 г / 1 л = 40 г/л = 0,04 г/мл = 4·10 – 5 мкг/л и т.д. Обозначение массовой концентрации С нельзя путать с обозначением мольной концентрации (с ), которая рассматривается далее.

Типичными являются соотношения β (Х): 1000 мкг/л = 1 мкг/мл = 0,001 мг/мл.

В объемном анализе (титриметрии) употребляется одна из форм массовой концентрации – титр . Титр раствора (Т) – это масса вещества, содержащегося в одном кубическом сантиметре или в одном миллилитре раствора .

Единицы измерения титра - кг/см 3 , г/см 3 , г/мл и др.

Моляльность (b ) -- отношение количества растворенного вещества (в молях) к массе растворителя (в кг) .

b ( Х ) = n ( X ) / m ( растворителя ) = n ( X ) / m ( R )

Единица измерения моляльности -- моль/кг. Например, b (HCl/H 2 O) = 2 моль/кг. Моляльная концентрация применяется в основном для концентрированных растворов.

Мольная (!) доля (х) – отношение количества вещества данного компонента (в молях), содержащегося в системе, к общему количеству вещества (в молях).

х ( Х) = n ( X ) / n ( X ) + n ( Y )

Мольная доля может быть выражена в долях единицы, процентах (%), промилле (тысячная часть %) и в миллионных (млн –1 , ppm), миллиардных (млрд –1 , ppb), триллионных (трлн –1 , ppt) и др. долях, но единицей измерения все равно является отношение – моль / моль. Например, х (С 2 Н 6) = 2 моль / 2 моль + 3 моль = 0,4 (40 %).

Массовая доля (ω) отношение массы данного компонента, содержащегося в системе, к общей массе этой системы .

ω ( Х ) = m ( X ) / m (смеси )

Массовая доля измеряется в отношениях кг /кг (г /г ). При этом она может быть выражена в долях единицы, процентах (%), промилле, миллионных, миллиардных и т.д. долях. Массовая доля данного компонента, выраженная в процентах, показывает, сколько граммов данного компонента содержится в 100 г раствора.

Например, условно ω (KCl) = 12 г / 12 г + 28 г = 0,3 (30%).

0бъемная доля (φ) – отношение объема компонента, содержащегося в системе, к общему объему системы .

φ ( Х ) = v ( X ) / v ( X ) + v ( Y )

Объемная доля измеряется в отношениях л/л или мл/мл и тоже может быть выражена в долях единицы, процентах, промилле, миллионных и т.д. долях. Например, объемная доля кислорода газовой смеси составляет φ (О 2 ) =0,15 л / 0,15 л + 0,56 л.

Молярная (мольная) концентрация (с) – отношение количества вещества (в молях), содержащегося в системе (например, в растворе), к объему V этой системы.

с( Х ) = n ( X ) / V (смеси )

Единица измерения молярной концентрации моль/м 3 (дольная производная, СИ – моль/л). Например, c (H 2 S0 4) = 1 моль/л, с (КОН) = 0,5 моль/л. Раствор, имеющий концентрацию 1 моль/л, называют молярным раствором и обозначают как 1 М раствор (не надо путать эту букву М, стоящую после цифры, с ранее указанным обозначением молярной массы, т.е. количества вещества М ). Соответственно раствор, имеющий концентрацию 0,5 моль/л, обозначают 0,5 М (полумолярный р-р); 0,1 моль/л – 0,1 М (децимолярный р.р); 0,01 моль/л – 0,01 М (сантимолярный р-р) и т.д.

Эта форма выражения концентрации также очень часто применяется в аналитике.

Нормальная (эквивалентная) концентрация (N ), молярная концентрация эквивалента экв. ) – это отношение количества вещества эквивалента в растворе (моль) к объему этого раствора (л).

N = С экв ( Х ) = n (1/ Z X ) / V (смеси )

Количество вещества (в молях), в котором реагирующими частицами являются эквиваленты, называется количеством вещества эквивалента n э (1/ Z X ) = n э (Х).

Единица измерения нормальной концентрации («нормальности») тоже моль/л (дольная производная, СИ). Например, С экв.(1/3 А1С1 3) = 1 моль/л. Раствор, в одном литре которого содержится 1 моль вещества эквивалентов, называют нормальным и обозначают 1 н. Соответственно могут быть 0,5 н («пятидецинормальный»); 0,01 н (сантинормальный») и т.п. растворы.

Следует отметить, что понятие эквивалентности реагирующих веществ в химических реакциях является одним из базовых для аналитической химии. Именно на эквивалентности как правило основаны вычисления результатов химического анализа (особенно в титриметрии). Рассмотрим несколько связанных с этим базовых с т.з. теории аналитики понятий.

Фактор эквивалентности – число, обозначающее, какая доля реальной частицы веществ Х (например, молекулы вещества X) эквивалентна одному иону водорода (в данной кислотно-основной реакции) или одному электрону (в данной окислительно-восстановнтельной реакции) Фактор эквивалентности f экв (Х) рассчитывают на основании стехиометрии (соотношении участвующих частиц) в конкретном химическом процессе:

f экв (Х) = 1/ Z x

где Z x . - число замещенных или присоединенных ионов водорода (для кислотно-основных реакций) или число отданных или принятых электронов (для окислительно-восстановительных реакций);

Х - химическая формула вещества.

Фактор эквивалентности всегда равен или меньше единицы. Будучи умноженным на относительную молекулярную массу, он дает значение эквивалентной массы (Е) .

Для реакции

H 2 SО 4 + 2 NaOH = Na 2 SО 4 + 2 H 2

f экв (H 2 SО 4) = 1/2, f экв (NaOH) = 1

f экв (H 2 SО 4) = 1/2, т.е. это означает, что ½ молекулы серной кислоты дает для данной реакции 1 ион водорода (Н +), а соответственно f экв (NaOH) = 1 означает, что одна молекула NaOH соединяется в данной реакции с одним ионом водорода.

Для реакции

10 FeSО 4 + 2 KMnО 4 + 8 H 2 SО 4 = 5 Fe 2 (SО 4) 3 + 2 MnSО 4 + K 2 SО 4 + 8 H 2 О

2 МпО 4 - + 8Н + +5е - → Мп 2+ – 2e - + 4 Н 2 О

5 Fe 2+ – 2e - → Fe 3+

f экв (KMnО 4) = 1/5 (кислая среда), т.е. 1/5 молекулы KMnО 4 в данной реакции эквивалентна 1 электрону. При этом f экв (Fe 2+) = 1, т.е. один ион железа (II) также эквивалентен 1 электрону.

Эквивалент вещества Х – реальная или условная частица, которая в данной кислотно-основной реакции эквивалентна одному нону водорода или в данной окислительно-восстановительной реакции – одному электрону.

Форма записи эквивалента: f экв (Х) Х (см. табл.), или упрощенно Э х, где Х –химическая формула вещества, т.е. [Э х = f экв (Х) Х]. Эквивалент безразмерен.

Эквивалент кислоты (или основания) – такая условная частица данного вещества, которая в данной реакции титрования высвобождает один ион водорода или соединяется с ним, или каким-либо другим образом эквивалентна ему.

Например, для первой из вышеуказанных реакций эквивалент серной кислоты - это условная частица вида ½ H 2 SО 4 т.е. f экв (H 2 SО 4) = 1/Z= ½; ЭH 2 SО 4 = ½ H 2 SО 4 .

Эквивалент окисляющегося (или восстанавливающегося) вещества - это такая условная частица данного вещества, которая в данной химической реакции может присоединять один электрон или высвобождать его, или быть каким-либо другим обра­зом эквивалентна этому одному электрону.

Например, при окислении перманганатом в кислой среде эквивалент марганцево­кислого калия – это условная частица вида 1/5 КМпО 4 , т.е. ЭКМпО 4 =1/5КМпО 4 .

Так как эквивалент вещества может меняться в зависимости от реакции, в которой это вещество участвует, необходимо указывать соответствующую реакцию.

Например, для реакции Н 3 РО 4 + NaOH = NaH 2 PО 4 + H 2 O

эквивалент фосфорной кислоты Э Н 3 РО 4 == 1 Н 3 РО 4 .

Для реакции Н 3 РО 4 + 2 NaOH = Na 2 HPО 4 + 2 H 2 O

ее эквивалент Э Н 3 РО 4 == ½ Н 3 РО 4 ,.

Принимая во внимание, что понятие моля позволяет пользоваться любыми видами условных частиц, можно дать понятие молярной массы эквивалента вещества X. Напомним, что моль – это количество вещества, содержащее столько реальных или условных частиц, сколько атомов содержится в 12 г изотопа углерода 12 С (6,02 10 23). Под реальными частицами следует понимать атомы, ионы, молекулы, электроны и т.п., а под условными – такие как, например, 1/5 молекулы КМпО 4 в случае О/В реакции в кислой среде или ½ молекулы H 2 SО 4 в реакции с гидроксидом натрия.

Молярная масса эквивалента вещества масса одного моля эквивалентов этого вещества, равная произведению фактора эквивалентности f экв (Х) на молярную массу вещества М (Х) 1 .

Молярную массу эквивалента обозначают как М [f экв (Х) Х] или с учетом равенства Э х = f экв (Х) Х ее обозначают М [Э х ]:

М (Э х)= f экв (Х) М (Х); М [Э х ] = М (Х) /Z

Например, молярная масса эквивалента КМпО 4

М (ЭКМпО 4) =1/5КМпО 4 = М 1/5 КМпО 4 = 31,6 г/моль.

Это означает, что масса одного моля условных частиц вида 1/5КМпО 4 составляет 31,6 г/моль. По аналогии молярная масса эквивалента серной кислоты М ½ H 2 SО 4 = 49 г/моль; фосфорной кислоты М ½ H 3 РО 4 = 49 г/моль и т.д.

В соответствии с требованиями Международной системы (СИ) именно молярная концентрация является основным способом выражения концентрации растворов, но как уже отмечалось, на практике чаще применяется массовая концентрация .

Рассмотрим основные формулы и соотношения между способами выражения концентрации растворов (см. табл. 1 и 2).

Любое вещество состоит из частиц определенной структуры (молекул или атомов). Молярная масса простого соединения рассчитывается по периодической системе элементов Д.И. Менделеева. Если необходимо выяснить данный параметр у сложного вещества, то подсчет получается долгим, и в данном случае цифру смотрят в справочнике или химическом каталоге, в частности Sigma-Aldrich.

Понятие молярной массы

Молярная масса (М) - вес одного моля вещества. Данный параметр по каждому атому можно найти в периодической системе элементов, он расположен прямо под названием. При расчете массы соединений цифра обычно округляется до целой или десятой доли. Для окончательного понимания того, откуда берется данное значение, необходимо разобраться в понятии «моль». Это количество вещества, содержащее число частиц последнего, равное 12 г устойчивого изотопа углерода (12 С). Атомы и молекулы веществ варьируют по своему размеру в широких пределах, при этом их число в моле постоянно, однако масса увеличивается и, соответственно, объем.

Понятие «молярная масса» тесно связано с числом Авогадро (6,02 х 10 23 моль -1). Эта цифра обозначает постоянное количество единиц (атомов, молекул) вещества в 1 моле.

Значение молярной массы для химии

Химические вещества вступают в различные реакции между собой. Обычно в уравнении любого химического взаимодействия указано, сколько молекул или атомов при этом используется. Такие обозначения получили название стехиометрические коэффициенты. Обычно они указываются перед формулой. Поэтому количественная характеристика реакций зиждется на количестве вещества и молярной массе. Именно они четко отражают взаимодействие друг с другом атомов и молекул.

Расчет молярной массы

Атомный состав любого вещества или смеси из компонентов известной структуры можно посмотреть по периодической системе элементов. Неорганические соединения, как правило, записываются брутто-формулой, то есть без обозначения структуры, а только числа атомов в молекуле. Органические вещества для подсчета молярной массы обозначаются таким же образом. Например, бензол (C 6 H 6).

Каким образом рассчитывается молярная масса? Формула включает тип и количество атомов в молекуле. По таблице Д.И. Менделеева проверяются молярные массы элементов, и каждая цифра умножается на число атомов в формуле.

Исходя из молекулярной массы и типа атомов, можно рассчитать их количество в молекуле и составить формулу соединения.

Молярная масса элементов

Часто для проведения реакций, расчетов в аналитической химии, расстановки коэффициентов в уравнениях требуется знание молекулярной массы элементов. Если в молекуле содержится один атом, то данное значение будет равно таковому у вещества. При наличии двух и более элементов молярная масса умножается на их число.

Значение молярной массы при подсчете концентраций

Данный параметр используется для пересчета практически всех способов выражения концентраций веществ. Например, часто возникают ситуации определения массовой доли исходя из количества вещества в растворе. Последний параметр выражается в единице измерения моль/литр. Для определения нужного веса количество вещества умножается на молярную массу. Получено значение уменьшается в 10 раз.

Молярная масса используется для подсчета нормальности вещества. Данный параметр используется в аналитической химии для проведения методов титри- и гравиметрического анализа при необходимости точного проведения реакции.

Измерение молярной массы

Первый исторический опыт заключался в измерении плотности газов по отношению к водороду. Далее были проведены исследования коллигативных свойств. К ним относится, например, осмотическое давление, определение разницы кипения или замерзания между раствором и чистым растворителем. Это параметры напрямую коррелируют с количеством частиц вещества в системе.

Иногда измерение молярной массы проводится у вещества неизвестного состава. Раньше применяли такой способ, как изотермическая перегонка. Его суть заключается в помещении раствора вещества в камеру, насыщенную парами растворителя. В данных условиях происходит конденсация паров и температура смеси повышается, достигает равновесия и начинает снижаться. Выделившаяся теплота испарения рассчитывается по изменению показателя нагрева и охлаждения раствора.

Основным современным методом измерения молярной массы является масс-спектрометрия. Это основной способ идентификации смесей веществ. С помощью современных приборов данный процесс происходит автоматически, только первоначально нужно подобрать условия разделения соединений в пробе. Метод масс-спектрометрии основан на ионизации вещества. В результате образуются различные заряженные фрагменты соединения. На масс-спектре обозначается отношение массы к заряду ионов.

Определение молярной массы для газов

Молярная масса любого газа или пара измеряется просто. Достаточно использовать контроль. Один и тот же объем газообразного вещества равен по количеству вещества другому при одинаковой температуре. Известным способом измерения объема пара является определение количество вытесненного воздуха. Такой процесс осуществляется с использованием бокового отвода, ведущего к измерительному устройству.

Практическое использование молярной массы

Таким образом, понятие молярной массы в химии используется повсеместно. Для описания процесса, создания полимерных комплексов и других реакций необходим расчет данного параметра. Важным моментом является определение концентрации действующего вещества в фармацевтической субстанции. Например, с использованием культуры клеток исследуются физиологические свойства нового соединения. Кроме того, молярная масса важна при проведении биохимических исследований. Например, при изучении участия в обменных процессах элемента. Сейчас структура многих ферментов известна, поэтому есть возможность подсчитать их молекулярную массу, которая в основном измеряется килодальтонах (кДа). Сегодня известны молекулярные массы почти всех составляющих крови человека, в частности, гемоглобина. Молекулярная и молярная масса вещества в определенных случаях являются синонимами. Отличия их заключаются в том, что последний параметр является средним для всех изотопов атома.

Любые микробиологические эксперименты при точном определении влияния вещества на систему ферментов проводятся с использованием молярных концентраций. Например, в биокатализе и других областях, где необходимо исследование энзиматической активности, применяются такие понятия, как индукторы и ингибиторы. Для регуляции активности фермента на биохимическом уровне необходимо исследование с использованием именно молярных масс. Данный параметр вошел прочно в области таких естественных и инженерных наук, как физика, химия, биохимия, биотехнология. Процессы, охарактеризованные таким образом, становятся более понятными с точки зрения механизмов, определения их параметров. Переход от фундаментальной науки к прикладной не обходится без показателя молярной массы, начиная от физиологических растворов, буферных систем и заканчивая определением дозировок фармацевтических веществ для организма.

Теоретическое введение

    Существуют различные способы выражения концентрации растворов.

    Массовая доля w компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:

    (0 1). (3.1)

    Массовый процент

    представляет собой массовую долю, умноженную на 100:

    (0% 100%), (3.2)

    где w (X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.

    Мольная доля Nкомпонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.

    Для бинарного раствора, состоящего из растворённого вещества и растворителя (например, Н 2 О), мольная доля растворённого вещества равна:

    . (3.3)

    Мольный процент

    представляет мольную долю, умноженную на 100:

    N(X), % = (N(X)·100)%. (3.4)

    Объёмная доля

    j компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:

    (0 1). (3.5)

    Объёмный процент

    представляет собой объёмную долю, умноженную на 100.

    Молярность с м определяется как отношение количества растворённого вещества X к объёму раствора V:

    . (3.6)

    Основной единицей молярности является моль/л. Пример записи молярной концентрации: с м (H 2 SO 4 ) = 0,8 моль/л или 0,8М.

    Нормальность с н определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:

    Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: с н (H 2 SO 4 ) = 0,8 моль-экв/л или 0,8н.

    Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см 3 раствора:

    где m(X) – масса растворённого вещества X, V – объём раствора в мл.

    Моляльность раствора m показывает количество растворённого вещества X в 1 кг растворителя:

    где n(X) – число моль растворённого вещества X, m о – масса растворителя в кг.

    Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.

    Необходимо иметь ввиду, что нормальность с н всегда больше или равна молярности с м. Связь между ними описывается выражением:

    с м = с н× f(Х). (3.10)

    Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 3.1. В этой таблице приведены значения молярности с м, которые необходимо пересчитать в нормальность с н и величины нормальности с н, которые следует пересчитать в молярность с м.

    Пересчёт осуществляем по уравнению (3.10). При этом нормальность раствора находим по уравнению:

    с н = с м /f(Х). (3.11)

    Результаты расчётов приведены в табл. 3.2.

    Таблица 3.1

    К определению молярности и нормальности растворов

    Тип химического превращения

    Реакции обмена

    6н FeCl 3

    1,5M Fe 2 (SO 4) 3

    0,1н Ва(ОН) 2

    в кислой среде

    в нейтральной среде

    Таблица 3.2

    Значения молярности и нормальности растворов

    Тип химического превращения

    Реакции обмена

    0,4н

    1,5M Fe 2 (SO 4) 3

    0,1н Ва(ОН) 2

    Реакции окисления-восстановления

    0,05М KMnO 4 в кислой среде

    в нейтральной среде

    Между объёмами V и нормальностями с н реагирующих веществ существует соотношение:

    V 1 с н,1 =V 2 с н,2 , (3.12)

    которое используется для практических расчётов.

    Примеры решения задач

    Рассчитать молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см 3 . Определить объём 70 мас.% раствора серной кислоты (r = 1,611 г/см 3 ), который потребуется для приготовления 2 л 0,1н раствора этой кислоты.

      2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г. Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г. Объём раствора кислоты V = 14/1,611 = 8,69 мл.

    В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH 3 в полученном растворе, если его плотность равна 0,992 г/см 3 .

      Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.

      Масса раствора m = 5000 + 75,9 = 5075,9 г.

      Массовая доля NH 3 равна 75,9/5075,9 = 0,0149 или 1,49 %.

      Количество вещества NH 3 равно 100/22,4 = 4,46 моль.

      Объём раствора V = 5,0759/0,992 = 5,12 л.

      Молярность раствора с м = 4,46/5,1168 = 0,872 моль/л.

    Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария? Сколько мл 2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?

    Плотности растворов NaCl


    3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.


    3.4. Определите молярность 0,1 н раствора KMnO 4 , взаимодействующего с восстановителем в кислой среде.

Массовый процент задает процентное соотношение элементов в химическом соединении. Для нахождения массового процента необходимо знать молярную массу (в граммах на моль) входящих в соединение элементов или количество граммов каждого компонента, необходимое для того, чтобы получить заданный раствор. Массовый процент вычисляется довольно просто: достаточно поделить массу элемента (или компонента) на массу всего соединения (или раствора).

Шаги

Определение массового процента по заданным массам

    Выберите уравнение для определения массового процента химического соединения. Массовый процент находится по следующей формуле: массовый процент = (масса компонента/общая масса соединения) x 100. Для получения процентов результат деления умножается на 100.

    • массовый процент = (масса компонента/общая масса соединения) x 100 .
    • Масса интересующего вас компонента должна быть в условии задачи. Если масса не дана, перейдите к следующему разделу, в котором рассказано о том, как определять массовый процент при неизвестной массе.
    • Общая масса химического соединения находится путем сложения масс всех элементов (компонентов), которые входят в состав этого соединения (или раствора).
  1. Вычислите общую массу соединения. Если вы знаете массы всех составляющих соединение компонентов, просто сложите их, и таким образом вы найдете общую массу получившегося соединения или раствора. Эту массу вы используете в качестве знаменателя в уравнении для массового процента.

    • Пример 1: Чему равен массовый процент 5 граммов гидроксида натрия, растворенного в 100 граммах воды?
      • Общая масса раствора равна сумме количества гидроксида натрия и воды: 100 г + 5 г дают 105 г.
    • Пример 2: Сколько хлорида натрия и воды необходимо для получения 175 граммов 15-процентного раствора?
      • В этом примере даны общая масса и необходимый процент, и требуется найти количество вещества, которое необходимо добавить в раствор. При этом общая масса составляет 175 граммов.
  2. Определите массу заданного компонента. Если вас просят вычислить "массовый процент", следует найти, сколько процентов от общей массы вещества составляет масса определенного компонента. Запишите массу заданного компонента. Это будет числитель в формуле для массового процента.

    • Пример 1: масса заданного компонента - гидрохлорида натрия - составляет 5 граммов.
    • Пример 2: в этом примере масса заданного компонента неизвестна, и ее следует найти.
  3. Подставьте значения в уравнение для массового процента. После того как вы определите все необходимые величины, подставьте их в формулу.

    • Пример 1: массовый процент = (масса компонента/общая масса соединения) x 100 = (5 г/105 г) x 100.
    • Пример 2: необходимо преобразовать формулу для массового процента так, чтобы можно было найти неизвестную массу химического компонента: масса компонента = (массовый процент*общая масса соединения)/100 = (15*175)/100.
  4. Вычислите массовый процент. После подстановки всех значений в формулу для массового процента произведите необходимые вычисления. Поделите массу компонента на общую массу химического соединения или раствора и умножьте на 100. В результате у вас получится массовый процент данного компонента.

    • Пример 1: (5/105) x 100 = 0,04761 x 100 = 4,761%. Таким образом, массовый процент 5 граммов гидрохлорида натрия, растворенного в 100 граммах воды, составляет 4,761%.
    • Пример 2: переписанное выражение для массового процента компонента имеет вид (массовый процент*общая масса вещества)/100, откуда находим: (15*175)/100 = (2625)/100 = 26,25 граммов хлорида натрия.
      • Необходимое количество воды находим путем вычитания массы компонента из общей массы раствора: 175 – 26,25 = 148,75 граммов воды.

    Определение массового процента, когда массы не заданы

    1. Выберите формулу для массового процента химического соединения. Основное уравнение для нахождения массового процента выглядит следующим образом: массовый процент = (молярная масса элемента/общая молекулярная масса соединения) x 100. Молярная масса вещества - это масса одного моля данного вещества, в то время как молекулярная масса представляет собой массу одного моля всего химического соединения. Чтобы получить проценты, результат деления умножается на 100.

      • В начале решения задачи запишите равенство: массовый процент = (молярная масса элемента/общая молекулярная масса соединения) x 100 .
      • Обе величины измеряются в граммах на моль (г/моль).
      • Если вам не даны массы, массовый процент какого-либо элемента в заданном веществе можно найти, используя молярную массу.
      • Пример 1: Найти массовый процент водорода в молекуле воды.
      • Пример 2: Найти массовый процент углерода в молекуле глюкозы.
    2. Запишите химическую формулу . Если в примере не даны химические формулы заданных веществ, следует записать их самостоятельно. Если же в задании даны необходимые формулы химических веществ, данный шаг можно пропустить и перейти сразу к следующему шагу (найти массу каждого элемента).

      • Пример 1: запишите химическую формулу воды, H 2 O.
      • Пример 2: запишите химическую формулу глюкозы, C 6 H 12 O 6 .
    3. Найдите массу каждого элемента, входящего в соединение. Определите молярный вес каждого элемента в химической формуле по таблице Менделеева . Как правило, масса элемента указывается под его химическим символом. Выпишите молярные массы всех элементов, которые входят в рассматриваемое соединение.

    4. Умножьте молярную массу каждого элемента на его мольную долю. Определите, сколько молей каждого элемента содержится в данном химическом веществе, то есть мольные доли элементов. Мольные доли даются числами, стоящими в формуле внизу символов элементов. Умножьте молярную массу каждого элемента на его молярную долю.

      • Пример 1: под символом водорода стоит 2, а под символом кислорода 1 (эквивалентно отсутствию числа). Таким образом, молярную массу водорода следует умножить на 2: 1,00794 X 2 = 2,01588; молярную массу кислорода оставляем прежней, 15,9994 (то есть умножаем на 1).
      • Пример 2: под символом углерода стоит 6, под водородом 12 и под кислородом 6. Умножая молярные массы элементов на эти числа, находим:
        • углерод: (12,0107*6) = 72,0642
        • водород: (1,00794*12) = 12,09528
        • кислород: (15,9994*6) = 95,9964