Когда тело можно считать материальной точкой. Материальная точка

МАТЕРИАЛЬНАЯ ТОЧКА – модельное понятие (абстракция) классической механики, обозначающее тело исчезающе малых размеров, но обладающее некоторой массой .

С одной стороны, материальная точка – простейший объект механики, так как его положение в пространстве определяется всего тремя числами. Например, тремя декартовыми координатами той точки пространства, в которой находится наша материальная точка.

С другой стороны, материальная точка – основной опорный объект механики, так как именно для нее сформулированы основные законы механики. Все другие объекты механики – материальные тела и среды – могут быть представлены в виде той или иной совокупности материальных точек. Например, любое тело можно «разрезать» на малые части и каждую из них принять в качестве материальной точки с соответствующей массой.

Когда можно «заменить» реальное тело материальной точкой при постановке задачи о движении тела, зависит от тех вопросов, на которые должно ответить решение формулируемой задачи.

Возможны различные подходы к вопросу об использовании модели материальной точки.

Один из них носит эмпирический характер. Считают, что модель материальной точки применима тогда, когда размеры движущихся тел пренебрежимо малы по сравнению с величиной относительных перемещений этих тел. В качестве иллюстрации можно привести Солнечную систему. Если считать, что Солнце – неподвижная материальная точка и считать оно действует на другую материальную точку-планету по закону всемирного тяготения, то задача о движении точки-планеты имеет известное решение. Среди возможных траекторий движения точки есть и такие, на которых выполняются законы Кеплера, эмпирически установленные для планет солнечной системы.

Таким образом, при описании орбитальных движений планет модель материальной точки вполне удовлетворительна. (Однако, построение математической модели таких явлений как солнечные и лунные затмения требует учета реальных размеров Солнца, Земли и Луны, хотя эти явления, очевидно, связаны с орбитальными движениями.)

Отношение диаметра Солнца к диаметру орбиты ближайшей планеты – Меркурию – составляет величину ~ 1·10 –2 , а отношения диаметров ближних к Солнцу планет к диаметрам их орбит – величины ~ 1 ÷ 2·10 –4 . Могут ли эти числа служить формальным критерием для пренебрежения размерами тела в других задачах и, следовательно, для приемлемости модели материальной точки? Практика показывает, что нет.

Например, маленькая пуля размером l = 1 ÷ 2 см пролетает расстояние L = 1 ÷ 2 км, т.е. отношение , однако траектория полета (да и дальность) существенно зависит не только от массы пули, но и от ее формы, и от того, вращается ли она. Поэтому даже маленькую пулю, строго говоря, нельзя считать материальной точкой. Если в задачах внешней баллистики метаемое тело часто считают материальной точкой, то это сопровождается оговорками ряда дополнительных условий, как правило, эмпирически учитывающих реальные характеристики тела.

Если обратиться к космонавтике, то когда космический аппарат (КА) выведен на рабочую орбиту, при дальнейших расчетах траектории его полета он считается материальной точкой, так как никакие изменения формы КА не оказывают сколько-нибудь заметного влияния на траекторию. Лишь иногда, при коррекциях траектории возникает необходимость обеспечения точной ориентации реактивных двигателей в пространстве.

Когда же спускаемый отсек приблизится к поверхности Земли на расстояние ~100 км, он сразу «превращается» в тело, поскольку от того, каким «боком» он входит в плотные слои атмосферы, зависит, доставит ли отсек в нужную точку Земли космонавтов и возвращаемые материалы.

Модель материальной точки оказалась практически неприемлемой для описания движений таких физических объектов микромира, как элементарные частицы, атомные ядра, электрон и т.п.

Другой подход к вопросу об использовании модели материальной точки носит рациональный характер. По закону изменения количества движения системы, примененному к отдельному телу, центр масс С тела имеет такое же ускорение, как и некоторая (назовем ее эквивалентной) материальная точка, на которую действуют те же силы, что и на тело, т.е.

Вообще говоря, результирующая сила может быть представлена в виде суммы , где зависит только от и (радиус-вектор и скорость точки С), а – и от угловой скорости тела и его ориентации.

Если F 2 = 0, то приведенное выше соотношение превращается в уравнение движения эквивалентной материальной точки.

В этом случае говорят, что движение центра масс тела не зависит от вращательного движения тела. Таким образом, возможность использования модели материальной точки получает математическое строгое (а не только эмпирическое) обоснование.

Естественно, что на практике условие F 2 = 0 выполняется редко и обычно F 2 № 0, однако может оказаться, что F 2 в каком-то смысле мало по сравнению с F 1 . Тогда можно говорить, что модель эквивалентной материальной точки является некоторым приближением при описании движения тела. Оценка точности такого приближения может быть получена математически и если эта оценка окажется приемлемой для «потребителя», то замена тела на эквивалентную материальную точку допустима, в противном случае такая замена приведет к значительным ошибкам.

Это может иметь место и тогда, когда тело движется поступательно и с точки зрения кинематики его можно «заменить» на некоторую эквивалентную точку.

Естественно, что модель материальной точки не пригодна для ответа на такие вопросы, как «почему Луна обращена к Земле лишь одной своей стороной?» Подобные явления связаны с вращательным движением тела.

Виталий Самсонов

Основываясь на возможности локализации физических предметов во времени и пространстве, в классической механике исследование законов перемещения начинается с самого простого случая. Этим случаем является движение материальной точки. Схематической идеей аналитическая механика формирует предпосылки для изложения

Материальная точка - это объект, обладающий бесконечно малым размером и конечной массой. Данная идея полностью отвечает представлениям о дискретности материи. Ранее физики пытались определить ее в качестве совокупности элементарных частиц, находящихся в состоянии перемещения. В связи с этим материальная точка в своей динамике стала как раз тем необходимым для теоретических построений инструментом.

Динамика рассматриваемого объекта исходит из инерциального принципа. Согласно ему, материальная точка, не находящаяся под влиянием внешних сил, сохраняет свое состояние покоя (либо перемещения) с течением времени. Данное положение выполняется достаточно строго.

В соответствии с принципом инерции, материальная точка (свободная) перемещается равномерно и прямолинейно. Рассматривая частный случай, в рамках которого скорость равна нулю, можно сказать, что объект сохраняет состояние покоя. В связи с этим можно предположить, что влияние определенной силы на рассматриваемый предмет сводится просто к изменению его скорости. Самой простой гипотезой является предположение, что изменение скорости, которой обладает материальная точка, прямо пропорционально показателю силы, воздействующей на нее. При этом коэффициент пропорциональности уменьшается с увеличением инерции.

Естественной является характеристика материальной точки с помощью величины коэффициента инерции - массы. В этом случае главный закон динамики объекта может формулироваться так: сообщаемое ускорение в каждый момент времени равно отношению силы, которая действует на объект, к ее массе. Изложение кинематики, таким образом, предшествует изложению динамики. Масса, которая в динамике характеризует материальную точку, вводится a posteriori (из опыта), в то время как наличие траектории, положения, ускорения, скорости допускается a priori.

В связи с этим уравнения динамики объекта утверждают, что произведение массы рассматриваемого объекта на какую-либо из компонент ее ускорения равно соответствующей компоненте силы, действующей на объект. Предположив, что сила является известной функцией времени и координат, определение координат для материальной точки в соответствии со временем производят посредством трех обычных второго порядка по времени.

В соответствии с хорошо известной теоремой из курса решение указанной системы уравнений однозначно определяется заданием координат, а также их первых производных в какой-либо начальный временной промежуток. Другими словами, при известном положении материальной точки и ее скорости в определенный момент можно точно определить характер ее перемещения во все будущие периоды.

В результате становится ясно, что классическая динамика рассматриваемого объекта находится в абсолютном соответствии с принципом физического детерминизма. Согласно ему, предстоящее состояние (положение) материального мира может быть предсказано полностью при наличии параметров, определяющих его положение в определенный предыдущий момент.

В связи с тем, что размер материальной точки бесконечно мал, ее траектория будет представлять собой линию, занимающую в только одномерный континуум. В каждом участке траектории имеет место определенное значение силы, задающее перемещение в следующий бесконечно малый отрезок времени.

Материальная точка

Материа́льная то́чка (частица) - простейшая физическая модель в механике - идеальное тело, размеры которого равны нулю, можно также считать размеры тела бесконечно малыми по сравнению с другими размерами или расстояниями в пределах допущений исследуемой задачи. Положение материальной точки в пространстве определяется как положение геометрической точки .

Практически под материальной точкой понимают обладающее массой тело, размерами и формой которого можно пренебречь при решении данной задачи.

При прямолинейном движении тела достаточно одной координатной оси для определения его положения.

Особенности

Масса, положение и скорость материальной точки в каждый конкретный момент времени полностью определяют её поведение и физические свойства .

Следствия

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве, и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера , которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Ограничения

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы , пары металлов , и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Примечания


Wikimedia Foundation . 2010 .

  • Механическое движение
  • Абсолютно твёрдое тело

Смотреть что такое "Материальная точка" в других словарях:

    МАТЕРИАЛЬНАЯ ТОЧКА - точка, имеющая массу. В механике понятием материальная точка пользуются в случаях, когда размеры и форма тела при изучении его движения не играют роли, а важна только масса. Практически любое тело можно рассматривать как материальную точку, если… … Большой Энциклопедический словарь

    МАТЕРИАЛЬНАЯ ТОЧКА - понятие, вводимое в механике для обозначения объекта, к рый рассматривается как точка, имеющая массу. Положение М. т. в пр ве определяется как положение геом. точки, что существенно упрощает решение задач механики. Практически тело можно считать… … Физическая энциклопедия

    материальная точка - Точка, обладающая массой. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет научно технической терминологии. 1984 г.] Тематики теоретическая механика EN particle DE materialle Punkt FR point matériel … Справочник технического переводчика

    МАТЕРИАЛЬНАЯ ТОЧКА Современная энциклопедия

    МАТЕРИАЛЬНАЯ ТОЧКА - В механике: бесконечно малое тело. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910 … Словарь иностранных слов русского языка

    Материальная точка - МАТЕРИАЛЬНАЯ ТОЧКА, понятие, вводимое в механике для обозначения тела, размерами и формой которого можно пренебречь. Положение материальной точки в пространстве определяется как положение геометрической точки. Тело можно считать материальной… … Иллюстрированный энциклопедический словарь

    материальная точка - понятие, вводимое в механике для объекта бесконечно малых размеров, имеющего массу. Положение материальной точки в пространстве определяется как положение геометрической точки, что упрощает решение задач механики. Практически любое тело можно… … Энциклопедический словарь

    Материальная точка - геометрическая точка, обладающая массой; материальная точка абстрактный образ материального тела, обладающего массой и не имеющего размеров … Начала современного естествознания

    материальная точка - materialusis taškas statusas T sritis fizika atitikmenys: angl. mass point; material point vok. Massenpunkt, m; materieller Punkt, m rus. материальная точка, f; точечная масса, f pranc. point masse, m; point matériel, m … Fizikos terminų žodynas

    материальная точка - Точка, имеющая массу … Политехнический терминологический толковый словарь

Книги

  • Комплект таблиц. Физика. 9 класс (20 таблиц) , . Учебный альбом из 20 листов. Материальная точка. Координаты движущегося тела. Ускорение. Законы Ньютона. Закон всемирного тяготения. Прямолинейное и криволинейное движение. Движение тела по…

Определение

Материальной точкой называется макроскопическое тело, размерами, формой, вращением и внутренней структурой которого можно пренебречь при описании его движения.

Вопрос о том, можно ли данное тело рассматривать как материальную точку, зависит не от размеров этого тела, а от условий решаемой задачи. Например, радиус Земли значительно меньше расстояния от Земли до Солнца, и ее орбитальное движение можно хорошо описать как движение материальной точки с массой, равной массе Земли и расположенной в ее центре. Однако при рассмотрении суточного движения Земли вокруг собственной оси замена ее материальной точкой не имеет смысла. Применимость модели материальной точки к конкретному телу зависит не столько от размеров самого тела, сколько от условий его движения. В частности, в соответствии с теоремой о движении центра масс системы при поступательном движении любое твёрдое тело можно считать материальной точкой, положение которой совпадает с центром масс тела.

Масса, положение, скорость и некоторые другие физические свойства материальной точки в каждый конкретный момент времени полностью определяют её поведение.

Положение материальной точки в пространстве определяется как положение геометрической точки. В классической механике масса материальной точки полагается постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами. При аксиоматическом подходе к построению классической механики в качестве одной из аксиом принимается следующее:

Аксиома

Материальная точка - геометрическая точка, которой поставлен в соответствие скаляр, называемый массой: $(r,m)$, где $r$ - вектор в евклидовом пространстве, отнесённом к какой-либо декартовой системе координат. Масса полагается постоянной, независящей ни от положения точки в пространстве, ни от времени.

Механическая энергия может быть запасена материальной точкой лишь в виде кинетической энергии её движения в пространстве и (или) потенциальной энергии взаимодействия с полем. Это автоматически означает неспособность материальной точки к деформациям (материальной точкой может быть названо лишь абсолютно твёрдое тело) и вращению вокруг собственной оси и изменениям направления этой оси в пространстве. Вместе с этим модель движения тела, описываемого материальной точкой, которое заключается в изменении её расстояния от некоторого мгновенного центра поворота и двух углов Эйлера, которые задают направление линии, соединяющей эту точку с центром, чрезвычайно широко используется во многих разделах механики.

Метод изучения законов движения реальных тел путём исследования движения идеальной модели - материальной точки - является основным в механике. Любое макроскопическое тело можно представить как совокупность взаимодействующих материальных точек g, с массами, равными массам его частей. Изучение движения этих частей сводится к изучению движения материальных точек.

Ограниченность применения понятия о материальной точке видна из такого примера: в разреженном газе при высокой температуре размер каждой молекулы очень мал по сравнению с типичным расстоянием между молекулами. Казалось бы, им можно пренебречь и считать молекулу материальной точкой. Однако это не всегда так: колебания и вращения молекулы - важный резервуар «внутренней энергии» молекулы, «ёмкость» которого определяется размерами молекулы, её структурой и химическими свойствами. В хорошем приближении как материальную точку можно иногда рассматривать одноатомную молекулу (инертные газы, пары металлов, и др.), но даже у таких молекул при достаточно высокой температуре наблюдается возбуждение электронных оболочек за счёт соударений молекул, с последующим высвечиванием.

Задание 1

а) автомобиль, въезжающий в гараж;

б) автомобиль на трассе Воронеж - Ростов?

а) автомобиль, въезжающий в гараж, нельзя принять за материальную точку, так как в данных условиях существенны размеры автомобиля;

б) автомобиль на трассе Воронеж-Ростов можно принять за материальную точку, так как размеры автомобиля намного меньше расстояния между городами.

Можно ли принять за материальную точку:

а) мальчика, который по дороге из школы домой проходит 1 км;

б) мальчика, делающего зарядку.

а) Когда мальчик, возвращаясь из школы, проходит до дома расстояние в 1 км, то мальчика в этом движении можно рассматривать как материальную точку, потому что его размеры малы по сравнению с расстоянием, которое он проходит.

б) когда тот же мальчик выполняет упражнения утренней зарядки, то материальной точкой считать его никак нельзя.

Что такое материальная точка? Какие физические величины связаны с ней, для чего вообще вводится понятие материальной точки? В этой статье мы порассуждаем об этих вопросах, приведем примеры задач, которые связаны с обсуждаемым понятием, а также поговорим о формулах, применяемых для их решения.

Определение

Итак, что же такое материальная точка? Разные источники дают определение в несколько разном литературном стиле. То же самое касается и преподавателей в вузах, колледжах и общеобразовательных учреждениях. Однако, согласно стандарту, материальной точкой называется тело, размерами которого (в сравнении с размерами системы отсчета) можно пренебречь.

Связь с реальными объектами

Казалось бы, как можно принять за материальную точку человека, велосипедиста, автомобиль, корабль и даже самолет, о которых в большинстве случаев идет речь в задачах по физике, когда речь заходит о механике движущегося тела? Давайте смотреть глубже! Для определения координаты движущегося тела в любой момент времени необходимо знать несколько параметров. Это и начальная координата, и скорость движения, и ускорение (если оно, конечно же, имеет место), и время.

Что необходимо для решения задач с материальными точками?

Координатную связь можно найти, только привязавшись к системе координат. Вот такой своеобразной системой координат для автомобиля и другого тела становится наша планета. А в сравнении с ее величиной размерами тела действительно можно пренебречь. Соответственно, если тело мы принимаем за материальную точку, ее координату в двухмерном (трехмерном) пространстве можно и нужно находить как координату геометрической точки.

Движение материальной точки. Задачи

В зависимости от сложности, задачи могут приобретать определенные условия. Соответственно, отталкиваясь от данных нам условий, можно использовать определенные формулы. Иногда, даже имея весь арсенал формул, решить задачу, что называется, "в лоб" все равно не представляется возможным. Поэтому крайне важно не просто знать формулы кинематики, имеющие отношение к материальной точке, но и уметь их использовать. То есть выражать нужную величину, а системы уравнений приравнивать. Вот основные формулы, которые мы будем применять в ходе решения задач:

Задача № 1

Автомобиль, стоящий на стартовой черте, резко начинает движение из неподвижного положения. Узнать, за какое время он разгонится до 20 метров в секунду, если его ускорение составляет 2 метра на секунду в квадрате.

Сразу хочется сказать, что эта задача - практически самое простое, что может ожидать ученика. Слово “практически” стоит здесь не просто так. Все дело в том, что проще может быть только подставить прямые значения в формулы. Нам же следует сначала выразить время, а затем произвести расчеты. Для решения задачи понадобится формула определения мгновенной скорости (мгновенная скорость - это скорость тела в определенный момент времени). Она имеет следующий вид:

Как мы видим, в левой части уравнения у нас стоит мгновенная скорость. Она нам там абсолютно не нужна. Поэтому делаем простые математические действия: произведение ускорения на время оставляем в правой части, а начальную скорость переносим влево. При этом следует внимательно следить за знаками, поскольку один неправильно оставленный знак может в корне изменить ответ к задаче. Далее немного усложняем выражение, избавляясь от ускорения в правой части: делим на него. В итоге справа у нас должно остаться чистое время, слева - двухуровневое выражение. Все это дело просто меняем местами, чтобы смотрелось привычнее. Остается только подставить величины. Итак, получается, что автомобиль разгонится за 10 секунд. Важно: мы решили задачу, предполагая, что в автомобиль в ней - материальная точка.

Задача № 2

Материальная точка начинает экстренное торможение. Определить, какой была начальная скорость в момент экстренного торможения, если до полной остановки тела прошло 15 секунд. Ускорение принять равным 2 метрам на секунду в квадрате.

Задача, в принципе, достаточно похожа на предыдущую. Но здесь есть пара своих нюансов. Во-первых, нам нужно определить скорость, которую мы обычно называем начальной. То есть в определенный момент начинается отсчет времени и расстояния, пройденного телом. Скорость при этом действительно будет подпадать под данное определение. Второй нюанс - знак ускорения. Напомним, что ускорение - это величина векторная. Следовательно, в зависимости от направления она будет изменять свой знак. Положительное ускорение наблюдается в том случае, если направление скорости тела совпадает с его направлением. Проще говоря, когда тело ускоряется. В противном случае (то есть в нашей ситуации с торможением) ускорение будет отрицательным. И эти два фактора нужно учитывать, чтобы решить данную задачу:

Как и в прошлый раз, сначала выразим необходимую нам величину. Чтобы избежать возни со знаками, начальную скорость оставим там, где она есть. С противоположным знаком переносим в другую часть уравнения произведение ускорения на время. Так как торможение было полным, конечная скорость составляет 0 метров в секунду. Подставляя эти и другие значения, легко находим начальную скорость. Она будет равна 30 метрам в секунду. Легко заметить, что, зная формулы, справляться с простейшими задачами не так уж и сложно.

Задача № 3

В определенный момент времени диспетчеры начинают слежение за перемещением воздушного объекта. Его скорость в этот момент равняется 180 километрам в час. Через промежуток времени, равный 10 секундам, его скорость увеличивается до 360 километров в час. Определите расстояние, пройденное самолетом за время перелета, если время полета составило 2 часа.

На самом деле в широком понимании данная задача имеет множество нюансов. Например, разгон воздушного судна. Понятно, что по прямолинейной траектории наше тело двигаться бы не могло в принципе. То есть ему нужно взлететь, набрать скорость, а потом уже на определенной высоте какой-то отрезок расстояния двигаться прямолинейно. В расчет не берутся отклонения, а также замедление самолета при посадке. Но это не наше дело в данном случае. Поэтому мы будем решать задачу в рамках школьных знаний, общих сведений о кинематическом движении. Чтобы решить задачу, нам понадобится следующая формула:

Но вот тут нас ожидает загвоздка, о которой мы говорили ранее. Знать формулы недостаточно - их нужно уметь использовать. То есть выводить одну величину при помощи альтернативных формул, находить ее и подставлять. При просмотре начальных сведений, которые имеются в задаче, сразу становится понятно, что решить ее просто так не получится. Об ускорении ничего не сказано, зато есть информация о том, как изменилась скорость за определенный промежуток времени. Значит, ускорение мы можем найти самостоятельно. Берем формулу нахождения мгновенной скорости. Она имеет вид

Ускорение и время оставляем в одной части, а начальную скорость переносим в другую. Затем делением обеих частей на время освобождаем правую часть. Здесь сразу же можно подсчитать ускорение, подставив прямые данные. Но гораздо целесообразнее выражать и дальше. Полученную для ускорения формулу подставляем в основную. Там можно немного сократить переменные: в числителе время дано в квадрате, а в знаменателе - в первой степени. Поэтому от этого знаменателя можно избавиться. Ну а дальше - простая подстановка, поскольку больше выражать ничего не надо. Ответ должен получиться следующий: 440 километров. Ответ будет другим, если переводить величины в другую размерность.

Заключение

Итак, что же мы выяснили в ходе этой статьи?

1) Материальная точка - это тело, размерами которого по сравнению с размерами системы отсчета можно пренебречь.

2) Для решения задач, связанных с материальной точкой, есть несколько формул (приведены в статье).

3) Знак ускорения в этих формулах зависит от параметра движения тела (ускорение или торможение).