Самое высокое значение электроотрицательности имеет. Электроотрицательность

В сложных соединениях, состоящих из атомов разных элементов, электронная плотность всегда будет смещена к одному, самому «сильному» соседу. Например, в молекуле воды (Н 2 О) победителем будет кислород, а в соляной кислоте (HCl) поединок выиграет атом хлора. Как же научиться определять эту силу? Для этого достаточно разобрать, что такое электроотрицательность. Приступим.

Атомы и элементы

Первое, что требуется освоить, это разница между атомом и элементом. Допустим, в молекуле HNO 3 целых пять атомов и только три элемента, коими являются водород (Н), азот (N) и кислород (О). Если название какого-то значка или символа стерлось из памяти, то на помощь придет периодическая система Менделеева.

В ней как раз и перечислены все существующие на сегодняшний день элементы. Итак, первая трудность преодолена. Подойдем поближе к вопросу, что такое электроотрицательность.

Шкала Полинга

В школах и вузах для выявления того самого наиболее сильного атома, который оттянет на себя электронную плотность более слабых «соседей», будет достаточно шкалы Полинга. Пугаться не стоит. Здесь всё предельно просто. Относительная электроотрицательность химических элементов расставлена в порядке возрастания и варьируется в интервале 0,7-4,0. Логика тут ясна: у кого данная величина больше, тот и сильнее.

Значение «0,7» принадлежит самому активному металлу - францию. Здесь он проигрывает абсолютно всем, то есть он наименее электроотрицателен (наиболее электроположителен). Максимальным значением, равным четырем, может похвастаться фтор. А потому ему нет равных по силе.

Даже особо не разбираясь, что такое электроотрицательность, в любом сложном фторсодержащем соединении можно сразу определить победителя. Кто оттянет на себя электронную плотность во фториде лития (LiF)? Конечно, фтор. Какой элемент более электроотрицателен в молекуле тетрафторида кремния (SiF 4)? Конечно же, снова фтор.

Закрепляем пройденное

Итак, разобрав, что такое электроотрицательность, подкрепим теорию примерами. Научимся выявлять самый сильный элемент из присутствующих в соединении. Возьмем молекулу серной кислоты (H 2 SO 4). Воспользовавшись шкалой Полинга, определим относительные электроотрицательности всех трех требуемых элементов. У водорода она составит 2,1. Значение для серы несколько выше - 2,6. Но явным лидером будет кислород, имеющий максимальный показатель, равный 3,5. Значит, наиболее электроотрицательным элементом в молекуле H 2 SO 4 будет именно кислород. Таким образом, возможно определить значение электроотрицательности любого элемента.

Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи,полярность молекул и ионов.

Электроотрицательность (э.о.)- это способность атома смещать к себе электронные пары.
Мерой э.о. является энергия равняя арифметически ½ сумме энергии ионизации I и энергии сходства к электронц Е
Э.О. = ½ (I+E)

Относительная электроотрицательность. (ОЭО)

Фтору как самому сильному э.о элементу присваивается значение 4.00 относительно которого рассматриваются остальные элементы.

Изменения в периодах и группах Периодической системы.

Внутри периодов с увеличением заряда ядра слева направо увеличивается электроотрицательность.

Наименьшее значение наблюдается у щелочных и щелочноземельных металлов.

Наибольшее - у галогенов.

Чем выше электроотрицательность, тем сильнее у элементов выражены неметаллические свойства.

Электроотрицательность (χ) - фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле смещать к себе общие электронные пары.

Современное понятие об электроотрицательности атомов было введено американским химиком Л. Полингом. Л. Полинг использовал понятие электроотрицательности для объяснения того факта, что энергия гетероатомной связи A-B (A, B - символы любых химических элементов) в общем случае больше среднего геометрического значения гомоатомных связей A-A и B-B.

Самое выское значение э.о. у фтора,а самое низкое –цезий.

Теоретическое определение электроотрицательности было предложено американским физиком Р. Малликеном. Исходя из очевидного положения о том, что способность атома в молекуле притягивать к себе электронный заряд зависит от энергии ионизации атома и его сродства к электрону, Р. Малликен ввёл представление об электроотрицательности атома А как о средней величине энергии связи наружных электронов при ионизации валентных состояний (например, от А− до А+) и на этой основе предложил очень простое соотношение для электроотрицательности атома:

где J1A и εA - соответственно энергия ионизации атома и его сродство к электрону.
Строго говоря, элементу нельзя приписать постоянную электроотрицательность. Электроотрицательность атома зависит от многих факторов, в частности, от валентного состояния атома, формальной степени окисления, координационного числа, природы лигандов, составляющих окружение атома в молекулярной системе, и от некоторых других. В последнее время все чаще для характеристики электроотрицательности используют так называемую орбитальную электроотрицательность, зависящую от типа атомной орбитали, участвующей в образовании связи, и от её электронной заселённости, т. е. от того, занята атомная орбиталь неподелённой электронной парой, однократно заселена неспаренным электроном или является вакантной. Но, несмотря на известные трудности в интерпретации и определении электроотрицательности, она всегда остаётся необходимой для качественного описания и предсказания природы связей в молекулярной системе, включая энергию связи, распределение электронного заряда и степень ионности, силовую постоянную и т. д.Одним из наиболее развитых в настоящее время подходов является подход Сандерсона. В основу этого подхода легла идея выравнивания электроотрицательностей атомов при образовании химической связи между ними. В многочисленных исследованиях были найдены зависимости между электроотрицательностями Сандерсона и важнейшими физико-химическими свойствами неорганических соединений подавляющего большинства элементов периодической таблицы. Очень плодотворной оказалась и модификация метода Сандерсона, основанная на перераспределении электроотрицательности между атомами молекулы для органических соединений.

2)Полярность химической связи, полярность молекул и ионов.

То,что есть в конспекте и в учебнике-Полярность связана с дипольным моментом.Проявляется в результате смещения общей электронной пары к одному из атомов.Полярность так же зависит от разности электроотрицательности связываемых атомов.Чем выше значение э.о. двух атомов,тем более полярной является хим.связь между ними.В зависимости от того,как происходит перераспределение электронной плотности при образовании химической связи,различают несколько ее типов.Предельный случай поляризации хим.связи – полный переход от одного атома к другому.

При этом образуется два иона, между которыми возникает ионная связь.Для того чтобы два атома смогли создать ионную связь,необходимо, чтобы их э.о. очень сильно различались.Если э.о. равны,то образуется неполярная ковалентная связь.Чаще всего встречается полярная ковалентная связь- она образуется между любыми атомами,имеющими разное значение э.о.

Количественной оценкой полярности связи могут служить эффективные заряды атомов.эффективный заряд атома характерезует разность между числом электоронов,принадлежащих данному атому в химическом соединении, и числом электронов свободного атома.атом более электроотрицательного элемента притягивает электроны сильнее,поэтому электроны оказываются ближе к нему,и он получает некоторый отрицательный заряд,который называют эффективным,а у его партнера появляется такой же положительный эффективный заряд.Если электроны,образующие связь между атомами, принадлежат им в равной степени,эффективные заряяды равны нулю.

Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента M=q*r где q-заряд полюса диполя,равный для двухатомной молекулы эффективному заряду, r-межъядерное расстояние.Диполный момент связи является векторной величиной. Он направлен от положительно зарядной части молекулы к ее отрицательной части.Эффектичный заряд на атоме элемента не совпадает со степенью окисления.

Полярность молекул в значительной мере определяет свойства веществ. Полярные молекулы поворачиваются друг к другу разноимённо заряженными полюсами, и между ними возникает взаимное притяжение. Поэтому вещества, образованные полярными молекулами, имеют более высокие температуры плавления и кипения, чем вещества, молекулы которых неполярны.

Жидкости, молекулы которых полярны, имеют более высокую растворяющую способность. При этом чем больше полярность молекул растворителя, тем выше растворимость в ней полярных или ионных соединений. Эта зависимость объясняется тем, что полярные молекулы растворителя за счет диполь-дипольного или ион-дипольного взаимодействия с растворяемым веществом способствуют распаду растворяемого вещества на ионы. Например, раствор хлороводорода в воде, молекулы которой полярны, хорошо проводит электрический ток. Раствор хлороводорода в бензоле не обладает заметной электропроводностью. Это указывает на отсутствие ионизации хлороводорода в бензольном растворе, так как молекулы бензола неполярны.

Ионы, подобно электрическому полю, оказывают поляризующее действие друг на друга. При встрече двух ионов происходит их взаимная поляризация, т.е. смещение электронов внешних слоев относительно ядер. Взаимная поляризация ионов зависит от зарядов ядра и иона, радиуса иона и других факторов.

Внутри групп э.о. уменьшается.

Металлические свойства элементов возрастают.

Металлические элементы на внешнем энергетическом уровне содержат 1,2,3 электрона и характеризуются низким значением ионизационных потенциалов и э.о. потому что металлы проявляют выраженную тенденцию к отдаче электронов.
Неметаллические элементы отличаются более высоким значением энергии ионизации.
По мере заполнения наружной оболочки у неметаллов внутри периодов уменьшается радиус атомов. На внешней оболочке число электронов равно 4,5,6,7,8.

Полярность химической связи. Полярность молекул и ионов.

Полярность химической с вязи – определяется смещением связей электронной пары к одному из атомов.

Химическая связь возникает за счет перераспределения электронов валентных орбиталей, в результате чего возникает устойчивая электронная конфигурация благородного газа, за счет образования ионов или образования общих электронных пар.
Химическая связь характеризуется энергией и длиной.
Мерой прочности связи служит энергия, затрачиваемая на разрушение связи.
Например. Н – Н = 435 кДжмоль-1

Электроотрицательность атомово элементов
Электроотрицательность - химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе электроны от атомов других элементов.
Относительная электроотрицательность

Первой и наиболее известной шкалой относительной электроотрицательности является шкала Л.Полинга, полученная из термохимических данных и предложенная в 1932 г. За начало отсчета в этой шкале произвольно принята величина электроотрицательности наиболее электроотрицательного элемента фтора, (F) = 4,0.

Элементы VIII группы периодической системы (благородные газы) имеют нулевую электроотрицательность;
Условной границей между металлами и неметаллами считается значение относительной электроотрицательности равное 2.

Электроотрицательность элементов периодической системы, как правило, последовательно возрастает слева направо в каждом периоде. В пределах каждой группы, за несколькими исключениями, электроотрицательность последовательно убывает сверху вниз. С помощью электроотрицательностей можно охарактеризовать химическую связь.
Связи с меньшей разностью электроотрицательностей атомов относят к полярным ковалентным связям. Чем меньше разность электроотрицательностей атомов, образующих химическую связь, тем меньше степень ионности этой связи. Нулевая разность электроотрицательностей атомов указывает на отсутствие ионного характера у образованной ими связи, т. е. на ее сугубую ковалентность.

Полярность химической связи, полярность молекул и ионов
Полярность химических связей, характеристика химической связи, показывающая перераспределение электронной плотности в пространстве вблизи ядер по сравнению с исходным распределением этой плотности в нейтральных атомах, образующих данную связь.

Практически все химические связи, за исключениям связей в двухатомных гомоядерных молекулах - в той или иной степени полярны. Обычно ковалентные связи слабо полярны, ионные связи сильно полярны.

Например:
ковалентная неполярная: Cl2, O2, N2, H2,Br2

ковалентная полярная: H2O, SO2, HCl, NH3 и т.д.

Когда две различные атомы в молекуле связаны друг с другом посредством ковалентной связи, пара электронов, образующая связь не разделяется одинаково оба атомами. Другими словами, общая пара электронов не лежат в середине молекул, но сдвиг в сторону атома, имеющего большее сродство электронов.

Тенденция атома, чтобы привлечь к себе электроны при объединении в соединении называется электроотрицательность (E.N).

Например – В молекуле водорода хлорид пары электронов притягивается больше к хлору. Это происходит потому, что хлор является более электроотрицательным, чем водород,.

  • Значение E.N зависит от потенциала ионизации и электронного сродства атома.
  • Меньший размер атома притягивает электроны больше, чем крупные.
  • Низкий E.N является характеристикой металлов и высокой E.N является характеристикой неметаллов.

Электроотрицательность Таблица Диаграмма

Значение E.N зависит от следующих факторов.

  • Размер атома ()
  • Электронная конфигурация.
  • Ядерный аттракцион.
  • состояние Окисление.
  • Процентная доля сек -character

Как рассчитать Электроотрицательность – Найти электроотрицательность

Так как E.N элементов является относительным свойством, он не имеет единиц. Электроотрицательность может быть выражено на следующих трех шкал. Были многие ученые, которые объясняют E.N с различным масштабом для сравнения. Из этого Полинг, Весы является наиболее часто используемым.

Mulliken Scale

В этом масштабе Малликена, E.N берется как среднее значение энергии ионизации и электронного сродства.

Отношения между Полинг и Малликеном E.N масштаб, как:

Allred-Рохов Scale

Аллед и Рохи определяются E.N как электростатическая сила оказываемое на ядре валентных электронов. таким образом,

где Z представляет собой эффективный ядерный заряд и г-радиус ковалентного атома в к .

Полинг Scale

Он основан на энергии избыточных связей. Он определил E.N разницы между двумя атомами, а затем путем присвоения произвольных значений нескольких элементов (например. 4.00 фтору, 2.5 к углероду и 2.1 водороду). Он вычислил E.N других элементов.

Электроотрицательность Периодическая таблица

E.N элементов является обратно пропорциональный к радиусу атома. Атомный радиус будет увеличиваться до группы и уменьшается вдоль периода. Это означает, что поведение E.N будет находиться напротив атомный радиус.


электроотрицательность Примеры

Когда связь образуется между атомами двух или более различных элементов. Тип облигации (является ли он ионной или ковалентной или любой тип связи) в основном зависит от концепции E.N .

Электроотрицательность кислорода

  • Полинг шкала помогает измерить E.N Значение кислорода.
  • Кислород имеет значение 3.44
  • Его значение выше, чем Бром, но меньше, чем Фтор.
  • Порядок E.N некоторых элементов F>O >Cl = N>бром>С>я>ЧАС.

Электроотрицательность углерода

  • Существует разница в ноль, когда E.N существует связь между углеродными связями.
  • Его электроотрицательное значение 2.55.
  • Это показываетстоимостьменьше, чем азот(3.0) но больше, чем Бороны (2.0) и кремния (1.8).
  • Это вызывает тенденцию к образованию миллионов соединения с водородом.

Электроотрицательность водорода


Электроотрицательность – это свойство атома, соединенного ковалентной связью с другим атомом. Если в связи А–В электронное облако смещено в сторону А, то А более электроотрицателен, чем В.

Наибольшая электроотрицательность присуща атомам, расположенным в правом верхнем углу, наименьшая – в нижнем левом углу периодической системы. Таким образом, электроотрицательность растет слева направо по периодам и снизу вверх в группах.

В пределах главного периода она пропорциональна эффективному заряду ядра (для 2-го периода: С F). Внутри группы она тем больше, чем меньше степень экранирования ядер электронами:FClBrI.

Рассмотрим энергии связей трех молекул:

Экспериментально установлено, что

E A – B > (E A – A +E B – B)

Электроотрицательность рассматривают в основном по шкале Полинга. Полинг предположил, что

χ A – χ B =f(Δ)

где Δ = E A – B –(E A – A +E B – B)

Эмпирически было найдено, что эта зависимость является квадратичной.

Если произвольно приписать χ F = 4, то остальным атомам можно присвоить такие значения элетроотрицательностей, что будет справедливо соотношение

│χ A – χ B │ =
= 0,208
,

где Δ – в ккал/моль;

23,06 – переводной коэффициент из ккал/моль в эВ/моль, помноженный на 10 4 .

Полученная таким образом эмпирическая шкала Полинга выглядит следующим образом:

Таблица 5

Шкала Полинга:

По Малликену = 1/2E + I, гдеE– сродство к электрону,I– энергия ионизации атома в данном валентном состоянии.

Электроотрицательность по Малликену линейно пропорциональна электроотрицательности по Полингу.

Электроотрицательность атома зависит от эффективного заряда атома в конкретной молекуле и от состояния его гибридизации, т. е. не является фиксированной величиной.

Таблица 6

Электроотрицательность атома углерода в различных гибридных состояниях:

Тип связи

Состояние гибридизации атома углерода

Следовательно, электроотрицательность одного и того же многовалентного атома различна в направлении различных связей и зависит от других заместителей, входящих в состав молекулы. особенно от атомов, непосредственно соединенных с рассматриваемым. Поэтому имеет смысл рассчитать электроотрицательность и для атомных групп:

Таблица 7

Электроотрицательность групп

Сведения об электроотрицательности можно получить из спектров ЯМР. Химический сдвиг протона приблизительно пропорционален электронной плотности вокруг него, и, следовательно, электроотрицательности атома или группы, с которыми он связан. Чем выше электроотрицательность атома или группы, тем ниже электронная плотность вокруг связанного с ними протона и тем в большей степени сдвинут сигнал протона в слабое поле.

Выяснить активность простых веществ можно с помощью таблицы электроотрицательности химических элементов. Обозначается как χ. Подробнее о понятии активности читайте в нашей статье.

Что такое электроотрицательность

Свойство атома химического элемента притягивать к себе электроны других атомов называется электроотрицательностью. Впервые понятие ввёл Лайнус Полинг в первой половине ХХ века.

Все активные простые вещества можно разделить на две группы в соответствии с физическими и химическими свойствами:

  • металлы;
  • неметаллы.

Все металлы являются восстановителями. В реакциях они отдают электроны и обладают положительной степенью окисления. Неметаллы могут проявлять свойства восстановителей и окислителей в зависимости от значения электроотрицательности. Чем выше электроотрицательность, тем сильнее свойства окислителя.

Рис. 1. Действия окислителя и восстановителя в реакциях.

Полинг составил шкалу электроотрицательности. В соответствии со шкалой Полинга наибольшей электроотрицательностью обладает фтор (4), наименьшей - франций (0,7). Это значит, что фтор является самым сильным окислителем и способен притягивать электроны большинства элементов. Напротив, франций, как и другие металлы, является восстановителем. Он стремится отдать, а не принять электроны.

Электроотрицательность является одним из главных факторов, определяющих тип и свойства образованной между атомами химической связи.

Как определить

Свойства элементов притягивать или отдавать электроны можно определить по ряду электроотрицательности химических элементов. В соответствии со шкалой элементы со значением более двух являются окислителями и проявляют свойства типичного неметалла.

Номер элемента

Элемент

Символ

Электроотрицательность

Стронций

Иттербий

Празеодим

Прометей

Америций

Гадолиний

Диспрозий

Плутоний

Калифорний

Эйнштейний

Менделевий

Цирконий

Нептуний

Протактиний

Марганец

Бериллий

Алюминий

Технеций

Молибден

Палладий

Вольфрам

Кислород

Вещества с электроотрицательностью два и меньше являются восстановителями и проявляют металлические свойства. Переходные металлы, обладающие переменной степенью окисления и относящиеся к побочным подгруппам таблицы Менделеева, имеют значения электроотрицательности в пределах 1,5-2. Ярко выраженными свойствами восстановителя обладают элементы с электроотрицательностью равной или меньше одного. Это типичные металлы.

В ряде электроотрицательности металлические и восстановительные свойства увеличиваются справа налево, а окислительные и неметаллические свойства - слева направо.

Рис. 2. Ряд электроотрицательности.

Помимо шкалы Полинга узнать, насколько выражены окислительные или восстановительные свойства элемента можно с помощью периодической таблицы Менделеева. Электроотрицательность увеличивается в периодах слева направо с увеличением порядкового номера. В группах значение электроотрицательности уменьшается сверху вниз.

Рис. 3. Таблица Менделеева.

Что мы узнали?

Электроотрицательность показывает способность элементов отдавать или принимать электроны. Эта характеристика помогает понять, насколько выражены свойства окислителя (неметалла) или восстановителя (металла) у конкретного элемента. Для удобства Полингом была разработана шкала электроотрицательности. Согласно шкале максимальными окислительными свойствами обладает фтор, минимальными - франций. В периодической таблице свойства металлов увеличиваются справа налево и сверху вниз.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 180.