SSD M2 — что это. Унифицированная система мер

Введение

Эта тема предназначена для тех:
- у кого есть люксметр
- у кого нет ни спектрофотометра, ни желания тратить на него огромные деньги
- кто не желает пользоваться очень приблизительными оценками (ватты электрической мощности)

Поясню. Наиболее точные оценки облучённости растений светом можно получить с помощью спектрофотометра, располагая его приёмный элемент на уровне листьев растений. В этом случае Вы можете точно оценить количество фотонов, падающих на листья Вашей рассады (измеряются в микромолях на метр квадратный в секунду). Однако спектрофотометры - довольно дорогие устройства, и вряд ли многие их собираются покупать.

В то же время у многих есть люксметры. Вообще-то они заточены под определение уровня освещённости с точки зрения человека, а не полезности для растений. Но с помощью математики можно точно перевести люксы в микромоли. Нужно лишь знать кривую чувствительности своего люксметра (она есть в паспорте) и спектр Вашей лампы, используемой для досветки. Типы ламп более менее одинаковые применяются, так что найти спектр Вашей лампы в интернете не представляет сложности.

Многим лень заморачиваться с математикой, и они понимают, что показания люксметра без дополнительных пересчётов ошибочны. И тогда они заявляют, что «люмены, люксы» - это прошлый век. А сами при этом оперируют ваттами электрической мощности своих ламп или диодов. Но в таком случае, ватты - это позапрошлый век. Они не учитывают ни эффективность излучения, ни расстояние от источника света до листьев растения.

Математические расчёты, требующиеся для пересчёта из люксов в микромоли, не такие уж сложные, а формулы можно вывести самому, руководствуясь определениями. Но всё же, чтобы мне не пришлось ниже доказывать состоятельность формул, я сошлюсь на работу «Principles of radiation measurement» автора William W. Biggs, в которой все нужные формулы присутствуют.

Итак, ниже я:
- представлю коэффициенты пересчёта из люксов в микромоли/м2*с и ватты/м2 для разных типов ламп
- математически оценю, насколько совпадают кривые усваиваемости фотонов растениями от наиболее часто применяемых ламп и от солнца.

Таким образом, зная, сколько микромоль требуется Вашему растению, Вы сможете люксметром проверить, хватает ли света, а также оценить, все ли нужные длины волн излучает Ваша лампа.

P. S.
В дальнейшем для простоты я всегда буду вместо «микромоль/м2*с» использовать «микромоль».

Все количественные оценки, о которых пойдёт речь ниже, применимы для диапазона PAR (400 - 700 нм)

Вложения:

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Сколько микромолей нужно растениям?

    В интернете опубликованы рекомендации по требуемому уровню облучённости разных типов растений. Уверен, таких рекомендаций при тщательном поиске можно найти много - выбирайте любую. Я пользуюсь известным рисунком с сайта minifermer. ru:

    Предположим, мы хотим вырастить редиску - для этого нам нужно 100-300 микромолей. Возьмём среднее, 200 микромолей.

    Наша задача теперь, узнать, какой уровень освещённости в люксах соответствует этим двумстам микромолям.

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Спектр Вашей лампы

    Теперь нужно определиться со спектром Вашей лампы. Разумеется, для этого не нужно покупать спектрофотометр или отдавать лампу в лабораторию. Все спектры давным-давно известны. Нормальные производители публикуют их в листах технической документации. Так что Вам нужно просто определить, что у Вас за тип лампы, её цветовую температуру. А после этого поискать в интернете спектр.

    Для наиболее распространённых типов я эту работу уже проделал. Ниже спектры излучения разных белых ламп в интересующем нас диапазоне от 400 до 700 нанометров:

    Для светильников на основе монохромных светодиодов:

    Далее нам нужно оцифровать эти графики, т. е. точно знать, какая интенсивность излучения на какой длине волны. Для большинства читателей, думаю, это неразрешимая задача, особенно если делать точную оцифровку - для каждой длины волны. Это нужно разлиновать график, вписать в эксель данные для каждого из трёхсот значений…

    К счастью, можно это дело запрограммировать, и тогда оцифровка займёт совсем мало времени. Главное каждый спектр привести к одному и тому же виду - одинакового размера изображение из двух цветов - белого и чёрного.

    Собственно, это я и проделал, так что у меня есть данные по каждому из вышеуказанных спектров.

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Вложения:

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Таблица коэффициентов пересчёта микромолей и ваттов в люксы для разных типов ламп

    Сведём все полученные соотношения между разными единицами измерения для разных типов ламп в таблицу. Сюда же добавим соотношения для пасмурного и солнечного дня - у солнечного света ведь тоже есть свой спектр.

    Коэффициенты для белых ламп:

    Пример 1:

    Сначала переводим люксы монохромной лампы в микромоли. Находим по таблице коэффициент - 0,0775.

    Микромоли = 0,0775 * 300 люкс = 23,25

    Теперь переводим микромоли обратно в люксы, но уже для люминисцентной лампы. Из таблицы ясно, что коэффициент = 72,54

    Люксы = 72,54 * 23,25 = 1687 люкс

    Таким образом, чтобы заменить монохромную лампу, выдающую 300 люкс нужно установить люминисцентную, выдающую 1687 люкс.

    Пример 2:

    Переводим освещённость в гроубоксе в микромоли. Коэффициент для перевода - 0,0137.

    Микромоли = 0,0137 * 3000 люкс = 41,1

    Теперь переводим микромоли обратно в люксы для пасмурного дня. Коэффициент - 56,71

    Люксы = 56,71 * 41,1 = 2331 люкс

    2331 меньше 2500, поэтому при наличии времени и желания выгодно переместить рассаду на подоконник - там она получит больше фотонов.

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Усваиваемость фотонов растениями

    Всё это хорошо, но всё же недостаточно точно. Уж если задействовать математический аппарат, то по полной программе.

    Да, мы получили коэффициенты перевода для самых распространённых ламп. Но по сути, мы оперировали суммой микромолей во всём диапазоне, вне зависимости от длин волн. А давно известно, что на некоторых длинах волн растения лучше усваивают фотоны, чем на других. Обычно говорят о синих (440 нм) и красных (660 нм) длинах волн. Но в действительности всё немного сложнее.

    Итак, определим, какой процент излучения будет усваиваться растением на каждой длине волны. За основу возьмём эту картинку:

    Нас здесь интересуют следующие пигменты: хлорофилл А, хлорофилл Б, фикоксантин и бетакаротин. Два других пигмента в листьях наземных растений отсутствуют.

    На радужный спектр лампы обращать внимание не нужно - он нам сейчас неинтересен.

    Как видно, разные пигменты обладают разной эффективностью поглощения фотонов на разных длинах волн. Самое простое было бы просто сложить все кривые между собой. Но так делать нельзя. Дело в том, что фотосинтез в растениях протекает в двух фотосистемах, и число молекул каждого пигмента в этих системах известно:

    Как видно, основную работу выполняет хлорофилл А. Поэтому складывая графики, нужно придать каждому из них свой вес. В итоге получим следующую кривую усваиваемости фотонов пигментами растения:

    Хорошо видны пики усваиваемости, причём синий пик находится на длине волны 425 нм, а не на 440. Кроме того, часть фотонов усваивается и в зелёной части спектра.

    Перед тем как продолжить, оцифруем этот график.

    P. S. В настоящее время среди учёных нет согласия относительно одного единственно верного графика усваиваемости. В интернете можно найти несколько подобных графиков - какой из них использовать - решать Вам.

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Пересчитываем микромоли, ватты и люксы учитывая усваиваемость

    Теперь нам известна чувствительность растений к падающим на них фотонам на разных длинах волн. И мы можем получить не просто сумму упавших на листья фотонов, а сумму усвоенных растением фотонов под разными типами ламп - что, согласитесь, намного ценнее.

    Пересчёт очень прост. Нужно на каждой длине волны полученное ранее значение ватт, микромолей или люксов умножить на % усваиваемости фотонов на этой длине волны. А потом сложить все значения, чтобы получить общую величину.

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Таблица коэффициентов пересчёта с учётом кривой усваиваемости фотонов

    Коэффициенты для белых ламп:

    Коэффициенты для ламп на основе монохромных светодиодов:

    Вернёмся к двум примерам выше, чтобы понять, что изменилось. Расчёты писать не буду, сразу напишу ответ, чтобы не загромождать.

    Пример 1:

    Люксметр под лампой из красно-синих светодиодов с соотношением 1:1 показывает 300 люкс. Какую освещённость должна создать люминисцентная лампа холодного света, чтобы количество падающих на листья рассады фотонов в диапазоне 400-700 нм было одинаковым?

    Ответ: 300 люксам монохромного светильника соответствует 1013 люкс люминисцентной лампы.

    В прошлом расчёте было 1687 люкс. Это означает, что учитывая кривую усваиваемости фотонов мы приходим к более точному соотношению полезной освещённости, создаваемой разными типами ламп. Т. е. углубление в расчёты позволяет заявить, что обычные люминисцентные лампы не так уж неэффективны по сравнению с монохромными светодиодными.

    Пример 2:

    Освещённость, создаваемая нейтральными светодиодными лентами smd5730 в закрытом гроубоксе составляет 3000 люкс. Стоит ли выставлять рассаду на подоконник, если в данный момент пасмурно и на подоконнике освещённость будет 2500 люкс?

    Ответ: 3000 люкс светодиодной лампы по эффективности равны 1747 люксам на подоконнике.

    А было 2331 люкс. То есть углубление в расчёты позволяет заявить, что полный спектр на подоконнике почти в 2 раза эффективнее, чем спектр светодиодной лампы.

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Таблица коэффициентов усваиваемости фотонов

    Мы можем судить об эффективности лампы по тому, сколько фотонов из диапазона PAR, созданных лампой, усвоилось растением. Привожу таблицу для разных типов ламп:

    Пример 1:

    Нам нужно вырастить редис при облучённости 200 микромоль. Сколько люкс должен показать люксметр на уровне листьев рассады в закрытом гроубоксе, если мы используем тёплую светодиодную ленту на основе smd 5730?

    Посчитаем с учётом усваиваемости. Предположим, что 200 микромоль - это в условиях естественного освещения, например, в ясную погоду. В такую погоду усваивается 18,5% фотонов.

    Усвоенных микромолей = 18,5% * 200 / 100% = 37

    Теперь вернёмся к таблице пересчёта из предыдущего сообщения и определим, сколько нужно люкс. Коэффициент пересчёта из усвоенных микромолей в люксы - 523,15

    Нужно люксов = 37 * 523,15 = 19357

    Пример 2:
    Снова растим редис, нужно 200 микромоль. Но теперь у нас не светокультура, а досветка на подоконнике. При выключенной лампе создаётся освещённость 3000 люкс (пасмурно). Какая должна быть освещённость, если включить для досветки ту же тёплую светодиодную ленту 5730?

    Усвоенные микромоли нужны те же самые - 37.

    3000 люкс пасмурного света дадут нам 10,5 микромолей (коэффициент 0,0035 * 3000). Значит, лентой надо добрать 37 - 10,5 = 26,5 микромолей.

    Коэффициент тот же - 523,15. Значит, лампа должна дать 26,5 * 523,15 = 13863 люкс.

    Всего получается 3000 от солнца + 13863 от лампы = 16863 люкс

  • Регистрация: 07.10.11 Сообщения: 3.109 Благодарности: 10.460

    Соответствие спектра лампы спектру солнца

    Почему я не люблю монохромные источники света? Да потому что они искусственным путём нагоняют показатели микромолей, подстраиваясь под пики поглощения фотосинтезирующих пигментов. А остальной спектр для растения оказывается недоступным.

    В то же время в ходе эволюции растения приспосабливались именно к полному солнечному спектру, а не к двум пикам на 440 и 660 нм.

    Продемонстрировать недостаток монохромного подхода можно очень просто. Допустим, нам нужно получить 100 микромолей. Можно повесить белую лампу, можно сине-красную. А можно - просто красную. Просто помощнее. Красные фотоны усваиваются? Усваиваются. Их столько, сколько нужно в целом? Да. Какие вопросы?

    Но ясно же, что нужны фотоны и на других длинах волн. Поэтому помимо количественной оценки микромолей, даже с учётом усваиваемости, необходимо оценить соответствие наличия фотонов для растений на всех длинах волн привычному им солнечному спектру.

    Пересчитаем все данные таким образом, чтобы площадь под кривой усваиваемости фотонов каждой лампы равнялась, например, 100 микромолям. Теперь их можно корректно сравнить между собой.

    Можно оценить отклонение спектра ламп от спектра солнечного света в пасмурно-ясную погоду (50% ясных дней, 50% пасмурных).


    Солнечный спектр и его усваиваемость

    Воспользуемся расчётом среднеквадратического отклонения. Только вместо математического ожидания всех значений солнечного спектра будем для каждой длины волны использовать конкретное значение.

    Среднеквадратическое отклонение = корень из (сумма квадратов разниц усваиваемых микромолей лампы и солнца на n-й длине волны / количество длин волн)

    В таблице представлены полученные данные. Это среднее отклонение в микромолях излучения исследуемой лампы от естественного света при условии, что всего усваивается 100 микромоль. Если мы подставим в расчёты 200 микромоль, то все отклонения будут в 2 раза выше, но принципиально ничего не изменится. Данные отсортированы по возрастанию, чтобы было понятно, какие источники света наиболее близки к солнечному спектру, а какие - наиболее далеки.

  • Страница 2

    1 Па= 1 Н/м2 = 1 кг/(м с2)

    Наиболее близка к СИ единица давления бар (бар), размер, которой очень удобен для практики (1 бар = 1 105 Па).

    В применяемых до настоящего времени жидкостных манометрах мерой измеряемого давления является высота столба жидкости. Поэтому естественно применение единиц давления, определяемых высотой столба жидкости, т. е. основанных на единицах длины. В странах с метрически­ми системами мер получили распространение единицы давления милли­метр и метр водяного столба (мм вод. ст. и м вод. ст.) и миллиметр ртутного столба (мм рт. ст.). http://brandshop.ru/ зимние кроссовки nike air max с мехом мужские.

    Размеры этих единиц давления пересчитываются в единицы СИ на основании формулы

    где Н - высота столба жидкости, м, р - плотность жидкости, кг/м3, g -ускорение свободного падения, м/с2.

    1) Вакуумметрами часто называют манометры, предназначенные для измерения низких абсолютных давлений, существенно меньших, чем атмосферное давление (в вакуумной технике).

    Методы и средства измерения давления

    Методы измерения давления во многом предопределяют как принци­пы действия, так и конструктивные особенности средств измерений. В этой связи в первую очередь следует остановиться на наиболее общих ме­тодологических вопросах техники измерения давления.

    Давление, исходя из самых общих позиций, может быть определено как путем его непосредственного измерения, так и посредством измере­ния другой физической величины, функционально связанной с измеряе­мым давлением.

    В первом случае измеряемое давление воздействует непосредствен­но на чувствительный элемент прибора, который передает информацию о значении давления последующим звеньям измерительной цепи, преоб­разующим ее в требуемую форму. Этот метод определения давления яв­ляется методом прямых измерений, и получил наибольшее распростране­ние в технике измерения давления. На нем основаны принципы действия большинства манометров и измерительных преобразователей давления.

    Во втором случае непосредственно измеряются другие физические величины или параметры, характеризующие физические свойства изме­ряемой среды, значения которых закономерно связаны с давлением (температура кипения жидкости, скорость распространения ультразву­ка, теплопроводность газа и т. д.). Этот метод является методом косвен­ных измерений давления и применяется, как правило, в тех случаях, когда прямой метод по тем или иным причинам неприменим, например, при измерении сверхнизкого давления (вакуумная техника) или при изме­рении высоких и сверхвысоких давлений .

    Давление является производной физической величиной, определяе­мой тремя основными физическими величинами - массой, длиной и вре­менем. Конкретная реализация значения давления зависит от способа воспроизведения единицы давления. При измерении по формуле (1) давление определяется силой и площадью, а по формуле (2) - длиной, плотностью и ускорением. Методы определения давления, основанные на измерении указанных величин, являются абсолютными (фундамен­тальными) методами и применяются при воспроизведении единицы дав­ления эталонами грузопоршневого и жидкостного типа, а также позволя­ют, при необходимости, производить аттестацию образцовых средств измерений.

    Относительный метод измерений, в отличие от абсолютного, основан на предварительном исследовании зависимости от давления физических свойств и параметров чувствительных элементов средств измерения дав­ления при методах прямых, измерений или других физических величин и свойств измеряемой среды - при методах косвенных измерений. На­пример, деформационные манометры перед их применением для измерения давления должны быть сначала отградуированы по образцовым средствам измерений соответствующей точности.

    Помимо классификации по основным методам измерений и видам давления, средства измерений давления классифицируют по принципу действия, функциональному назначению, диапазону и точности измере­ний.

    Наиболее существенный классификационный признак - принцип действия средства измерения давления, в соответствии с ним и построе­но дальнейшее изложение.

    Современные средства измерений давления представляют собой измерительные системы, звенья которых имеют различное функциональное назначение. Обобщенные блок-схемы манометров и измерительных преобразователей давления приведены соответственно на рис. 1, а и б. Важнейшим звеном любого средства измерения давления является его чувствительный элемент (ЧЭ), который воспринимает измеряемое давление и преобразует его в первичный сигнал, поступающий в измеритель­ную цепь прибора. С помощью промежуточных преобразователей сигнал от ЧЭ преобразуется в показания манометра или регистрируется им, а в измерительных преобразователях (ИНД) - в унифицированный выходкой сигнал, поступающий в системы измерения, контроля, регулирования и управления. При этом промежуточные преобразователи и вто­ричные приборы во многих случаях унифицированы и могут приме­няться в сочетании с ЧЭ различных типов. Поэтому принципиальные особенности манометров и ИПД зависят, в первую очередь, от типа ЧЭ .

    В РФ действует ГОСТ 8.417-2002, предписывающий обязательное использование международной системы единиц СИ. В нём перечислены единицы физических величин, разрешённые к применению, приведены их международные и русские обозначения и установлены правила их использования.

    В системе СИ имеется 7 основных единиц 1 . Остальные базируются на них. Многие производные единицы , имеющие широкое распространение, получили собственные названия. Ниже приведены наиболее часто встречающие в электротехнике единицы и даны определения некоторых из них.

    Система СИ

    Величина

    Наименование

    Размерность

    2. Основные единицы 2

    килограмм

    Сила тока

    Температура

    Сила света

    2. Механические единицы

    Скорость

    метр в секунду

    Ускорение

    метр в секунду за секунду

    Энергия и работа

    кг м 2 /с 2 =Дж

    кг м/с 2 =Дж/м

    Мощность

    кг м 2 /с 3 =Дж/с

    3. Электрические единицы

    Количество электричества

    А с = Кл

    Напряжение, ЭДС

    кг м 2 /А с 3 = В

    Напряженность электрического поля

    вольт на метр

    кг м/А с 3 = В/м

    Электроемкость

    А 2 с 4 /кг м 2 = = А с/В = с/Ом

    Электрическое сопротивление

    кг м 2 /А 2 с 3 = В/А

    Удельное сопротивление

    ом на метр

    кг м 3 /А 2 с 3 = Ом м

    Диэлектрическая проницаемость

    фарад на метр

    А 2 с 4 /кг м 3 = Ф/м

    Световой поток

    Освещённость

    лм/м² = кд·ср/м²

    4. Магнитные единицы

    Магнитный поток

    кг м 2 /а с 2

    Магнитная индукция

    кг/а с 2

    Напряженность магнитного поля

    ампер на метр

    Индуктивность

    кг м 2 /А 2 с 2 = Ом с

    Магнитная проницаемость

    генри на метр

    Ньютон (силы ) определяется как сила, изменяющая за 1 с скорость тела массой 1 кг на 1 м/с в направлении действия силы.

    Н=(кг м/с)/с= кг м/с 2 =Дж/м

    Джоуль (Дж) равен работе (энергии ), совершаемой при перемещении точки приложения силы, равной 1 ньютону, на расстояние 1 метра в направлении действия силы. В электричестве джоуль обозначает работу, которую совершают силы электрического поля за 1 секунду при напряжении в 1 вольт для поддержания силы тока в 1 ампер

    Дж = кг м 2 /с 2 =Вт с=В А с

    Ватт определяется как мощность, при которой за 1 секунду времени совершается работа в 1 джоуль

    Вт = Дж / с = кг·м²/с³= H·м/с = В·А.

    Кулон (Кл) - это заряд, проходящий через поперечное сечение проводника за 1 с при силе тока 1 А

    Вольт (В) - единица измерения электрического потенциала , разности потенциалов двух точек электрического поля – электрического напряжения и электродвижущей силы (ЭДС) . Разность потенциалов между двумя точками равна 1 вольту, если для перемещения заряда величиной 1 кулон из одной точки в другую над ним надо совершить работу величиной 1 джоуль. Вольт также равен электрическому напряжению, вызывающему в электрической цепи постоянный ток силой 1 ампер при мощности 1 ватт.

    В = Кл  Дж = Кл  кг м 2 /с 2 = Вт/А.

    Ом (Ом, Ω) - единица измерения электрического сопротивления . Ом равен электрическому сопротивлению проводника, между концами которого возникает напряжение 1 вольт при силе постоянного тока 1 ампер.

    Сименс (См) - единица измерения электрической проводимости, величина обратная Ому.

    1 См = 1 / Ом = А / В = кг−1·м−2·с³А².

    Фара́д (обозначение: Ф, F; прежнее название - фара́да) - единица измерения электрической ёмкости . 1 фарад равен ёмкости конденсатора, при которой заряд 1 кулон создаёт между его обкладками напряжение 1 вольт:

    Ф = Кл/ В = А с/В = А 2 с 4 /кг м 2 = с/Ом

    Таким образом, конденсатор ёмкостью 1Ф, в идеале, может зарядиться до 1В при зарядке током 1А в течение 1 секунды. На практике же, ёмкость зависит от напряжения на обкладках конденсатора. Фарад - очень большая ёмкость для уединённого проводника. Ёмкостью 1 Ф обладал бы уединённый металлический шар, радиус которого равен 13 радиусам Солнца. Ёмкость же Земли (точнее, шара размером с Землю, используемого как уединённый проводник) составляет около 710 микрофарад.

    Ге́нри (Гн) - единица измерения индуктивности. Цепь имеет индуктивность один генри, если изменение тока со скоростью 1 ампер в секунду создаёт ЭДС индукции, равную 1 вольту.

    Гн = В·с·А −1 = кг·м 2 ·с −2 ·А −2

    Напряженность электрического поля () - векторная величина, характеризующая электрическое поле в точке, численно равна отношению силы, действующей на заряд, помещенный в данную точку поля, к величине этого заряда.= F/q .Размерность : : В/м =Н/Кл

    Ве́бер (Вб, Wb) - единица измерения магнитного потока. Изменение магнитного потока через замкнутый контур со скоростью 1 вебер в секунду наводит в этом контуре ЭДС, равную 1 вольту.

    Вб = В·с = кг·м 2 ·с −2 ·А −1 = Гн·А

    Те́сла (Тл) - единица измерения индукции магнитного поля, численно равная индукции такого однородного магнитного поля, в котором на 1 метр длины прямого проводника, перпендикулярного вектору магнитной индукции, с током силой 1 ампер действует сила 1 ньютон.

    Тл = Вб/м 2 = В·с / м² = Н·А −1 ·м −1 = кг·с −2 ·А −1

    1 Тл = 10 000 гаусс (единица СГС)

    1В системе измерения СГС, которая широко использовалась до принятия системы СИ, было только три основных единицы:сантиметр-грамм-секунда . Её название -абсолютная физическая система единиц.

    2в таблице не показана основная единица СИ - количество вещества «моль».

      Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

      Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Физическая … Википедия

      Физическая величина это количественная характеристика объекта или явления в физике, либо результат измерения. Размер физической величины количественная определенность физической величины, присущая конкретному материальному объекту, системе,… … Википедия

      У этого термина существуют и другие значения, см. Фотон (значения). Фотон Символ: иногда … Википедия

      У этого термина существуют и другие значения, см. Борн. Макс Борн Max Born … Википедия

      Примеры разнообразных физических явлений Физика (от др. греч. φύσις … Википедия

      Фотон Символ: иногда Излученные фотоны в когерентном луче лазера. Состав: Семья … Википедия

      У этого термина существуют и другие значения, см. Масса (значения). Масса Размерность M Единицы измерения СИ кг … Википедия

      CROCUS Ядерный реактор это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый ядерный реактор построен и запущен в декабре 1942 года в … Википедия

    Книги

    • Гидравлика. Учебник и практикум для академического бакалавриата , Кудинов В.А.. В учебнике изложены основные физико-механические свойства жидкостей, вопросы гидростатики и гидродинамики, даны основы теории гидродинамического подобия и математического моделирования…
    • Гидравлика 4-е изд., пер. и доп. Учебник и практикум для академического бакалавриата , Эдуард Михайлович Карташов. В учебнике изложены основные физико-механические свойства жидкостей, вопросы гидростатики и гидродинамики, даны основы теории гидродинамического подобия и математического моделирования…