Термоядерный синтез. Управляемый термоядерный синтез

ЯДЕРНЫЙ СИНТЕЗ
термоядерный синтез, реакция слияния легких атомных ядер в более тяжелые ядра, происходящая при сверхвысокой температуре и сопровождающаяся выделением огромных количеств энергии. Ядерный синтез - это реакция, обратная делению атомов: в последней энергия выделяется за счет расщепления тяжелых ядер на более легкие. См. также
ЯДЕР ДЕЛЕНИЕ ;
АТОМНАЯ ЭНЕРГЕТИКА . Согласно современным астрофизическим представлениям, основным источником энергии Солнца и других звезд является происходящий в их недрах термоядерный синтез. В земных условиях он осуществляется при взрыве водородной бомбы. Термоядерный синтез сопровождается колоссальным энерговыделением на единицу массы реагирующих веществ (примерно в 10 миллионов раз большим, чем в химических реакциях). Поэтому представляет большой интерес овладеть этим процессом и на его основе создать дешевый и экологически чистый источник энергии. Однако несмотря на то, что исследованиями управляемого термоядерного синтеза (УТС) заняты большие научно-технические коллективы во многих развитых странах, предстоит решить еще немало сложных проблем, прежде чем промышленное производство термоядерной энергии станет реальностью. Современные атомные станции, использующие процесс деления, лишь отчасти удовлетворяют мировые потребности в электроэнергии. Топливом для них служат естественные радиоактивные элементы уран и торий, распространенность и запасы которых в природе весьма ограничены; поэтому для многих стран возникает проблема их импорта. Главным компонентом термоядерного топлива является изотоп водорода дейтерий, который содержится в морской воде. Запасы его общедоступны и очень велики (мировой океан покрывает ЯДЕРНЫЙ СИНТЕЗ71% площади поверхности Земли, а на долю дейтерия приходится ок. 0,016% общего числа атомов водорода, входящих в состав воды). Помимо доступности топлива, термоядерные источники энергии имеют следующие важные преимущества перед атомными станциями: 1) реактор УТС содержит гораздо меньше радиоактивных материалов, чем атомный реактор деления, и поэтому последствия случайного выброса радиоактивных продуктов менее опасны; 2) при термоядерных реакциях образуется меньше долгоживущих радиоактивных отходов; 3) УТС допускает прямое получение электроэнергии.
ФИЗИЧЕСКИЕ ОСНОВЫ ЯДЕРНОГО СИНТЕЗА
Успешное осуществление реакции синтеза зависит от свойств используемых атомных ядер и возможности получения плотной высокотемпературной плазмы, которая необходима для инициирования реакции.
Ядерные силы и реакции. Энерговыделение при ядерном синтезе обусловлено действующими внутри ядра чрезвычайно интенсивными силами притяжения; эти силы удерживают вместе входящие в состав ядра протоны и нейтроны. Они очень интенсивны на расстояниях ЯДЕРНЫЙ СИНТЕЗ10-13 см и чрезвычайно быстро ослабевают с увеличением расстояния. Помимо этих сил, положительно заряженные протоны создают электростатические силы отталкивания. Радиус действия электростатических сил гораздо больше, чем у ядерных, поэтому они начинают преобладать, когда ядра удалены друг от друга. В нормальных условиях кинетическая энергия ядер легких атомов слишком мала для того, чтобы, преодолев электростатическое отталкивание, они могли сблизиться и вступить в ядерную реакцию. Однако отталкивание можно преодолеть "грубой" силой, например сталкивая ядра, обладающие высокой относительной скоростью. Дж.Кокрофт и Э.Уолтон использовали этот принцип в своих экспериментах, проводившихся в 1932 в Кавендишской лаборатории (Кембридж, Великобритания). Облучая литиевую мишень ускоренными в электрическом поле протонами, они наблюдали взаимодействие протонов с ядрами лития Li. С тех пор изучено большое число подобных реакций. Реакции с участием наиболее легких ядер - протона (p), дейтрона (d) и тритона (t), соответствующих изотопам водорода протию 1H, дейтерию 2H и тритию 3H, - а также "легкого" изотопа гелия 3He и двух изотопов лития 6Li и 7Li представлены в приведенной ниже таблице. Здесь n - нейтрон, g - гамма-квант. Энергия, выделяющаяся в каждой реакции, дана в миллионах электрон-вольт (МэВ). При кинетической энергии 1 МэВ скорость протона составляет 14 500 км/с.
См. также АТОМНОГО ЯДРА СТРОЕНИЕ .

РЕАКЦИИ ТЕРМОЯДЕРНОГО СИНТЕЗА


Как показал Г.Гамов, вероятность реакции между двумя сближающимися легкими ядрами пропорциональна

, где e - основание натуральных логарифмов, Z1 и Z2 - числа протонов во взаимодействующих ядрах, W - энергия их относительного сближения, а K - постоянный множитель. Энергия, необходимая для осуществления реакции, зависит от числа протонов в каждом ядре. Если оно больше трех, то эта энергия слишком велика и реакция практически неосуществима. Таким образом, с возрастанием Z1 и Z2 вероятность реакции уменьшается. Вероятность того, что два ядра вступят во взаимодействие, характеризуется "сечением реакции", измеряемом в барнах (1 б = 10-24 см2). Сечение реакции - это площадь эффективного поперечного сечения ядра, в которое должно "попасть" другое ядро, чтобы произошло их взаимодействие. Сечение реакции дейтерия с тритием достигает максимальной величины (ЯДЕРНЫЙ СИНТЕЗ5 б), когда взаимодействующие частицы имеют энергию относительного сближения порядка 200 кэВ. При энергии 20 кэВ сечение становится меньше 0,1 б. Из миллиона попадающих на мишень ускоренных частиц не более одной вступает в ядерное взаимодействие. Остальные рассеивают свою энергию на электронах атомов мишени и замедляются до скоростей, при которых реакция становится невозможной. Следовательно, способ бомбардировки твердой мишени ускоренными ядрами (как это было в эксперименте Кокрофта - Уолтона) для УТС непригоден, так как получаемая при этом энергия намного меньше затраченной.


Термоядерные топлива. Реакции с участием p, играющие основную роль в процессах ядерного синтеза на Солнце и других гомогенных звездах, в земных условиях не представляют практического интереса, поскольку имеют слишком малое сечение. Для осуществления термоядерного синтеза на земле более подходящим видом топлива, как упоминалось выше, является дейтерий. Но наиболее вероятная реакция реализуется в равнокомпонентной смеси дейтерия и трития (DT-смесь). К сожалению, тритий радиоактивен и, ввиду короткого периода полураспада (T1/2 ЯДЕРНЫЙ СИНТЕЗ 12,3 года) в природе практически не встречается. Его получают искусственным путем в реакторах деления, а также как побочный продукт в реакциях с дейтерием. Однако отсутствие в природе трития не является препятствием для использования DT - реакции синтеза, т.к. тритий можно производить, облучая изотоп 6Li образующимися при синтезе нейтронами: n + 6Li (r) 4He + t. Если окружить термоядерную камеру слоем 6Li (в природном литии его содержится 7%), то можно осуществить полное воспроизводство расходуемого трития. И хотя на практике часть нейтронов неизбежно теряется, их потерю легко восполнить, вводя в оболочку такой элемент, как бериллий, ядро которого, при попадании в него одного быстрого нейтрона, испускает два.
Принцип действия термоядерного реактора. Реакция слияния легких ядер, цель которой - получение полезной энергии, называется управляемым термоядерным синтезом. Осуществляется он при температурах порядка сотен миллионов кельвинов. Такой процесс реализован пока только в лабораториях.
Временные и температурные условия. Получение полезной термоядерной энергии возможно лишь при выполнении двух условий. Во-первых, предназначенная для синтеза смесь должна быть нагрета до температуры, при которой кинетическая энергия ядер обеспечивает высокую вероятность их слияния при столкновении. Во-вторых, реагирующая смесь должна быть очень хорошо термоизолирована (т.е. высокая температура должна поддерживаться достаточно долго, чтобы произошло необходимое число реакций и выделившаяся за счет этого энергия превышала энергию, затраченную на нагрев топлива). В количественной форме это условие выражается следующим образом. Чтобы нагреть термоядерную смесь, одному кубическому сантиметру ее объема надо сообщить энергию P1 = knT, где k - численный коэффициент, n - плотность смеси (количество ядер в 1 см3), T - требуемая температура. Для поддержания реакции сообщенная термоядерной смеси энергия должна сохраняться в течение времени t. Чтобы реактор был энергетически выгоден, нужно, чтобы за это время в нем выделилось термоядерной энергии больше, чем было потрачено на нагрев. Выделившаяся энергия (также на 1 см3) выражается следующим образом:


где f(T) - коэффициент, зависящий от температуры смеси и ее состава, R - энергия, выделяющаяся в одном элементарном акте синтеза. Тогда условие энергетической рентабельности P2 > P1 примет вид


или

Последнее неравенство, известное под названием критерия Лоусона, представляет собой количественное выражение требований к совершенству термоизоляции. Правая часть - "число Лоусона" - зависит только от температуры и состава смеси, и чем оно больше, тем жестче требования к термоизоляции, т.е. тем труднее создать реактор. В области приемлемых температур число Лоусона для чистого дейтерия составляет 1016 с/см3, а для равнокомпонентной DT-смеси - 2Ч1014 с/см3. Таким образом, DT-смесь является более предпочтительным термоядерным топливом. В соответствии с критерием Лоусона, определяющим энергетически выгодную величину произведения плотности на время удержания, в термоядерном реакторе следует использовать по возможности большие n либо t. Поэтому исследования УТС разошлись по двум разным направлениям: в первом исследователи пытались с помощью магнитного поля в течение достаточно длительного времени удерживать относительно разреженную плазму; во втором - с помощью лазеров на короткое время создать плазму с очень высокой плотностью. Первому подходу было посвящено гораздо больше работ, чем второму.
Магнитное удержание плазмы. Во время реакции синтеза плотность горячего реагента должна оставаться на уровне, который обеспечивал бы достаточно высокий выход полезной энергии на единицу объема при давлении, которое в состоянии выдержать камера с плазмой. Например, для смеси дейтерий - тритий при температуре 108 К выход определяется выражением

Если принять P равным 100 Вт/см3 (что примерно соответствует энергии, выделяемой топливными элементами в ядерных реакторах деления), то плотность n должна составлять ок. 1015 ядер/см3, а соответствующее давление nT - примерно 3 МПа. Время удержания при этом, согласно критерию Лоусона, должно быть не менее 0,1 с. Для дейтерий-дейтериевой плазмы при температуре 109 К

В этом случае при P = 100 Вт/см3, n " 3Ч1015 ядер/см3 и давлении примерно 100 МПа требуемое время удержания составит более 1 с. Заметим, что указанные плотности составляют лишь 0,0001 от плотности атмосферного воздуха, так что камера реактора должна откачиваться до высокого вакуума. Приведенные выше оценки времени удержания, температуры и плотности являются типичными минимальными параметрами, необходимыми для работы термоядерного реактора, причем легче они достигаются в случае дейтерий-тритиевой смеси. Что касается термоядерных реакций, протекающих при взрыве водородной бомбы и в недрах звезд, то следует иметь в виду, что в силу совершенно иных условий в первом случае они протекают очень быстро, а во втором - крайне медленно по сравнению с процессами в термоядерном реакторе.
Плазма. При сильном нагреве газа его атомы частично или полностью теряют электроны, в результате чего образуются положительно заряженные частицы, называемые ионами, и свободные электроны. При температурах более миллиона градусов газ, состоящий из легких элементов, полностью ионизуется, т.е. каждый его атом утрачивает все свои электроны. Газ в ионизованном состоянии называется плазмой (термин введен И.Ленгмюром). Свойства плазмы существенно отличаются от свойств нейтрального газа. Поскольку в плазме присутствуют свободные электроны, плазма очень хорошо проводит электрический ток, причем ее проводимость пропорциональна T3/2. Плазму можно нагревать, пропуская через нее электрический ток. Проводимость водородной плазмы при 108 К такая же, как у меди при комнатной температуре. Очень велика и теплопроводность плазмы. Чтобы удержать плазму, например, при температуре 108 К, ее нужно надежно термоизолировать. В принципе изолировать плазму от стенок камеры можно, поместив ее в сильное магнитное поле. Это обеспечивается силами, которые возникают при взаимодействии токов с магнитным полем в плазме. Под действием магнитного поля ионы и электроны движутся по спиралям вдоль его силовых линий. Переход с одной силовой линии на другую возможен при столкновениях частиц и при наложении поперечного электрического поля. В отсутствие электрических полей высокотемпературная разреженная плазма, в которой столкновения происходят редко, будет лишь медленно диффундировать поперек магнитных силовых линий. Если силовые линии магнитного поля замкнуть, придав им форму петли, то частицы плазмы будут двигаться вдоль этих линий, удерживаясь в области петли. Кроме такой замкнутой магнитной конфигурации для удержания плазмы были предложены и открытые системы (с силовыми линиями поля, выходящими из торцов камеры наружу), в которых частицы остаются внутри камеры благодаря ограничивающим движение частиц магнитным "пробкам". Магнитные пробки создаются у торцов камеры, где в результате постепенного увеличения напряженности поля образуется сужающийся пучок силовых линий. На практике осуществить магнитное удержание плазмы достаточно большой плотности оказалось далеко не просто: в ней часто возникают магнитогидродинамические и кинетические неустойчивости. Магнитогидродинамические неустойчивости связаны с изгибами и изломами магнитных силовых линий. В этом случае плазма может начать перемещаться поперек магнитного поля в виде сгустков, за несколько миллионных долей секунды уйдет из зоны удержания и отдаст тепло стенкам камеры. Такие неустойчивости можно подавить, придав магнитному полю определенную конфигурацию. Кинетические неустойчивости очень многообразны и изучены они менее детально. Среди них есть такие, которые срывают упорядоченные процессы, как, например, протекание через плазму постоянного электрического тока или потока частиц. Другие кинетические неустойчивости вызывают более высокую скорость поперечной диффузии плазмы в магнитном поле, чем предсказываемая теорией столкновений для спокойной плазмы.
Системы с замкнутой магнитной конфигурацией. Если к ионизованному проводящему газу приложить сильное электрическое поле, то в нем возникнет разрядный ток, одновременно с которым появится окружающее его магнитное поле. Взаимодействие магнитного поля с током приведет к появлению действующих на заряженные частицы газа сжимающих сил. Если ток протекает вдоль оси проводящего плазменного шнура, то возникающие радиальные силы подобно резиновым жгутам сжимают шнур, отодвигая границу плазмы от стенок содержащей ее камеры. Это явление, теоретически предсказанное У.Беннеттом в 1934 и впервые экспериментально продемонстрированное А.Уэром в 1951, названо пинч-эффектом. Метод пинча применяется для удержания плазмы; примечательной его особенностью является то, что газ нагревается до высоких температур самим электрическим током (омический нагрев). Принципиальная простота метода обусловила его использование в первых же попытках удержания горячей плазмы, а изучение простого пинч-эффекта, несмотря на то, что впоследствии он был вытеснен более совершенными методами, позволило лучше понять проблемы, с которыми экспериментаторы сталкиваются и сегодня. Помимо диффузии плазмы в радиальном направлении, наблюдается еще продольный дрейф и выход ее через торцы плазменного шнура. Потери через торцы можно устранить, если придать камере с плазмой форму бублика (тора). В этом случае получается тороидальный пинч. Для описанного выше простого пинча серьезной проблемой являются присущие ему магнитогидродинамические неустойчивости. Если у плазменного шнура возникает небольшой изгиб, то плотность силовых линий магнитного поля с внутренней стороны изгиба увеличивается (рис. 1). Магнитные силовые линии, которые ведут себя подобно сопротивляющимся сжатию жгутам, начнут быстро "выпучиваться", так что изгиб будет увеличиваться вплоть до разрушения всей структуры плазменного шнура. В результате плазма вступит в контакт со стенками камеры и охладится. Чтобы исключить это губительное явление, до пропускания основного аксиального тока в камере создают продольное магнитное поле, которое вместе с приложенным позднее круговым полем "выпрямляет" зарождающийся изгиб плазменного шнура (рис. 2). Принцип стабилизации плазменного шнура аксиальным полем положен в основу двух перспективных проектов термоядерных реакторов - токамака и пинча с обращенным магнитным полем.





Открытые магнитные конфигурации. В системах открытой конфигурации проблема удержания плазмы в продольном направлении решается путем создания магнитного поля, силовые линии которого вблизи торцов камеры имеют вид сужающегося пучка. Заряженные частицы движутся по винтовым линиям вдоль силовой линии поля и отражаются от областей с более высокой напряженностью (где плотность силовых линий больше). Такие конфигурации (рис. 3) называются ловушками с магнитными пробками, или магнитными зеркалами. Магнитное поле создается двумя параллельными катушками, в которых протекают сильные одинаково направленные токи. В пространстве между катушками силовые линии образуют "бочку", в которой и располагается удерживаемая плазма. Однако экспериментально установлено, что такие системы вряд ли в состоянии удержать плазму той степени плотности, которая необходима для работы реактора. Сейчас на этот метод удержания не возлагается больших надежд.
См. также МАГНИТНАЯ ГИДРОДИНАМИКА .



Инерциальное удержание. Теоретические расчеты показывают, что термоядерный синтез возможен и без применения магнитных ловушек. Для этого осуществляется быстрое сжатие специально приготовленной мишени (шарика из дейтерия радиусом ок. 1 мм) до столь высоких плотностей, что термоядерная реакция успевает завершиться прежде, чем произойдет испарение топливной мишени. Сжатие и нагрев до термоядерных температур можно производить сверхмощными лазерными импульсами, со всех сторон равномерно и одновременно облучающими топливный шарик (рис. 4). При мгновенном испарении его поверхностных слоев вылетающие частицы приобретают очень высокие скорости, и шарик оказывается под действием больших сжимающих сил. Они аналогичны движущим ракету реактивным силам, с той лишь разницей, что здесь эти силы направлены внутрь, к центру мишени. Этим методом можно создать давления порядка 1011 МПа и плотности, в 10 000 раз превышающие плотность воды. При такой плотности почти вся термоядерная энергия высвободится в виде небольшого взрыва за время ЯДЕРНЫЙ СИНТЕЗ10-12 с. Происходящие микровзрывы, каждый из которых эквивалентен 1-2 кг тротила, не вызовут повреждения реактора, а осуществление последовательности таких микровзрывов через короткие промежутки времени позволило бы реализовать практически непрерывное получение полезной энергии. Для инерциального удержания очень важно устройство топливной мишени. Мишень в виде концентрических сфер из тяжелого и легкого материалов позволит добиться максимально эффективного испарения частиц и, следовательно, наибольшего сжатия.



Расчеты показывают, что при энергии лазерного излучения порядка мегаджоуля (106 Дж) и кпд лазера не менее 10% производимая термоядерная энергия должна превышать энергию, израсходованную на накачку лазера. Термоядерные лазерные установки имеются в исследовательских лабораториях России, США, Западной Европы и Японии. В настоящее время изучается возможность использования вместо лазерного луча пучка тяжелых ионов или сочетания такого пучка со световым лучом. Благодаря современной технике такой способ инициирования реакции имеет преимущество перед лазерным, поскольку позволяет получить больше полезной энергии. Недостаток заключается в трудности фокусировки пучка на мишени.
УСТАНОВКИ С МАГНИТНЫМ УДЕРЖАНИЕМ
Магнитные методы удержания плазмы исследуются в России, США, Японии и ряде европейских стран. Главное внимание уделяется установкам тороидального типа, таким, как токамак и пинч с обращенным магнитным полем, появившимся в результате развития более простых пинчей со стабилизирующим продольным магнитным полем. Для удержания плазмы при помощи тороидального магнитного поля Bj необходимо создать условия, при которых плазма не смещалась бы к стенкам тора. Это достигается "скручиванием" силовых линий магнитного поля (т.н. "вращательным преобразованием"). Такое скручивание осуществляется двумя способами. В первом способе через плазму пропускается ток, приводящий к конфигурации уже рассмотренного устойчивого пинча. Магнитное поле тока Bq Ј -Bq вместе с Bj создает суммарное поле с необходимым закручиванием. Если Bj Bq, то получается конфигурация, известная под названием токамак (аббревиатура выражения "ТОроидальная КАмера с МАгнитными Катушками"). Токамак (рис. 5) был разработан под руководством Л. А. Арцимовича в Институте атомной энергии им. И. В. Курчатова в Москве. При Bj ЯДЕРНЫЙ СИНТЕЗ Bq получается конфигурация пинча с обращенным магнитным полем.



Во втором способе для обеспечения равновесия удерживаемой плазмы применяются специальные винтовые обмотки вокруг тороидальной плазменной камеры. Токи в этих обмотках создают сложное магнитное поле, приводящее к закручиванию силовых линий суммарного поля внутри тора. Такая установка, называемая стелларатором, была разработана в Принстонском университете (США) Л.Спитцером с сотрудниками.
Токамак. Важным параметром, от которого зависит удержание тороидальной плазмы, является "запас устойчивости" q, равный rBj/RBq, где r и R - соответственно малый и большой радиусы тороидальной плазмы. При малом q может развиваться винтовая неустойчивость - аналог неустойчивости изгиба прямого пинча. Ученые в Москве экспериментально показали, что при q > 1 (т.е. Bj Bq) возможность возникновения винтовой неустойчивости сильно уменьшается. Это позволяет эффективно использовать выделяемое током тепло для нагревания плазмы. В результате многолетних исследований характеристики токамаков существенно улучшились, в частности за счет повышения однородности поля и эффективной очистки вакуумной камеры. Полученные в России обнадеживающие результаты стимулировали создание токамаков во многих лабораториях мира, а их конфигурация стала предметом интенсивного исследования. Омический нагрев плазмы в токамаке недостаточен для осуществления реакции термоядерного синтеза. Это связано с тем, что при нагреве плазмы сильно уменьшается ее электрическое сопротивление, и в результате резко снижается выделение тепла при прохождении тока. Увеличивать ток в токамаке выше некоторого предела нельзя, поскольку плазменный шнур может потерять устойчивость и переброситься на стенки камеры. Поэтому для нагрева плазмы используют различные дополнительные методы. Наиболее эффективные из них - инжекция пучков нейтральных атомов с высокой энергией и микроволновое облучение. В первом случае ускоренные до энергий 50-200 кэВ ионы нейтрализуются (чтобы избежать "отражения" их назад магнитным полем при введении в камеру) и инжектируются в плазму. Здесь они снова ионизуются и в процессе столкновений отдают плазме свою энергию. Во втором случае используется микроволновое излучение, частота которого равна ионной циклотронной частоте (частота вращения ионов в магнитном поле). На этой частоте плотная плазма ведет себя как абсолютно черное тело, т.е. полностью поглощает падающую энергию. На токамаке JET стран Европейского союза методом инжекции нейтральных частиц была получена плазма с ионной температурой 280 млн. кельвинов и временем удержания 0,85 с. На дейтериево-тритиевой плазме получена термоядерная мощность, достигающая 2 МВт. Длительность поддержания реакции ограничивается появлением примесей вследствие распыления стенок камеры: примеси проникают в плазму и, ионизуясь, существенно увеличивают энергетические потери за счет излучения. Сейчас работы по программе JET сосредоточены на исследованиях возможности контроля примесей и их удаления т.н. "магнитным дивертором". Большие токамаки созданы также в США - TFTR, в России - T15 и в Японии - JT60. Исследования, выполненные на этих и других установках, заложили основу для дальнейшего этапа работ в области управляемого термоядерного синтеза: на 2010 намечается запуск большого реактора для технических испытаний. Предполагается, что это будет совместная работа США, России, стран Европейского союза и Японии.
Пинч с обращенным полем (ПОП). Конфигурация ПОП отличается от токамака тем, что в ней Bq ЯДЕРНЫЙ СИНТЕЗ Bj, но при этом направление тороидального поля вне плазмы противоположно его направлению внутри плазменного шнура. Дж.Тейлор показал, что такая система находится в состоянии с минимальной энергией и, несмотря на q Стелларатор. В стеллараторе на замкнутое тороидальное магнитное поле налагается поле, создаваемое специальной винтовой обмоткой, навитой на корпус камеры. Суммарное магнитное поле предотвращает дрейф плазмы в направлении от центра и подавляет отдельные виды магнитогидродинамических нестабильностей. Сама плазма может создаваться и нагреваться любым из способов, применяемых в токамаке. Главным преимуществом стелларатора является то, что примененный в нем способ удержания не связан с наличием тока в плазме (как в токамаках или в установках на основе пинч-эффекта), и потому стелларатор может работать в стационарном режиме. Кроме того, винтовая обмотка может оказывать "диверторное" действие, т.е. очищать плазму от примесей и удалять продукты реакции. Удержание плазмы в стеллараторах всесторонне исследуется на установках Европейского союза, России, Японии и США. На стеллараторе "Вендельштейн VII" в Германии удалось поддерживать не несущую тока плазму с температурой более 5Ч106 кельвинов, нагревая ее путем инжекции высокоэнергетичного атомарного пучка. Последние теоретические и экспериментальные исследования показали, что в большинстве описанных установок, и особенно в замкнутых тороидальных системах, время удержания плазмы можно увеличить, увеличивая ее радиальные размеры и удерживающее магнитное поле. Например, для токамака подсчитано, что критерий Лоусона будет выполняться (и даже с некоторым запасом) при напряженности магнитного поля ЯДЕРНЫЙ СИНТЕЗ50 е 100 кГс и малом радиусе тороидальной камеры ок. 2 м. Таковы параметры установки на 1000 МВт электроэнергии. При создании столь крупных установок с магнитным удержанием плазмы возникают совершенно новые технологические проблемы. Чтобы создать магнитное поле порядка 50 кГс в объеме нескольких кубических метров с помощью охлаждаемых водой медных катушек, потребуется источник электроэнергии мощностью в несколько сотен мегаватт. Поэтому очевидно, что обмотки катушек необходимо делать из сверхпроводящих материалов, таких, как сплавы ниобия с титаном или с оловом. Сопротивление этих материалов электрическому току в сверхпроводящем состоянии равно нулю, и, следовательно, на поддержание магнитного поля будет расходоваться минимальное количество электроэнергии.
Реакторная технология. Устройство термоядерной электростанции схематично показано на рис. 6. В камере реактора находится дейтерий-тритиевая плазма, а окружает ее литиево-бериллиевый "бланкет", где происходит поглощение нейтронов и воспроизводится тритий. Вырабатываемое тепло отводится из бланкета через теплообменник в обычную паровую турбину. Обмотки сверхпроводящего магнита защищены радиационными и тепловыми экранами и охлаждаются жидким гелием. Однако не решены еще многие проблемы, связанные с устойчивостью плазмы и очисткой ее от примесей, радиационным повреждением внутренней стенки камеры, подводом топлива, отводом теплоты и продуктов реакции, управлением тепловой мощностью.
См. также
АТОМНАЯ ЭНЕРГЕТИКА ;
ТЕПЛООБМЕННИК .



Перспективы термоядерных исследований. Эксперименты, выполненные на установках типа токамак, показали, что эта система весьма перспективна в качестве возможной основы реактора УТС. На токамаках получены лучшие на сегодня результаты, и есть надежда, что при соответствующем увеличении масштабов установок на них удастся осуществить промышленный УТС. Однако токамак недостаточно экономичен. Для устранения этого недостатка необходимо, чтобы он работал не в импульсном, как сейчас, а в непрерывном режиме. Но физические аспекты этой проблемы пока еще мало исследованы. Необходимо также разработать технические средства, которые позволили бы улучшить параметры плазмы и устранить ее неустойчивости. Учитывая все это, не следует забывать и о других возможных, хотя и менее проработанных вариантах термоядерного реактора, например о стеллараторе или пинче с обращенным полем. Состояние исследований в этой области достигло этапа, когда имеются концептуальные реакторные проекты для большинства систем с магнитным удержанием высокотемпературной плазмы и для некоторых систем с инерциальным удержанием. Примером промышленной разработки токамака может служить проект "Ариес" (США). Следующее поколение токамаков должно решить технические проблемы, связанные с промышленными реакторами УТС. Очевидно, что перед их создателями возникнут немалые трудности, но несомненно и то, что по мере осознания людьми проблем, касающихся окружающей среды, источников сырья и энергии, производство электроэнергии новыми рассмотренными выше способами займет подобающее ему место. См. также

После открытия деления ядер атомов был открыт обратный процесс: ядерный синтез - когда легкие ядра соединяются в более тяжелые.

Процессы ядерного синтеза идут на Солнце - четыре изотопа водорода (водород-1) соединяются в гелий-4 с освобождением колоссального количества энергии.

На Земле в реакции синтеза используются изотопы водорода: дейтерий (водород-2) и тритий (водород-3):

3 1 H + 2 1 H → 4 2 He + 1 0 n

Ядерный синтез, как и деление ядер, не стал исключением. Первое практическое применение эта реакция получила в водородной бомбе, последствия взрыва которой были описаны ранее.

Если ученые уже научились управлять цепной реакцией деления ядер, то управление высвобождающейся энергией ядерного синтеза пока что еще несбыточная мечта.

Практическое применение расщепления ядерной энергии на АЭС имеет существенный недостаток - это утилизация отработанных ядерных отходов. Они радиоактивны, - предоставляют опасность живым организмам, а их период полураспада достаточно велик - несколько тысяч лет (в период этого времени радиоактивные отходы будут представлять опасность).

Ядерный синтез не имеет вредных отходов - это одно из главных преимуществ его использования. Решение проблемы управлением ядерным синтезом позволит получить неиссякаемый источник энергии.

В результате практического решения этой проблемы была создана установка ТОКАМАК.

Слово "ТОКАМАК" - по разным версиям это или сокращение слов ТОроидальная, КАмера, МАгнитные Катушки, или Приспособленное к легкому произношению сокращение от Тороидальная Камера с Магнитным Полем, которые описывают основные элементы этой магнитной ловушки, изобретенной А.Д. Сахаровым в 1950 г. Схема ТОКАМАКа показана на рисунке:


Первый ТОКАМАК был построен в России в Институте Атомной Энергии им И.В. Курчатова в 1956 г.

Для успешной работы установки ТОКАМАК надо решить три задачи.

Задача 1. Температура. Процесс ядерного синтеза требует чрезвычайно высокой энергии активации. Изотопы водорода необходимо нагреть до температуры примерно 40 млн.К - это температура, превышающая температуру Солнца!

При такой температуре электроны "испаряются" - остается только положительно заряженная плазма - ядра атомов, разогретые до высокой температуры.

Ученые пытаются разогревать вещество до такой температуры при помощи магнитного поля и лазера, но, пока безуспешно.

Задача 2. Время. Чтобы началась реакция ядерного синтеза, заряженные ядра должны находиться на достаточно близком расстоянии друг от друга при Т=40 млн.К довольно длительное время - около одной секунды.

Задача 3. Плазма. Вы изобрели абсолютный растворитель? Замечательно! Но, позвольте спросить - а где вы его будете хранить?

Во время ядерного синтеза вещество находится в состоянии плазмы при очень высокой температуре. Но в таких условиях любое вещество будет находиться в газообразном состоянии. Так как же "хранить" плазму?

Поскольку у плазмы есть заряд, то для ее удержания можно использовать магнитное поле. Но, увы, пока создать надежную "магнитную колбу" ученым так и не удалось.

По самым оптимистическим прогнозам ученым понадобится 30-50 лет, чтобы создать работающий источник экологически чистого источника энергии - "надгробный камень" для нефтяных и газовых магнатов. Впрочем, не факт, что к тому времени человечество не израсходует свои запасы нефти и газа.

Это научно-популярная статья, в которой я хочу рассказать интересующимся ядерным синтезом о его принципах. Это "холодный" и "горячий" термояд, радиоактивный распад, ядерная реакция расщепления и имеющиеся данные о синтезе широкого спектра веществ в так называемом процессе трансмутации.
Что же является тем «философским камнем», который позволит человеку получить в свое распоряжение ядерный синтез?
- На мой взгляд, это знания! Знания без догм и шарлатанства! При постижении которых будут провалы и покорения новых вершин.
Возможно прочитав ее, Вы заинтересуетесь этими проблемами и в будущем займетесь ими основательно подготовившись. Здесь я попытался рассказать об основных принципах заложенных в природе вещества - материи и лишний раз подтверждающих представление о простоте и оптимальности природы.

Что такое ядерный синтез?

В литературе мы часто находим термин «Термоядерный синтез».

Термоядерная реакция, термоядерный синтез (синоним: ядерная реакция синтеза)

Разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые ядра. http://ru.wikipedia.org/wiki/ введите для поиска - Термоядерный синтез

Точнее, под термином «Термоядерный синтез» принято считать «Ядерный синтез» с выделением энергии (тепла).

В то же время, понятие «Ядерный синтез» включает:

  1. Разделение ядра исходного, более тяжелого элемента обычно на два легких ядра, с образованием новых химических элементов.
    При выполнении условия равенства числа нуклонов тяжелого ядра сумме нуклонов легких ядер плюс получившиеся в процессе деления свободные нуклоны. И суммарная энергия связи в тяжелом ядре равна сумме энергий связи в легких ядрах плюс выделившаяся свободная (избыточная энергия). Примером может служить ядерная реакция деления ядра U.
  2. Соединение двух меньших ядер в одно большее, с образованием нового химического элемента.
    При выполнении условия равенства числа нуклонов тяжелого ядра сумме нуклонов легких ядер плюс получившиеся в процессе деления свободные нуклоны. И суммарная энергия связи в тяжелом ядре равна сумме энергий связи в легких ядрах плюс выделившаяся свободная (избыточная энергия). Примером может служить получение трансурановых элементов физических экспериментах «мишень исходного вещества - ускоритель - ускоренные ядра (протоны).

Для этого процесса существует особое понятие Нуклеосинтез - процесс образования ядер химических элементов тяжелее водорода в ходе реакции ядерного синтеза (слияния).

В процессе первичного нуклеосинтеза образуются элементы не тяжелее лития, теоретическаямодель Большого Взрыва предполагает следующее соотношение элементов:

H - 75%, 4He - 25%, D - 3·10 −5 , 3He - 2·10 −5 , 7Li - 10 −9 ,

что хорошо согласуется с экспериментальными данными определения состава вещества в объектах с большим красным смещением (по линиям в спектрах квазаров.

Звёздный нуклеосинтез - собирательное понятие для ядерных реакций образования элементов тяжелее водорода, внутри звёзд, а также, в незначительной степени,на их поверхности.

В том и другом случае, скажу возможно кощунственную для некоторых фразу, синтез может проходить как при выделении избыточной энергии связи, так и при поглощении недостающей. Поэтому корректнее говорить не о термоядерном синтезе, а о более общем процессе - ядерном синтезе.

Условия существования ядерного синтеза

Общеизвестны критерии существования термоядерного синтеза (для реакции D-T), который возможен при одновременном выполнении двух условий:

где n - плотность высокотемпературной плазмы, τ - время удержания плазмы в системе.

От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время (2012) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии. И срок его пуска уже не первый раз откладывается.

Практически те же критерии, но более общие, для синтеза ядер необходимо сблизить их на расстояние порядка 10 −15 м, на котором действие сильного взаимодействия будет превышать силы электростатического отталкивания.

Условия преобразования

Условия преобразования известны, это сближение ядер до расстояний когда начинают действовать внутриядерные силы.

Но это простое условие, не так-то просто выполнить. Существуют кулоновские силы положительно, одноименно заряженных ядер, участвующих в ядерной реакции, которые необходимо преодолеть чтобы сблизить ядра на то расстояние когда начинают действовать внутриядерные силы и ядра объединяются.

Что надо для преодоления кулоновских сил?

Если абстрагироваться от необходимых энергетических затрат на это, то совершенно определенно можно сказать, что сблизив любые два и более ядер на расстояние меньшее 1/2 диаметра ядра мы приведем их к состоянию когда внутриядерные силы приведут к их слиянию. В результате слияния образуется новое ядро, масса которого будет определяться суммой нуклонов в исходных ядрах. Образовавшееся ядро, в случае его неустойчивости, в результате того или иного распада придет через некоторое время в некоторое стабильное состояние.

Обычно ядра участвующие в процессе синтеза существуют в виде ионов, частично или полностью потерявшие электроны.

Сближение ядер достигается несколькими путями:

  1. Разогрев вещества для придания его ядрам необходимой энергии (скорости) для возможного их сближения,
  2. Создание сверхвысокого давления в области синтеза достаточного для сближения ядер исходного вещества,
  3. Создание внешнего электрического поля в зоне синтеза достаточное для преодоления кулоновских сил,
  4. Создание сверхмощного магнитного поля сжимающего ядра исходного вещества.

Оставив пока для сохранения пока терминологию, посмотрим что такое термоядерный синтез.

Последнее время мы редко слышим об исследованиях «горячего» термоядерного синтеза.

Нас одолевают свои проблемы, более жизненные для нас, чем для всего человечества. Да это и понятно кризис продолжается и мы стремимся выжить.

Но исследования и работы в области термоядерного синтеза продолжаются. Существует два направления работ:

  1. так называемый, «горячий» ядерный синтез,
  2. «холодный» ядерный синтез, преданный анафеме, официальной наукой.

Причем их отличие горячий - холодный только описывает условия, которые необходимо создать для протекания данных реакций.

Имеется в виду что в «горячем» ядерном синтезе продукты участвующие в термоядерной реакции надо разогреть, чтобы придать их ядрам определенную скорость (энергию) для преодоления кулоновского барьера, чем создать условия для протекания реакции ядерного синтеза.

В случае «холодного» ядерного синтеза - синтез протекает при внешних нормальных условиях (усредненных по объему установки, а температура а зоне синтеза (в микро объеме) полностью соответствует выделяемой энергии), но поскольку существует сам факт ядерного синтеза, условия необходимые для слияния ядер так же выполняются. Как Вы понимаете требуются определенные оговорки и уточнения, когда говорят о «холодном» ядерном синтезе. Поэтому едва ли применим для этого термина «холодный», скорее подходит обозначение, LENR (низко энергетические ядерные реакции).

Но, думаю Вы понимаете, что термоядерная реакция идет с выделением энергии и в обоих случаях ее результат «горячий» - это выделение тепла. Так например при «холодном» ядерном синтезе, как только количество фактов синтеза станет достаточно большим температура активной среды начнет повышаться.

Не боясь быть нудным повторю, суть ядерного синтеза заключается в сближении ядер вещества участвующего в реакции на расстояние когда на участвующие в ядерном синтезе атома начинают действовать (преобладать) внутриядерные силы под действием которых ядра сольются.

«Горячий» ядерный синтез

Эксперименты с «Горячим» ядерным синтезом проводятся на сложных и дорогих установках использующих самые передовые технологии и позволяющих разогревать плазму до температур более 10 8 К и удерживать ее в вакуумной камере с помощь сверх сильных магнитных полей достаточно длительное время (в промышленной установке это должно выполняться в непрерывном режиме - это все время ее работы, в исследовательских это может быть режим одиночных импульсов и на время необходимое для протекания термоядерной реакции, в соответствии с критерием Лоусона (если интересно, см. http://ru.wikipedia.org/wiki/ введите для поиска - Критерий Лоусона).

Существует несколько типов таких установок, но наиболее перспективной считается установка типа «ТОКАМАК» -ТО роидальная КА мера с МА гнитными К атушками.

Предложение об использовании управляемого термоядерного синтеза для промышленных целей и конкретная схема с использованием термоизоляции высокотемпературной плазмы электрическим полем были впервые сформулированы советским физиком О. А. Лаврентьевым в работе середины 1950-го года. Эта работа послужила катализатором советских исследований по проблеме управляемого термоядерного синтеза А. Д. Сахаров и И. Е. Тамм в 1951 году предложили модифицировать схему, предложив теоретическую основу термоядерного реактора, где плазма имела бы форму тора и удерживалась магнитным полем.

Термин « токамак» был придуман позже И. Н. Головиным, учеником академика Курчатова. Первоначально он звучал как «токамаг» - сокращение от слов «то роидальная ка мера маг нитная», но Н. А. Явлинский, автор первой тороидальной системы, предложил заменить «-маг» на «-мак» для благозвучия. В последующем эта версия была заимствована всеми языками.

Первый токамак был построен в 1955 году, и долгое время токамаки существовали только в СССР. Лишь после 1968 года, когда на токамаке T-3 , построенном в Институте атомной энергии им. И. В. Курчатова под руководством академика Л. А. Арцимовича, была достигнута температура плазмы 10 млн градусов, и английские ученые со своей аппаратурой подтвердили этот факт, в который поначалу отказывались верить, в мире начался настоящий бум токамаков. Начиная с 1973 программу исследований физики плазмы на токамаках возглавил Кадомцев Б. Б.

Официальная физика считает токамак единственно перспективным устройством для осуществления управляемого термоядерного синтеза.


В настоящее время (2011) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии. (Закончено проектирование)

Проект iter - путь - проект международного экспериментального термоядерного реактора.
Проектирование реактора полностью закончено и выбрано место для его строительства на юге Франции, в 60 км от Марселя, на территории исследовательского центра Кадараш.
Текущие планы:
Исходныная дата, гг. Новая дата, гг.
2007-2019 2010-2022 период строительства реактора.
2026 2029 Первые реакции термоядерного синтеза
2019-2037 2022 - 2040 ожидаются эксперименты, по истечении которых проект будет закрыт,
После 2040 2043 реактор станет производить электроэнергию (при условии успешных экспериментов)
В связи с экономической ситуацией возможна задержка еще на 3 года, что возможно приведет к необходимости доработки проекта. Это приведет к общей задержке примерно на 5 лет.
В проекте ITER принимают участие Россия, США, Китай, ЕС, Республика Корея, Индия и Япония. Поскольку реактор будет построен на территории Евросоюза, то он будет финансировать 40% стоимости проекта. Остальные страны-участницы финансируют по 10% проекта. Первоначально общая стоимость этой программы оценивалась в 13 миллиардов евро. Из них 4,7 миллиарда будет затрачено на капитальное строительство демонстрационной установки. Термоядерная мощность реактора ITER составит 500 МВт. В последующем стоимость увеличилась до 15 млрд евро, аналогична сумма потребуется для проведения исследований.

В Японии ранее уже начинали строительство ИТЕР на севере острова Хонсю в местечке Роккасе префектуры Аомори, однако в Токио вынуждены были отказаться от самостоятельного возведения реактора, так как в проект необходимо было вложить 600-800 миллиардов иен (около $6-8 миллиардов).
«Холодный» ядерный синтез

Так называемый «холодный» ядерный синтез (как я уже говорил, он холодный пока число событий синтеза - слияния мало), не смотря на отношение официальной науки, тоже имеет место быть.

Логика подсказывает, что условия для сближения ядер могут быть достигнуты и другими способами. Пока мы просто не можем понять физику процессов происходящих в микромире, объяснить их, а поэтому получить повторяемость эксперимента и в результате практического применения.

Инструментальные подтверждения протекания ядерных реакций есть.

В множестве экспериментов зарегистрированы признаки присущие ядерному синтезу (как отдельные так и в совокупности): выделения нейтронов, выделение тепла, побочные излучения, продукты ядерного синтеза.

Логика подсказывает возможность существования ЯС без выделения нейтронов, побочных излучений и даже с поглощением энергии. Но всегда имеет место появление новых химических элементов в продуктах ядерного синтеза.

Например может иметь место ядерная реакция без нейтронов и других излучений

D + 6Li → 2 + 22,4 MeV

Больше того в природе зафиксированы подобные явления.

Ядерный синтез при расщепление вещества

Радиоактивный распад.

В природе известен синтез новых химических элементов в процессе радиоактивного распада.

Радиоактивный распад (от лат. radius «луч» и āctīvus «действенный») - спонтанное изменение состава нестабильных атомных ядер (заряда Z, массового числа A) путём испускания элементарных частиц или ядерных фрагментов. Процесс радиоактивного распада также называют радиоактивностью, а соответствующие элементы радиоактивными. Радиоактивными называют также вещества, содержащие радиоактивные ядра.

Установлено, что радиоактивны все химические элементы с порядковым номером, большим 82 (то есть начиная с висмута), и многие более лёгкие элементы (прометий и технеций не имеют стабильных изотопов, а у некоторых элементов, таких как индий, калий или кальций, часть природных изотопов стабильны, другие же радиоактивны).

Виды радиоактивного распада

Расщепление вещества, 238 U

Ядерную реакцию расщепления ядра Урана 238 U можно тоже отнести к реакциям ядерного синтеза, с тем отличием, что происходит синтез более легких ядер при том или ином расщеплении тяжелого ядра 238 U. При этом выделяется энергия которую и используют в ядерной энергетике. Но не буду здесь рассказывать о цепной реакции, ядерном реакторе...

Сказанного уже хватит чтобы отнести реакцию расщепления ядра к категории реакций ядерного синтеза.

Трансмутации вещества

Слово трансмутации, так не любимое официальной наукой, возможно за то что им, в былые времена, (когда ученых званий еще и не было) активно пользовались алхимики, все таки наиболее полно отражает процесс преобразования вещества.

Трансмутация (от лат. trans - сквозь, через, за; лат. mutatio - изменение, перемена)

Превращение одного объекта в другой. Термин имеет несколько значений, но мы опустим значения не относящиеся к нашей теме:

  • Трансмутация в физике - превращение атомов одних химических элементов в другие в результате радиоактивного распада их ядер либо ядерных реакций; в настоящее время в физике термин употребляется редко.

А возможно слово «превращение» им кажется сродни слову «волшебство», но ведь имеет место быть всем понятное естественное «превращение» изотопов одних химических элементов в другие химические элементы.

Среди тяжелых естественных радиоактивных элементов известно 3 семейства 238 92 U, 235 92 U, 232 90 U после ряда последовательных α и β распадов превращаются в стабильные 206 82 Pb, 207 82 Pb, 208 82 Pb.

И ряд других [Л. 5]:


И слово превращение здесь весьма кстати.

Конечно, кому это ближе, могут с полным правом применить термин синтез.

Здесь нельзя не упомянуть работы по очистке промышленных стоков, проводившиеся Вачаевым А.В.[Л.7], которые привели к обнаружению совершенно новых эффектов ядерного синтеза, эксперимент Уруцкоева Л.И.[Л.6], подтвердивший возможность ядерного преобразования (трансмутации) и исследования проведенные Паньковым В.А., Кузьминым Б.П.[Л.10], полностью подтвердившие результаты Вачаева А.Л по преобразование вещества в электрическом разряде. Но подробно Вы можете посмотреть их работы по ссылкам.

Экспериментаторами обсуждается возможность преобразования вещества в растениях.

Термином "Трансмутация" можно обозначить и синтез сверхтяжелых элементов.

Синтез сверхтяжелых элементов тоже ядерный синтез

Первые Трансурановые элементы (ТЭ) были синтезированы в начале 40-х гг. 20 в. в Беркли (США) группой учёных под руководством Э. Макмиллана и Г. Сиборга, удостоенных Нобелевской премии за открытие и изучение этих элементов. Известно несколько способов синтеза ТЭ. Они сводятся к облучению мишени потоками нейтронов или заряженных частиц. Если в качестве мишени используется U, то с помощью мощных нейтронных потоков, образующихся в ядерных реакторах или при взрыве ядерных устройств, можно получить все ТЭ до Fm (Z = 100) включительно. Процесс синтеза состоит либо в последовательном захвате нейтронов, причём каждый акт захвата сопровождается увеличением массового числа А, приводящим к β - распаду и увеличению заряда ядра Z, либо в мгновенном захвате большого числа нейтронов (взрыв) с длинной цепочкой β - распадов. Возможности этого метода ограничены, он не позволяет получать ядра с Z > 100. Причины - недостаточная плотность нейтронных потоков, малая вероятность захвата большого числа нейтронов и (что наиболее важно) очень быстрый радиоактивный распад ядер с Z > 100.

Для синтеза далёких ТЭ используется два типа ядерных реакций - слияния и деления. В первом случае ядра мишени и ускоренного иона полностью сливаются, а избыточная энергия образовавшегося возбуждённого составного ядра снимается путём «испарения» (выделения) нейтронов. При использовании ионов С, О, Ne и мишеней из Pu, Cm, Cf образуется сильно возбуждённое составное ядро (энергия возбуждения ~ 40-60 Мэв). Каждый испаряемый нейтрон способен унести из ядра энергию в среднем порядка 10-12 Мэв, поэтому для «остывания» составного ядра должно вылететь до 5 нейтронов. С испарением нейтронов конкурирует процесс деления возбуждённого ядра. Для элементов с Z = 104-105 вероятность испарения одного нейтрона в 500-100 раз меньше вероятности деления. Это объясняет малый выход новых элементов: доля ядер, которые «выживают» в результате снятия возбуждения, составляет всего 10-8-10-10 от полного числа ядер мишени, слившихся с частицами. В этом кроется причина того, что за последние 20 лет синтезировано всего 5 новых элементов (Z = 102-106).

В ОИЯИ разработан новый метод синтеза ТЭ, основанный на реакциях слияния ядер, причём в качестве мишеней используются плотно упакованные устойчивые ядра изотопов Pb, а в качестве бомбардирующих частиц сравнительно тяжёлые ионы Ar, Ti, Cr. Избыточная энергия ионов расходуется на «распаковку» составного ядра, и энергия возбуждения оказывается низкой (всего 10-15 Мэв). Для снятия возбуждения такой ядерной системы достаточно испарения 1-2 нейтронов. В итоге получается весьма заметный выигрыш в выходе новых ТЭ. Этим методом был осуществлен синтез ТЭ с Z = 100, Z = 104 и Z = 106.

В 1965 Флёров предложил использовать для синтеза ТЭ вынужденное деление ядер под действием тяжёлых ионов. Осколки деления ядер под действием тяжёлых ионов имеют симметричное распределение по массе и заряду с большой дисперсией (следовательно, в продуктах деления можно обнаружить элементы с Z значительно, большим, чем половина суммы Z мишени и Z бомбардирующего иона). Экспериментально было установлено, что распределение осколков деления становится шире по мере использования всё более тяжёлых частиц. Применение ускоренных ионов Xe или U позволило бы получить новые ТЭ в качестве тяжёлых осколков деления при облучении урановых мишеней. В 1971 в ОИЯИ были ускорены ионы Xe с помощью 2 циклотронов, которыми облучалась урановая мишень. Результаты показали, что новый метод пригоден для синтеза тяжёлых ТЭ.

Для синтеза ТЭ делают попытки использовать реакция (слияние) ядер титана-50 и калифорния-249. По расчетам, там вероятность образования ядер 120-го элемента несколько выше.

Устойчивые состояния ядер

Само наличие короткоживущих и долгоживущих изотопов, стабильных ядер и современное знания об их строении говорят об определенных зависимостях и сочетаниях количества нуклонов в ядре, которые придают им способность существовать в указанные выше сроки.

Это же подтверждает и отсутствие других химических элементов.

Логика подсказывают существования законов определяющих определенный нуклонный состав ядра (подобно его электронным оболочкам).

Или другими словами формирование ядра происходит по определенным квантованным зависимостям, которые подобны электронным оболочкам. Других устойчивых (долгоживущих) ядер (атомов) химических элементов просто не может быть.

В то же время это не отрицает возможность существования других сочетаний нуклонов и их количества в ядре. Но время жизни такого ядра существенно ограничено.

Что касается неустойчивых (короткоживущих) ядер (атомов), то там могут, в определенных условиях, существовать ядра имеющие другие сочетания нуклонов и их количества в ядре, по сравнению со стабильными ядрами и во множестве их сочетаний.

Наблюдения показывают, что при увеличении количества нуклонов (протонов или нейтронов) в ядре существуют определённые числа, при которых энергия связи следующего нуклона в ядре намного меньше, чем последнего. Особой устойчивостью отличаются атомные ядра, содержащие магические числа 2, 8, 20, 28, 50, 82, 114, 126 , 164 для протонов и 2, 8, 20, 28, 50, 82 , 126 , 184, 196, 228, 272, 318 для нейтронов. (Жирным выделены дважды магические числа, то есть магические и для протонов и для нейтронов)

Магические ядра являются наиболее устойчивыми. Это объясняется в рамках оболочечной модели: дело в том, что протонные и нейтронные оболочки в таких ядрах заполнены - как и электронные у атомов благородных газов.

Согласно этой модели, каждый нуклон находится в ядре в определённом индивидуальном квантовом состоянии, характеризуемом энергией, моментом вращения (его абсолютной величиной j, а также проекцией m на одну из координатных осей) и орбитальным моментом вращения l.

Оболочечная модель ядра фактически является полуэмпирической схемой, позволяющей понять некоторые закономерности в структуре ядер, но не способной последовательно количественно описать свойства ядра. В частности, ввиду перечисленных трудностей непросто выяснить теоретически порядок заполнения оболочек, а следовательно, и «магические числа», которые служили бы аналогами периодов таблицы Менделеева для атомов. Порядок заполнения оболочек зависит, во-первых, от характера силового поля, которое определяет индивидуальные состояния квазичастиц, и, во-вторых, от смешивания конфигураций. Последнее обычно принимается во внимание лишь для незаполненных оболочек. Наблюдаемые на опыте магические числа общие для нейтронов и протонов (2, 8, 20, 28, 40, 50, 82, 126) отвечают квантовым состояниям квазичастиц, движущихся в прямоугольной или осцилляторной потенциальной яме со спин-орбитальным взаимодействием (именно благодаря ему и возникают числа 28, 40, 82, 126)

Физика микромира и наносекунд

Законы физики едины везде и не зависят от размеров систем где они действуют. И нельзя говорить об аномальных явлениях. Любая аномальность говорит о нашем непонимании происходящих процессов и сути явлений. Только в каждом случае они могут проявляться по разному поскольку в каждой ситуации накладываются свои граничные условия.

Например:

  • В масштабах космоса имеет место хаотическое движение вещества.
  • В галактических масштабах мы имеем упорядоченное движение вещества.
  • При уменьшении рассматриваемых объемов до размера планет движение вещества тоже упорядоченное, но его характер меняется.
  • При рассмотрении объемов газов и жидкостей содержащих группы атомов или молекул движение вещества приобретает хаотический характер (Броуновское движение).
  • В объемах соизмеримых с размером атома и менее, вещество снова приобретает организованное движение.

Поэтому учитывая граничные условия можно наткнуться на совершенно необычные для нашего восприятия явления и процессы.

Как сказал кто-то из старых философов: «Бесконечно малое может быть бесконечно большим». Перефразируя, можно сказать и про вещество, «В бесконечно малом скрыта бесконечно большие...» Вместо многоточия поставить: давление, температура, напряженность электрического или магнитного полей.

И это подтверждают имеющиеся данные о величине энергии молекулярных связей, кулоновских, внутриядерных сил (энергии связи нуклонов в ядре).

Поэтому в микромире возможны сверхвысокие давления, сверх высокие напряженности электрического и магнитного поля и сверхвысокие температуры. Чем хорошо использование возможностей микро объемов (мира), то что на получение этих сверх значений, чаще всего, не нужны огромные энергетические затраты.

Некоторые примеры имеющие признаки ядерного синтеза:

  1. 1. В 1922 году Вендт и Айрион изучали электровзрыв тонкой вольфрамовой проволочки в вакууме . Главным результатом этого эксперимента является появление макроскопического количества гелия – экспериментаторы получали около одного кубического сантиметра газа (при нормальных условиях) за один выстрел, что давало основания им предположить о протекании реакции деления ядра вольфрама.
  1. В эксперименте Араты 2008 года, как и в эксперименте Флейшнера-Понса в 1989-м, производится насыщение кристаллической решётки палладия дейтерием. В результате происходит аномальное выделение тепла, которое у Араты продолжалось 50 часов после прекращения подачи дейтерия. То, что это ядерная реакция, подтверждает наличие гелия в продуктах реакции, которого там не было до того.
  2. Реактор М.И. Солина (г. Екатеринбург) представляет собой обычную вакуумную плавильную печь, где электронным лучом с ускоряющим напряжением 30 кВ расплавлялся цирконий [Солин 2001]. При определённой массе жидкого металла начинались реакции, которые сопровождались аномальными электромагнитными эффектами, выделением энергии, превышающей подводимую, а после анализа образцов вновь застывшего металла там были найдены "чужеродные" химические элементы и странные структурные образования.
  3. В конце 90-х годов Л.И. Уруцкоевым (компания РЭКОМ, дочернее предприятие Курчатовского института) были получены необычные результаты электровзрыва титановой фольги в воде. Здесь открытие было сделано по классической схеме - получались неправдоподобные результаты обычных экспериментов (энергетический выход электровзрыва был слишком большим), и команда исследователей решила разобраться, в чём тут дело. То, что они нашли, их сильно удивило.
  4. Н.Г. Ивойлов (Казанский университет) совместно с Л.И.Уруцкоевым изучал мессбауэровские спектры железной фольги при воздействии на неё "странного излучения".
  5. В Киеве, в частной физической лаборатории "Протон-21" (http://proton-21.com.ua/) под руководством С.В. Адаменко, были получены экспериментальные свидетельства ядерного перерождения металла под воздействием когерентных пучков электронов. Начиная с 2000 года проведены тысячи экспериментов ("выстрелов") на цилиндрических мишенях небольшого (порядка миллиметра) диаметра, в каждом из которых происходит взрыв. внутренней части мишени, а в продуктах взрыва находится практически вся стабильная часть таблицы Менделеева , причём в макроскопических количествах, а также сверхтяжёлые стабильные элементы, наблюдаемые в истории науки впервые .
  6. Холодный ядерный синтез, Колдамасов А.И., 2005, При выявлении эмиссионных свойств некоторых диэлектрических материалов на гидродинамической установке для кавитационных испытаний (см. а/св 2 334405) обнаружено, что при истечении пульсирующей диэлектрической жидкости с частотой пульсации около 1 КГц, через круглое отверстие, на входе жидкости в отверстие возникает электрический заряд большой плотности с потенциалом относительно земли более 1 миллиона вольт. Если использовать в качестве рабочего тела смесь легкой и тяжелой воды без примесей с удельным сопротивлением не ниже 10 31 Ом*м в поле этого заряда можно наблюдать ядерную реакцию, параметры которой легко регулируются. При весовом соотношении легкой и тяжелой воды 100:1 наблюдалось: нейтронный поток от 40 до 50 нейтронов в секунду через сечение 1 см 2 , мощность 3 МЭВ, рентгеновское излучение от 0,9 до 1 мкР/сек при энергии излучения 0,3-0,4 МЭВ, образовывался гелий, тепловыделения. По совокупности наблюдаемых явлений можно заключить, что идут ядерные реакции. В данном конкретном случае диаметр отверстия в дроссельном устройстве был 1,2 мм, длина канала 25 мм, перепад на дроссельном устройстве 40-50 МПа, а расход жидкости через дроссельное устройство 180-200 г/сек. На единицу затраченной мощности выделялось 20 единиц полезной/в виде излучений и тепловыделений. По моему мнению, реакция ядерного синтеза возникает так: Поток жидкости движется по каналу. При приближении атомов дейтерия к заряду, под его воздействием они теряют электроны со своих орбит». Ядра дейтерия, заряженные положительно, под воздействием поля этого заряда отталкиваются в центр отверстия и удерживаются полем кольцевого положительного заряда. Концентрация ядер становится достаточной для того, чтобы происходили их столкновения, а импульс энергии, полученный от положительного заряда, настолько большой, что преодолевается Кулоновский барьер. Ядра сближаются, вступают во взаимодействия, идут ядерные реакции.
  7. В лаборатории «Энергетика и технология структурных переходов» к.т.н. А. В. Вачаев под руководством д.т.н. Н. И. Иванова с 1994 года исследовал возможность обеззараживания стоков производств путем воздействия на них интенсивного плазменного образования. Он работал с веществом в разных агрегатных состояниях. Выявлено полное обеззараживание стоков и обнаружены побочные эффекты. Наиболее удачная силовая установка давала стабильный плазменный факел – плазмоид, при пропускании через который дистиллированной воды в большом количестве образовывалась суспензия металлических порошков, происхождение которых иначе, как процессом холодной ядерной трансмутации объяснить было невозможно. В течение ряда лет новое явление стабильно воспроизводилось при различных модификациях установки, в разных растворах, процесс демонстрировался авторитетным комиссиям из Челябинска и Москвы, раздавались образцы получаемых осадков.
  8. Молодой физик И.С. Филимоненко создал гидролизную энергетическую установку, предназначенную для получения энергии от реакций «теплого» ядерного синтеза, идущих при температуре всего 1150 °C . Топливом для реактора служила тяжелая вода. Реактор представлял собой металлическую трубу диаметром 41 мм и длиной 700 мм, изготовленную из сплава, содержавшего несколько граммов палладия.

    Эта установка появилась на свет в результате исследований, проводившихся в 50-х годах в СССР в рамках государственной программы научно-технического прогресса. В 1989 г. было принято решение воссоздать в подмосковном НПО «Луч» 3 термоэмиссионные гидролизные энергетические установки мощностью по 12.5 кВт каждая. Это решение было мгновенно претворено в жизнь под руководством И.С. Филимоненко. Все три установки были подготовлены к сдаче в опытную эксплуатацию в 1990 г. При этом на каждый киловатт, вырабатываемый энергетическими установками теплого синтеза, приходилось всего 0.7 грамма палладия, на котором, как выяснилось позже, свет клином не сошелся.

  9. Эффект аномального увеличения выхода нейтронов неоднократно наблюдался в опытах по колке дейтериевого льда. В 1986 году академик Б.В. Дерягин с сотрудниками опубликовал статью, в которой были приведены результаты серии экспериментов по разрушению мишеней из тяжелого льда с помощью металлического бойка. В этой работе сообщалось, что при выстреле в мишень из тяжелого льда D 2 O при начальной скорости бойка 100, 200 - м/с регистрировалось 0.4, 0.08 - отсчета нейтронов соответственно. При выстреле в мишень из обычного льда H 2 O регистрировалось всего 0.15 0.06 - отсчета нейтронов. Указанные значения были приведены с учетом поправок, связанных с наличием фонового потока нейтронов.
  10. Ажиотажный взрыв интереса к обсуждаемой проблеме возник только после того, как М. Флейшман и С. Понс на пресс-конференции 23 марта 1989 года сообщили об обнаружении ими нового явления в науке, известного сейчас как холодный ядерный синтез (или синтез при комнатной температуре). Они электролитическим путем насыщали палладий дейтерием (попросту, воспроизвели результаты серии работ И.С. Филимоненко, доступ к которым имел С. Понс) - проводили электролиз в тяжелой воде с палладиевым катодом. При этом наблюдалось выделение избыточного тепла, рождение нейтронов, а также образование трития. В том же году было сообщение об аналогичных результатах, полученных в работе С. Джонса, Е. Палмера, Дж. Цирра и др.
  11. Эксперименты И.Б. Савватимовой
  12. Эксперименты Йосиаки Араты. На глазах у изумленной публики было продемонстрировано выделение энергии и образование гелия, не предусмотренные известными законами физики. В эксперименте Араты - Чжан в специальную ячейку был помещен размолотый до размеров 50 ангстрем порошок, состоящий из палладиевых нанокластеров, диспергированных внутри ZrO 2 – матрицы. Исходный материал был получен посредством отжига аморфного сплава палладия с цирконием Zr 65 Pd 35 . После этого в ячейку под высоким давлением был закачан газообразный дейтерий.

Заключение

В заключение можно сказать:

Чем больше объем области где протекает ядерный синтез (при равной плотности исходного вещества), тем больше энергозатраты на его инициацию и соответственно больше энергетический выход. Не говоря уже о финансовых затратах, которые тоже пропорциональны размерам рабочей области.

Это характерно для «Горячего» термояда. Разработчики планируют получать с его помощью сотни мегаватт мощности.

В то же время существует малозатратный (во всех перечисленных выше направлениях) путь. Его имя L ERN.

Он использует возможности достижения необходимых для ядерного синтеза условий в микрообъемах и получение небольших, но достаточных для удовлетворения многих нужд мощностей (до мегаватта). В некоторых случаях возможно прямое преобразование энергии в электрическую. Правда, последнее время, такие мощности часто просто не интересуют энергетиков, градирни которых отправляют в атмосферу много большие мощности.

Пока нерешенной проблемой «горячего» и некоторых вариантов «холодного» ядерного синтеза остается проблема удаления продуктов распада из рабочей области. Что необходимо, поскольку они снижают концентрацию участвующих в ядерном синтезе исходных веществ. Что приводит к нарушению критерия Лоусона в «горячем» ядерном синтезе и «погасанию» реакции синтеза. В «холодном» ядерном синтезе, в случае циркуляции исходного вещества этого не происходит.

Литература:
№ пп Данные статьи Ссылка
1 Токамак, http://ru.wikipedia.org/wiki/Токамак
2 I-07.pdf *
6 ЭКСПЕРИМЕНТАЛЬНОЕ ОБНАРУЖЕНИЕ "СТРАННОГО" ИЗЛУЧЕНИЯ И ТРАНСФОРМАЦИЯ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ, Л.И. Уруцкоев*, В.И. Ликсонов*, В.Г. Циноев** "РЭКОМ" РНЦ "Курчатовский институт", 28 марта 2000 г http://jre.cplire.ru/jre/mar00/4/text.html
7 Трансмутация вещества по Вачаеву - Гриневу http://rulev-igor.narod.ru/theme_171.html
8 О ПРОЯВЛЕНИЯХ РЕАКЦИИ ХОЛОДНОГО ЯДЕРНОГО СИНТЕЗА В РАЗЛИЧНЫХ СРЕДАХ. Михаил Карпов http://www.sciteclibrary.ru/rus/catalog/pages/8767.html
9 Ядерная физика в Интернете, Магические числа, глава из «Экзотические ядра» Б.С. Ишханов, Э.И. Кэбин http://nuclphys.sinp.msu.ru/exotic/e08.html
10 Демонстрационная методика синтеза элементов из воды в плазме электрического разряда, Паньков В.А., к.т.н.; Кузьмин Б.П., к.т.н. Институт металлургии Уральского отделения РАН http://model.susu.ru/transmutation/20090203.htm
11 Метод А.В. Вачаева – Н.И. Иванова http://model.susu.ru/transmutation/0004.htm
12

Управляемый термоядерный синтез - интереснейший физический процесс, который (пока в теории) может избавить мир от энергетической зависимости от ископаемых источников топлива. В основе процесса лежит синтез атомных ядер из более легких в более тяжелые с выделением энергии. В отличие от другого использования атома - выделение из него энергии в ядерных реакторах в процессе распада - термоядерный синтез на бумаге практически не будет оставлять радиоактивных побочных продуктов. Особые надежды возлагают на реактор ИТЭР, на создание которого затратили безумное количество средств. Скептики, однако, делают ставку на разработки частных корпораций.

В 2018 году ученые сообщили суровую новость: несмотря на беспокойство на тему глобального потепления, за счет угля было выработано 38% мировой электроэнергии в 2017 году - то есть, ровно столько же, сколько и при появлении первых тревожных предупреждений о климате 20 лет назад. Хуже того, выбросы парникового газа выросли на 2,7% в прошлом году - это крупнейшее увеличение за семь лет. Такой застой привел к тому, что даже политики и экологи начали задумываться о том, что нам нужно больше ядерной энергии.

Термоядерный синтез (термояд, управляемый термоядерный синтез, УТС ) - старый, но всё ещё действующий метод распила бюджетного бабла в глобальных масштабах, способный дать в качестве побочного результата источник сотен энергии, звездолёты и прочие кошерные вещи.

Работающий прототип чудо-машины наглядно представлен в виде вращающегося над поверхностью земного диска Солнца. Правда запилить именно такую же мы не можем: чтобы водород смог в термоядерную реакцию сам, без обвеса, его нужно много. Нет, МНОГО. 80 масс Юпитера или больше. Но мы работаем над этим .

Термоядерная плазма.

Суть™

Коротко о главном. Давным-давно Эйнштейн распространил ныне известное даже детям E=mc² на все объекты (в том числе движущиеся с околосветовой скоростью, безо всяких эфиров и электродинамик). В то же время учёные поняли, что два ядра атома дейтерия ²H (это тяжелый изотоп водорода) неспроста весят чуть более, чем одно ядро гелия-4 4 He. Более того, при синтезе этого самого гелия из водорода энергия связи Δm×c², где Δm - дефект массы, с радостью улетает в виде кинетической энергии продуктов синтеза.

В принципе, вариантов синтеза на самом деле чуть более, чем дохрена. Можно использовать и дейтерий, и литий, и тритий - да хоть что! Вот только:

  1. для синтеза более тяжёлых элементов нужна бо льшая температура;
  2. при синтезе элементов тяжелее железа энергии выделяется меньше , чем при синтезе железа.

Термоядерные исследования - это в значительной степени экспериментальная наука. Тут вам не Перельман , с тремя копейками денег ничего толкового не сделаешь. Необходимо сложное дорогостоящее оборудование и куча негров нердов, которые будут это оборудование обслуживать. На всё это нужно выделять большие деньги. И, как ни странно, они таки выделяются. А когда любое правительство выделяет на что-то деньги, они неизбежно идут не только на те аспекты, которые реально важны, но и на те, что лучше прорекламированы . Даже те научные организации, которые действительно хотят сделать что-то полезное, нередко вынуждены заниматься чем-то скорее «модным», чем реально важным, так как иначе денег не получат.

Справедливости ради стоит отметить, что расходы на термояд выглядят огромными только до тех пор, пока не сравнишь их со всякими нанотехнологиями и другими радостями распильщиков .

Зачем это вообще нужно?

Как известно, нефти, угля и газа хватит не так уж и надолго. Да ещё и экологи недовольны. Урана и тория вроде хватает, но народ чего-то боится. Да и неясно, куда столько радиоактивных отходов девать .

Термояд же позволяет в перспективе получать энергию буквально из воды, причём отходами его работы будут являться только обычные безвредные водород и гелий. Внутри реактора будет радиоактивный тритий, но его будет сотни грамм, в противовес сотне тонн полуотработанного топлива в обычных ядерных реакторах, так что ничего подобного Чернобылю не может произойти даже если термоядерный реактор взорвётся. Но его взрыв возможен разве что в случае теракта , так как реакция там в принципе самопроизвольно развиваться не умеет.

Алсо, в теории, ракетные двигатели, основанные на сабже, способны выдавать импульс больший нежели плазменные, электрические и всякие там ядерные. Что позволяет получить трактор пригодный для использования в планетарных и даже в межзвёздных масштабах со скоростью в 10% от световой. Во втором случае, правда, полёты будут беспилотными . Но лет эдак за 50 до ближайшей звезды дошкандыбать можно.

Почему не получается?

Чтобы произошла реакция синтеза, два ядра должны сблизиться на очень близкое расстояние. Но ядра имеют положительный заряд, а потому отталкиваются друг от друга. Чтобы их сблизить друг с другом, их нужно разогнать до огромных скоростей. Одним из основных вариантов такого разгона является нагрев до высокой температуры. Расчет показывает, что нужна температура порядка 10^9 Кельвин. Но за счет так называемого «максвелловского хвоста» синтез зажигается уже при 10^7. Популярно это можно объяснить следующим образом, при заданной температуре частицы газа движутся с различными скоростями, определяемыми (в дорелятивистской области) распределением Максвелла. Поэтому уже при температуре 10^7К найдутся такие частицы, скоростей которых достаточно для преодоления кулоновского отталкивания и слияния двух ядер в одно. Но при таких температурах вещество становится плазмой и очень интенсивно излучает энергию, то есть быстро остывает.

Фузор Фарнсворта

Если тебе, анон, так уж приспичило осуществить термоядерный синтез и при этом не нужна энергия, то строить мега-реактор совсем не обязательно. Достаточно сабжа - небольшого устройства, позволяющего невозбранно запилить термоядерную реакцию у себя на столе. Единственный минус - энергию фузор Фарнсворта не вырабатывает а, напротив, жрет и нехило. В 2000-х в США пытались запилить улучшенную версию фузора, под названием «Поливелл», в надежде, что он хоть что-нибудь, да выработает. Не получилось, не фартануло - он всего лишь стал чуть меньше потреблять.

Холодный синтез и прочее

Эпическое сборище шарлатанов. Причём если одни из них только предлагают свои перспективные «пути решения», то другие и вовсе предлагают готовые решения , реализованные «в железе».

Среди всего этого многочисленного бреда изредка, но таки встречаются нормальные разработки. В частности мюонный катализ , использование встречных пучков быстрых ионов дейтерия и трития и т. д. Но все они пока крайне далеки от получения полезной энергии и на практике могут использоваться (и используются) только в качестве источников быстрых нейтронов.

Гибридный термоядерный реактор

Известно, что в термоядерных бомбах часто используют оболочку из обеднённого урана для существенного повышения мощности взрыва: нейтроны D-T реакции обладают столь высокой энергией, что вызывают деление даже «неделящихся» тяжёлых изотопов. Разумеется, быстро возникла идея применить этот же принцип и в мирных реакторах.

Чем это хорошо

  • К созданию гибридной электростанции можно приступать хоть завтра, так как применение обеднённого урана в 5-10 раз повысит энерговыделение;
  • Тысячи тонн обеднённого урана наконец-то найдут себе полезное применение (пока что их тупо пуляют из танковых пушек в виде обычных болванок, в танковую же броню);
  • В интенсивных потоках быстрых нейтронов многие долгоживущие изотопы превращаются в короткоживущие, что позволяет перерабатывать отходы обычных атомных реакторов;
  • В таких реакторах можно производить много чистого и дешёвого урана-238 и плутония-239 для атомных бомб (стоит отметить, что то же самое происходит и в ядерных реакторах на быстрых нейтронах. А ещё тот самый 239 Pu скорей всего будут использовать как топливо в реакторах, поскольку реакторы БН умеют делать его из бесполезного урана-238 в огромных количествах (а точнее, с коэффициентом выхода 1,4-1,5)).
Чем это плохо
  • В таком реакторе сотни тонн радиоактивных веществ, а значит можно ожидать море лулзов . Хотя здесь, в отличие от реакторов деления, их можно получить только при мощном внешнем воздействии, неконтролируемое развитие реакции тут невозможно;
  • В таком реакторе не только перерабатываются, но и производятся радиоактивные отходы, которые куда-то нужно девать (впрочем, в основном короткоживущие, в отличие от реакторов деления).

ИТЭР

Заря над великой стройкой термоядеризма.

Самый крупный на данный момент агрегат. Тип - токамак. Строится на юге Франции. Название первоначально значило «International Thermonuclear Experimental Reactor» («Международный Термоядерный Экспериментальный Реактор»), но сейчас предпочитают не расшифровывать вообще - дескать, на слово «термояд» у некоторых ассоциации плохие. Справку о безопасности, правда, уже получили, даже вроде не одну. В начале 2014-го один фонат начал собирать голоса на производство LEGO модели . На относительно небольшой кусок требуется под пятьсот кирпичиков.

Плюсы

  • Должен ненадолго выдавать десятикратную прибыль в энергии. Примерно столько и нужно реальной электростанции - только, конечно, постоянно.
  • Имеет свой сайт . Обновляется регулярно, так что каждый может так же регулярно порадоваться успехам человечества.
  • На сайте имеется ссылка на стоящую рядом со стройкой вебкамеру , так что каждый может убедится (за исключением тех случаев когда ее переносят на взгляд с другой стороны) что там именно работают, а не распиливают. А может и начали пилить - уже довольно долго почему-то ограничиваются относительно регулярными фотками.
Минусы

Лулз

Физики-теоретики до сих пор срут кирпичами , а Мёрфи собирает шаблон от H -моды установок с магнитным удержанием. Так, при достижении определённой мощности дополнительного нагрева плазмы в токамаках (а впоследствии этого добились и в стеллараторах) резко замедляется перенос, а значит и потери энергии в плазме. Сами представьте: вы долго всё разрабатывали, рассчитывали, построили токамак, а он внезапно работает вдвое лучше, чем предполагалось!

Теоретики напридумывали кучу гипотез, как объяснить появление H-моды и полное несоответствие экспериментальных формул классическим теоретическим даже по знаку производной, но единой чёткой модели так и нету. Экспериментаторы же просто разобрались как оно работает и стали напоминать шаманов не меньше, чем админы: точно так же не могут объяснить, как оно работает, но оно таки работает.

Любители поискать глубинный смысл и религиозные люди могут считать, что это знак от Б-га , что мы двигаемся в нужном направлении или современная манна небесная от него же.

Также это позволяет оптимистам рассчитывать на открытие в будущем какой-нибудь UH-моды и появление термоядерных электростанций куда быстрее современных прогнозов. Ну или пессимистам - ожидать появления какой-нибудь обратной моды, которая сделает ситуацию ещё хуже, чем было до открытия H-моды. И теоретикам корм, конечно же - релятивистский случай тесно схлестнулся с квантовым, а что ещё для теории струн нужно? Чёрные дыры у них есть, бозон Хиггса теперь тоже есть, а тут ещё и H-mode.

Галерея


Ссылки

Примечания