Кристаллы. Загадка мироздания

Как только человек стал интересоваться тем, что вокруг него, он посмотрел на небо. А там оказалось столько загадок и тайн! И конца-краю этим головоломкам не видно. Множество открытий было сделано на ниве астрономии, физики, математики и других наук, и всё это для того, чтобы попытаться объяснить то, что мы наблюдаем у себя над головой. И чем понятнее нам кажется природа неба и космоса, тем меньше мы на самом деле постигаем галактические феномены. Вселенная внушает нам, что мы маленькие и одинокие, но человек с этим не согласен.

ПРИЗРАК ТУМАННОСТИ ОРЛА

Самой загадочной фотографией космического пространства над нашими головами считается снимок туманности Орла.

Фото делали с надеждой запечатлеть рождение (появление) новой звезды из газообразного скопления, огромного облака в космосе. Его продемонстрировали по телевизионному каналу CNN для массовой аудитории. А когда это произошло, то на телестудию стало поступать множество телефонных звонков от зрителей. Некоторые звонившие утверждали, что разглядели в этом облаке человеческое лицо. Тогда снимок воспроизвели в цветном варианте, и оказалось, что на нём чётко просматривается лик человека (кое-кто в нём признал Христа). Никто до сих пор не нашёл этому феномену объяснения.

ПОЯВЛЕНИЕ ГАЛАКТИК

Только недавно учёные смогли объяснить и себе, и нам, откуда в небе появились звёзды и планеты. Но теперь возник более глобальный вопрос: а откуда там взялись галактики? Из каких миров они пришли? Правда, нам достоверно известно, что галактики беспорядочно разбросаны по космосу и, скорее всего, располагаются в звёздных скоплениях. У учёных на этот счёт есть две теории, при помощи которых можно объяснить формирование галактик. Первая основана на скоплениях газа, оставшегося в результате «Большого Взрыва», в котором и сформировались галактики, а в них звёзды и планеты. И вторая теория, согласно которой остатки газа «Большого Взрыва» создавали звёзды и планеты по всей Вселенной, после чего те мигрировали под силой гравитации по различным галактикам. Отметим, что обе эти теории не приняты учёными безоговорочно. К ним есть масса вопросов…

ДРУГАЯ ПЛАНЕТА ЗЕМЛЯ

Наша горячая звезда — Солнце — всего лишь одна из триллиона во Вселенной. Математики утверждают, что во Вселенной планет может быть много больше, чем самих звёзд. Это огромная цифра, которая увеличивает наши шансы на существование в космосе на планетах, аналогичных нашей Земле. Это уже сложившийся факт, что начиная с 2000 года астрономы обнаружили сотни планет вне Солнечной системы и бесчисленное скопление неведомых нам звёзд. Некоторые из планет обнаруживают схожесть с нашей родной планетой Земля. Для примера назовём планету, которая обозначается Gliese 581 d. На этой планете (уже доказано) есть вода. Быть может, там существует жизнь наподобие земной? Специалисты выражают уверенность, что в ближайшее десятилетие этот вопрос получит конкретный ответ (вполне возможно — положительный). Пока он остаётся загадкой.

ИНЫЕ ВСЕЛЕННЫЕ

Существует теория, согласно которой в космосе находится бесконечное количество вселенных, и каждая живёт по собственному своду правил и законов. Многие учёные отзываются о ней скептически, так как нет чётких доказательств, допускающих существование иных вселенных. Оппоненты не устают повторять, что нет ни одной теории, которая бы опровергала их доводы и доказывала невозможность существования иных вселенных. Доказать или опровергнуть аналогичные предположения и теории может только путешествие человека за пределы нашей Вселенной. Когда это может случиться, пока неизвестно.

ТЁМНАЯ МАТЕРИЯ

Формула Альберта Эйнштейна Е = МС2, вероятно, является самым популярным уравнением XX века. Во всяком случае, когда эту формулу применяют к космосу, то здесь перманентно обнаруживаются аномалии. Если применить это уравнение для определения количества материи во Вселенной, то получается, что её-то всего 4%! А где же всё остальное? Многие полагают, что то, чего мы не видим — тёмная материя. Но где же она находится? Ответ прост — она разбросана по Вселенной, но невидима для нас. Хотя учёные ещё не предоставили серьёзных доказательств существования тёмной материи. Специалисты говорят, что эту самую тёмную материю невозможно увидеть, пощупать, почувствовать, осветить и определить радиоволнами. Дело тёмное!

СВЯЗЬ ЗЕМЛЯ-МАРС

Когда разговор касается иных планет, мы, чаще всего, говорим о необходимости полёта за пределы нашей Солнечной системы. А планету Марс мы уже привычно рассматриваем как запасной аэродром при экстренных ситуациях. Некоторые фотографии поверхности Марса говорят о том, что некогда там находилась высокоразвитая цивилизация. Вероятно, всем знакомы фотоснимки «Лицо на Марсе», «Пирамиды на Марсе» и даже «Обезьяна на скале на Марсе». Учёные не воспринимают данные снимки за доказательства наличия жизни на Марсе, но уже допускают мысль, что на этой планете некогда находился водный океан. Но затем там исчезло магнитное поле, а с ним и водные просторы. Неужели там существовала жизнь? На этот вопрос мы скоро получим ответ.

БЕЛЫЕ ДЫРЫ

Мы знаем о чёрных дырах, о суперглобальных чёрных дырах, но очень мало знаем о так называемых белых космических дырах. Одним из достижений Альберта Эйнштейна считается его математическое доказательство существования космических чёрных дыр. Благодаря новейшим технологиям и научному прогрессу учёные смогли обнаружить некоторые из них. Уже есть доказательства того, что одна из чёрных дыр является центром Млечного Пути и нашей галактики. Но что нас удивляет в ещё большей степени — Эйнштейн сумел доказать существование белых дыр. По своей природе они (белые дыры) являются абсолютной противоположностью чёрным. Белые дыры якобы «выталкивают» из себя (фактически из ничего) невероятное количество материи. Казалось бы, такой объект легко обнаружить, но этого ещё никому не удалось сделать. Обнаружение такого объекта смогло бы помочь человеку объяснить множество загадок!

ТЁМНАЯ ЭНЕРГИЯ

Самой актуальной загадкой космоса на сегодня учёные считают существование тёмной энергии. Специалисты говорят, что такая энергия есть в космосе, что и объясняет многочисленные аномалии, нарушающие законы гравитации. По законам гравитации крупные космические объекты, как, к примеру, галактические скопления, должны притягиваться друг к другу и притягивать к себе другие крупные объекты.
Однако на самом деле получается иначе: галактические скопления продолжают двигаться, отдаляясь друг от друга. А это подтверждает факт, что Вселенная продолжает расширяться до абсолютно неимоверных размеров.
Видимо, поэтому учёные не устают разрабатывать теорию тёмной энергии, имеющей обратный гравитации эффект -отталкивания объектов. Математические расчёты обнаруживают такую энергию, занимающую 74% просторов космоса, трансформирующую законы гравитации, побуждающую Вселенную расширяться. Как бы то ни было, но у нас до сих пор нет твёрдого доказательства о её существовании и свойствах.

Откуда берутся планеты, да и сами звёзды? И что это за «чёрные дыры» в Космосе, в которые миллиарды лет улетают звёзды? Автор пытается разобраться в этих непростых вопросах, привлекая новые, нетрадиционные научные данные…

Сев за написание этой статьи и сопоставив сведения о мироздании, о Земле и её истории, которые я получил около четверти века назад в школе, с тем, что я знаю сейчас, я ещё раз убедился в том, что школа и ВУЗы заняты не столько обучением, сколько муштрой и зомбированием молодёжи! Точно так же, как церковники разных мастей и пошиба.

Возвращаясь в своей памяти к временам юности, я вновь чувствую отторжение невнятных, высосанных из пальца теорий возникновения звёзд и планет, развития земной цивилизации и понимаю, что это было интуитивное отторжение фальшивой информации, которая не резонирует со мной на генетическом уровне.

Постоянно пытаясь докопаться до правды, я, как и многие другие люди, окончил университет, аспирантуру, защитил кандидатскую диссертацию и сам оказался в роли «священника от науки». Недавно мне пришлось рассказывать своим студентам официальную теорию происхождения нефти, угля и газа из планктона и торфа. Этот бред сивой кобылы студенты всё ещё должны знать, чтобы получить свои «пятёрки», но пора уже активно открывать и пропагандировать действительное положение вещей. Для этого и написана эта статья.

Солнечная система

Согласно общепринятой в настоящее время гипотезе, «формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителем для нескольких звёзд».

Очевидно, что за термином «гравитационный коллапс», как это в современной науке бывает сплошь и рядом, ничего вразумительного не стоит. За наукообразными терминами современные учёные скрывают своё незнание.

Дальше, уважаемые читатели, теория учит, что вышеуказанный «гравитационный коллапс» с маниакальным усердием сжал это облако так, что его вещество разогрелось, и вследствие этого началась термоядерная реакция…

Когда вы читаете такое описание зарождения звёзд, возникает ли у вас понимание того, что написано? У меня нет. Каждое слово по отдельности понятно, а общий смысл предложения как-то ускользает!

А что же было на самом деле? Откуда берутся планеты, да и сами звёзды? И что это за «чёрные дыры» в Космосе, в которые миллиарды лет улетают звёзды?

Пора рассказать об этом правду.

Некоторую информацию о происхождении нашей планетарной системы можно узнать из главы 1.5 второго тома запрещённой книги Николая Левашова «Россия в кривых зеркалах».

По словам Николая Левашова, в далёком прошлом у нашего Солнца была звезда-спутник, которая взорвалась сверхновой. Выброшенные при взрыве сверхновой материи этой звезды, стали фундаментом для формирования у Солнца некоторых планет, а огарок звезды-спутника превратился в маленькую нейтронную звезду, орбита которой резко изменилась после взрыва. Огарок стал вращаться вокруг Солнца по очень вытянутой орбите с периодом обращения около 3600 лет.

Каждый раз, вторгаясь в солнечную систему, эта мёртвая звезда своей мощной гравитацией вызывала резкое возрастание солнечной активности. Предпоследнее её появление нашло своё отражение в «древнегреческом» мифе о Фаэтоне, сыне Гелиоса.

Согласно древнегреческой мифологии Гелиос - это Бог Солнца, а Фаэтоном они называли планету, орбита которой раньше находилась между Марсом и Юпитером.

В Славяно-Арийской традиции имя этой планеты-земли было Дея. При очередном прохождении через Солнечную систему мёртвой звезды (Немезиды или Нибиру) силами её гравитации была разорвана на части пятая планета от Солнца - Дея. Досталось тогда и Марсу - с него была сорвана большая часть атмосферы.

Предпоследнее появление мёртвой звезды было около 1600 лет до нашей эры. Что пришлось, примерно, на середину первого периода «древнегреческой» истории, который «историки» назвали ахейским (XX-XII века до н.э.). Поэтому у «древних греков» и родилась легенда о Фаэтоне, который не справился с управлением колесницей своего отца - Гелиоса-Солнца! В результате чего, Солнце стало выжигать всё живое на Земле и чтобы спасти от гибели Землю, Гелиос уничтожил своего сына Фаэтона вместе со своей колесницей, кони которой отказались повиноваться Фаэтону.

На самом деле мёртвая звезда, пройдя тогда слишком близко к Дее (Фаэтону), сорвала эту планету со своей орбиты, что привело к тому, что силы гравитации разорвали эту планету на части. С тех пор и появился пояс астероидов, все орбиты которых пересекаются в точке, где раньше была орбита погибшей планеты.

Помимо уничтожения Деи, прохождение мёртвой звезды через Солнечную систему вызвало резкое увеличение свечения Солнца, и оно стало выжигать своими лучами Землю. Подтверждение этому Николай Левашов нашёл в «Диалогах» Платона.

Ответы на вопросы о механизме возникновения звёзд, чёрных дыр, планет и на многие другие можно найти в монографии Николая Левашова «Неоднородная вселенная».

Теория Н.В. Левашова о неоднородности пространства сложна, необычна и требует кропотливого изучения, но в рамках этой статьи мы всё же поверхностно рассмотрим интересующие нас положения.

В своей книге Левашов показывает, что «пространство неоднородно, что его свойства и качества изменяются в разных направлениях, и, что материя, заполняющая пространство, влияет на свойства и качества пространства, которое она заполняет, а пространство влияет на материю. Проявляется, так называемая, обратная связь. В результате, устанавливается равновесное состояние между материей, заполняющей пространство и пространством, в котором данная материя находится. При таком равновесии, материя устойчива.

Если пространство практически и теоретически не ограничено и его свойства и качества меняются непрерывно, то материя - конечна. Конечность материи обусловлена тем, что она имеет конкретные качества и свойства, которые имеют свои пределы и, вследствие этого, конечны. Пространство и материя взаимодействуют друг с другом, причём, взаимодействие - обоюдное.

Поэтому, когда бесконечная величина с непрерывно изменяющимися свойствами и качествами, - пространство, - взаимодействует с конечной величиной с определёнными свойствами и качествами, - материей - их взаимодействие происходит в той только области пространства, где свойства и качества пространства и материи тождественны друг другу…»

Всё пространство заполнено материей, однако, вследствие того, что разные виды материй и их соединений взаимодействуют друг с другом только при определённых условиях, то мы можем наблюдать так называемый вакуум, который свидетельствует лишь о том, что в данном конкретном месте нет материи, которая может взаимодействовать с материей нашего физического мира. Отсутствие взаимодействия между материей «вакуума» и материей нашего мира делает другие «слои» мироздания как бы не существующими для нас.

Вследствие наличия неоднородности пространства, в некоторых областях оного происходит «смыкание» таких параллельных пространств, и мы наблюдаем появление звёзд и чёрных дыр.

Наш слой-пространство состоит из семи первичных материй, которые и образуют всё вещество нашей Вселенной. Наиболее близкими по качествам к нашему слою являются слои-пространства, состоящие из 6 и 8 первичных материй. Это - так называемые, параллельные Вселенные, которые имеют различную качественную структуру (мерность) и поэтому не имеют прямого контакта между собой. Но они, при всём этом, имеют в своей качественной структуре общие качества - то или иное количество первичных материй, входящих в качественный состав каждой из этих Вселенных.

В зонах неоднородности мерности пространства происходит смыкание соседних пространств-вселенных между собой. При смыкании пространств-вселенных из восьми (обозначим его L8) и семи (L7) первичных материй, между ними образуется канал. По этому каналу материи из пространства-вселенной L8 начинают перетекать в пространство-вселенную L7.

При этом существует качественное отличие вещества Вселенной L8 и вещества Вселенной L7. Поэтому, в зоне смыкания этих пространств происходит распад вещества пространства-вселенной L8, и из материй его образующих происходит синтез вещества пространства-вселенной L7. Другими словами, вещество, образованное восьмью формами материй, распадается и синтезируется вещество из семи форм материй.

Поэтому, освобождающаяся восьмая форма материи продолжает находиться в этой зоне, оставаясь свободной, невостребванной. Со временем, она накапливается в зоне смыкания и начинает влиять, в некоторых пределах, на мерность этой зоны. Что приводит к увеличению канала между пространствами-вселенными и вызывает ещё больший отток вещества из пространства L8. Это приводит к возникновению условий, при которых часть вещества в пространстве L7 становится неустойчивой и начинает распадаться на составляющие части, возникает так называемая термоядерная реакция. Так «зажигаются» звёзды (Рис. 1).

При смыкании пространства-вселенной L7 и пространства из шести первичных материй (L6), вновь возникают условия для перетекания материй, только на этот раз вещество из пространства L7 перетекает в пространство L6. Таким образом, пространство-вселенная L7 (наша Вселенная) теряет своё вещество. И именно так возникают загадочные «чёрные дыры» (Рис. 2). Вот таким образом, в зонах неоднородностей мерности пространств-вселенных образуются звёзды и «чёрные дыры». При этом, возникает перетекание вещества, материй между разными пространствами-вселенными.

Не менее увлекательно и интересно Николай Левашов рассказывает об эволюции жизни звёзд.

«Каждая звезда «живёт» миллиарды лет, после чего она «умирает». В течение этих миллиардов лет вещество из пространства-вселенной с большей мерностью L8, через зону смыкания попадает в пространство-вселенную с меньшей мерностью L7. При этом это вещество становится неустойчивым и распадается на первичные материи его образующие. Семь первичных материй сливаются вновь, образуя физически плотное вещество пространства-вселенной L7. При этом, в зоне смыкания такой уровень мерности, что происходит синтез атомов тех элементов, собственный уровень мерности которых позволяет им сохранить свою устойчивость. В верхней зоне устойчивости физически плотного вещества «находятся» только, так называемые, лёгкие элементы такие, как водород (H) и гелий (He) (то есть, наиболее устойчивые. - А.К.). Поэтому в зоне смыкания происходит синтез этих элементов. И неслучайно большая часть вещества нашей Вселенной - водород.

В зоне смыкания происходит активный процесс синтеза водорода, массы которого и составляют основу звёзд. Так рождаются звёзды - так называемые, голубые гиганты (Рис. 1). Изначальная плотность «новорождённых» - очень мала, но в силу того, что зона смыкания неоднородна по мерности, возникает перепад (градиент) мерности в направлении к центру. В результате этого молекулы водорода начинают двигаться к центру зоны смыкания. Начинается процесс сжатия звезды, в ходе которого плотность звёздного вещества начинает стремительно расти. По мере роста плотности звёздного вещества уменьшается объём занимаемый звездой и увеличивается степень влияния массы звезды, как на уровень мерности зоны смыкания, так и на атомном уровне. Таким образом, собственный уровень мерности звезды начинает уменьшаться, а внутри самой звезды начинаются процессы синтеза новых более тяжёлых элементов. Возникает, так называемая, термоядерная реакция и звезда начинает излучать целый спектр волн, как побочный эффект синтеза элементов. Следует отметить, что именно, благодаря этому «побочному эффекту», возникают условия для зарождения жизни. В зоне смыкания параллельно происходят два процесса: синтез водорода при распаде вещества пространства-вселенной с более высоким уровнем собственной мерности (вещество, образованное синтезом восьми форм первичных материй), и синтез из водорода более тяжёлых элементов в ходе термоядерных реакций. В результате этих процессов звезда уменьшает свой объём и, как следствие увеличения в массе доли более тяжёлых чем водород элементов, уменьшается и уровень собственной мерности звезды. Что в свою очередь уменьшает зону смыкания. Другими словами, «рождённая» другим пространством-вселенной звезда для нашего пространства-вселенной постепенно отделяется от своей «матери»…

Как видите, если принять во внимание накопленные наукой факты о неоднородности пространства (которые в достаточном количестве приводятся в вышеуказанной монографии Н. Левашова), то не понадобится придумывать «гравитационные коллапсы» и прочие витиеватые термины!

Мы уже отмечали выше, что в результате действия радиального перепада мерности происходит сжатие звезды, нарушается баланс между излучающей поверхностью и излучающим объёмом.

В результате этого, продолжает Николай Левашов, «первичные материи скапливаются внутри звезды. С течением времени, в результате термоядерных реакций, звёздное вещество теряет простейшие атомы, такие, как водород, гелий и др., и всё больший процент в нём начинают составлять атомы тяжёлых элементов. Размер звезды уменьшается, она становиться всё более и более плотной, тяжёлой и степень влияния на мерность окружающего пространства становится всё более и более сильной. Если в начале своей эволюции звезда имела определённую мерность окружающего её пространства, то, при своём сжатии она вызывает вторичное вырождение пространства на некоторую величину, то есть мерность окружающего её пространства уменьшается и начинает приближаться к мерности L7. По мере развития этого процесса, канал между пространствами-вселенными с мерностями L8 и L7 уменьшается. Всё меньшее и меньшее количество вещества перетекает из пространства с мерностью L8 в пространство с мерностью L7. При этом, активность излучений такой звезды становится всё меньше и меньше, пока не прекращается совсем. Наступает смерть звезды. Звезда «тухнет». Если в начале своей эволюции звезда имела большую массу, но меньше десяти солнечных масс, то к концу своей жизни она вызывает вторичное вырождение мерности, когда мерность окружающего её пространства становится меньше мерности L7. Она производит прогиб в другую сторону. Возникает, так называемая, нейтронная звезда (Рис. 3).

Если, в начале своей эволюции, звезда имела массу большую, чем десять солнечных, вторичное вырождение становится столь значительным, что вызывает смыкание пространств-вселенных с мерностями L7 и L6. При этом материя из пространства с мерностью L7 начинает перетекать в пространство с мерностью L6. Образуется «чёрная дыра» (Рис. 2). Таким образом, «чёрные дыры» возникают в ходе эволюции звёзд, точнее «окончание жизни» звезды в нашем пространстве-вселенной приводит к рождению звезды в нижележащем пространстве-вселенной…»

Удивительная теория, которая впервые непротиворечиво и всеобъемлюще описывает микро- и макромир, а также живую материю!

Теперь рассмотрим механизм рождения планет. Ортодоксальная наука утверждает, что «Земля и другие планеты Солнечной системы, сформировались 4,54 млрд. лет назад из протопланетарного диска пыли и газа, оставшегося после формирования Солнца. Луна сформировалась позднее, вероятно, в результате касательного столкновения Земли с объектом, по размерам близким Марсу и массой 10 % от земной. Часть массы этого тела слилась с Землёй, а часть была выброшена в околоземное пространство и образовала кольцо обломков, со временем агрегировавшееся и давшее начало Луне…»

Как видно из вышеприведённого утверждения «учёных», планеты образовались из «протопланетарного диска пыли и газа». По их мнению, пыль и газ самопроизвольно слиплись. Луна же «агрегировалась» из обломков некоего объекта, врезавшегося в Землю. Всё бы ничего, если бы горе-учёные объяснили, как происходит эта «агрегация». Интересно, почему, по их мнению, не «агрегируется» из своих собственных обломков Дея (Фаэтон)…

Анализировать выдумки «учёных» - это напрасная потеря времени, давайте лучше вернёмся к объяснению феномена образования планет, данного Николаем Левашовым. Он единственный на сегодняшний день учёный, сумевший непротиворечиво и без непонятностей объяснить всё то, что «учёные» пока способны только обзывать свежепридуманными терминами.

«В начале своей жизни звезда имеет баланс между её размером, каналом между пространствами с мерностями L7 и L8 и количеством вещества, перетекающего через эту звезду из пространства с мерностью L8 в пространство-вселенную с мерностью L7 (Рис. 4). В результате термоядерных реакций, при потере простых атомов, размеры звезды уменьшаются, и она не в состоянии пропустить через себя всю массу материй, текущих из пространства с мерностью L8 в пространство с мерностью L7.

Этот дисбаланс со временем увеличивается и достигает в конечном итоге критического уровня. Происходит колоссальный взрыв, часть вещества звезды выбрасывается в окружающее её пространство. При этом уменьшается мерность этого окружающего звезду пространства и формируется канал, по которому перетекает такое количество материи, которое звезда в состоянии через себя пропустить (Рис. 5). Такой взрыв называют взрывом сверхновой.

Выброшенные взрывом сверхновой поверхностные слои звезды, которые, кстати, состоят из наиболее лёгких элементов, попадают в искривления пространства, созданные продольными колебаниями мерности, возникшими при этом взрыве. В этих зонах искривления пространства из первичных материй происходит активный синтез вещества, причём, синтезируется целый спектр различных элементов, включая тяжёлые и сверхтяжёлые. Чем больше перепад между уровнем собственной мерности звезды и уровнями собственной мерности зон искривления пространства, тем более тяжёлые элементы в состоянии «родиться» внутри этих зон и тем более устойчивы эти тяжёлые элементы. В зависимости от изначальных размеров, в течение жизни звезды может быть один или несколько взрывов сверхновой. При каждом таком взрыве собственный уровень мерности звезды уменьшается, что приводит к уменьшению синтеза лёгких элементов и увеличению синтеза тяжёлых. В результате этого, плотность, а следовательно, степень влияния звезды на окружающее пространство увеличивается. При взрыве сверхновой, возникают колебания мерности пространства аналогичные волнам, которые появляются на поверхности воды после броска камня. Массы материи, выброшенные при взрыве, заполняют эти неоднородности мерности пространства вокруг звезды. Из этих масс материи начинают образовываться планеты (Рис. 6 и Рис. 7).»

Теперь, когда мы в общих чертах разобрались с механизмом образования звёзд и планет, давайте подробнее остановимся на нашей Солнечной системе. Множество фактов указывает на то, что в её формировании приняли участие очень могущественные и очень разумные силы!

Во-первых, учёным известны многие сотни планет в других солнечных системах, но там планетарные системы построены по принципу – самая большая планета расположена ближе всего к своему солнцу. Прослеживается чёткая закономерность: чем меньше планета, тем дальше она от звезды.

У нас же вблизи Солнца «крутится» маленький Меркурий. А орбиты планет-гигантов Юпитера и Сатурна проходят вдали от светила. На практике, в телескопы, астрономы не обнаружили ни одной системы, похожей на нашу Солнечную систему.

Во-вторых, в Солнечной системе наблюдаются удивительные закономерности во вращении планет и спутников.

Движение Меркурия согласовано с движением Земли. Время от времени Меркурий находится с Землёй в нижнем соединении. Так называют положение, когда Земля и Меркурий оказываются по одну сторону Солнца, выстраиваясь с ним на одной прямой. Нижнее соединение повторяется каждые 116 суток, что совпадает со временем двух полных оборотов Меркурия, и, встречаясь с Землёй, Меркурий всегда обращён к ней одной и той же стороной.

Венера с периодичностью в 584 дня сближается с Землёй на минимальное расстояние, оказываясь в нижнем соединении, причём в эти моменты Венера всегда обращена к Земле одной и той же стороной. Этот странный взгляд «глаза в глаза» не может быть объяснён с точки зрения классической небесной механики.

Луна также является небесным телом, одна сторона которого постоянно обращена к нашей планете.

Но самая удивительная в этом отношении пара Плутон – Харон. Они вращаются, будучи всегда обращёнными одними и теми же сторонами друг к другу.

Почти у всех спутников осевое вращение синхронно с орбитальным. Астрономические сайты констатируют, что синхронно вращаются вокруг своих планет (постоянно обращены к ним одной стороной) спутники Земли, Марса, Сатурна (кроме Гипериона, Фебы и Имира), Урана, Нептуна (кроме Нереиды) и Плутона. В системе Юпитера такое вращение характерно для значительной части спутников, в том числе всех галилеевых.

В-третьих, расстояния от Солнца до планет определяется простейшей закономерностью и выражаются очень простой формулой!

Для такого вычисления нужно лишь знать расстояние от земли до Солнца. Не нужны никакие астрономические вычисления!

R(n)=0,3 x 2n-2 + 0,4

В этой формуле:

n – порядковый номер планеты;

R – расстояние до планеты, выраженное в астрономических единицах (1 а.е. – расстояние от Земли до Солнца, равное приблизительно 150 млн. км).

Для всех здравомыслящих людей приведённой выше информации вполне достаточно для того, чтобы прийти к выводу, что в природе такого количества аномалий и совпадений просто не может быть!

Не менее интересна и удивительна наша планета - Земля, которую наши предки называли Мидгард-землёй, но об этом читайте во второй части статьи.

В первой части статьи мы коротко рассказали о звёздах и чёрных дырах, о зарождении нашей солнечной системы и о её чрезвычайно интересных особенностях. Во второй части статьи в центре нашего внимания наша родная планета - Земля…

Наша планета имеет сложную структуру и на ней протекают многочисленные взаимосвязанные процессы. Процессы, протекающие в атмосфере, динамичны и видны невооружённым глазом. Мы на собственном опыте можем почувствовать дождь, ветер и другие атмосферные явления. Процессы, протекающие в недрах планеты, практически всегда незримы и неощутимы, и лишь в некоторых неспокойных частях Земли люди сталкиваются с их проявлениями - землетрясениями и извержениями вулканов.

Прежде чем заглянуть в недра планеты, давайте узнаем, каким образом объясняет теория неоднородности пространства, впервые подробно изложенная Николаем Левашовым в монографии «Неоднородная вселенная » , атмосферные явления - ветер, молнии и выпадение осадков.

Атмосферные явления: ветер, молнии, осадки

На освещённой стороне планеты происходит поглощение солнечного света атомами поверхностного слоя. По теории Николая Левашова в результате этого уровень мерности указанной поверхности увеличивается. Часть полученной поверхностью Земли энергии излучается в виде тепловых волн, которые поглощаются молекулами атмосферы. При этом уровень собственной мерности атомов атмосферы над разогретой поверхностью увеличивается. В то же время, над неосвещённой поверхностью планеты уровень собственной мерности атмосферы уменьшается в силу того, что её атомы излучают волны. В результате, между освещённой и неосвещённой поверхностями планеты возникает горизонтальный перепад (градиент) мерности. Этот перепад мерности приводит в движение свободные материи параллельно поверхности планеты от зоны с большим уровнем мерности (освещённая поверхность) к зоне с меньшим уровнем мерности (неосвещённая поверхность). Молекулы атмосферы не связаны между собой в жёсткие (твёрдое состояние вещества) или полужёсткие системы (жидкое состояние вещества), поэтому перепад мерности пространства вдоль поверхности приводит к тому, что поток свободных материй увлекает за собой молекулы воздуха. Воздушные массы приходят в движение, возникает ветер .

При перемещении «разогретых» молекул (молекул, поглотивших солнечное излучение) на неосвещённую территорию возникает перепад мерности между «разогретыми» молекулами и атмосферой (перемещённые молекулы имеют больший уровень мерности, чем атмосфера над неосвещённой поверхностью), который вызывает неустойчивое состояние молекул воздуха и провоцирует спонтанное излучение ими волн.

«Холодные» молекулы, в свою очередь, имеют уровень собственный мерности ниже собственного уровня мерности освещённой территории, что провоцирует массовое поглощение излучений Солнца и тепловых излучений освещённой поверхности. Постепенно происходит выравнивание между собственным уровнем мерности освещенной поверхности и собственным уровнем мерности молекул. При этом, если собственный уровень мерности «холодных» молекул значительно отличается от собственного уровня мерности освещённой территории, происходит снижение последнего. Когда собственный уровень мерности освещённой территории опускается до уровня, так называемой, точки «росы», молекулы воды из газообразного состояния переходят в жидкое. Выпадает роса. Если это происходит на уровне облачности, процесс каплеобразования приобретает цепной характер, и выпадает дождь . При этом, состояние качественного барьера между вторым и физическим уровнями возвращается к норме. В случае, когда этот процесс происходит быстро и резко, скопившиеся на уровне качественного барьера свободные материи стекают лавинообразно. И, как следствие, возникают атмосферные электрические разряды - молнии . Николай Левашов сравнивает этот процесс с плотиной на реке, у которой открыли все шлюзы, и вся вода, накопленная плотиной, освобождается одновременно.

Рис. 1 - Так возникает ветер.

  1. Поверхностный слой планеты с атмосферой;
  2. Качественный барьер между физически плотной и второй материальной сферами;
  3. Качественный барьер между второй и третьей материальными сферами;
  4. Вертикальный перепад мерности внутри неоднородности;
  5. Продольный (горизонтальный) перепад мерности, возникающий между освещённой и неосвещённой поверхностями планеты;
  6. Увеличение качественного барьера над освещённой поверхностью;
  7. Скопление первичных материй на границе между физически плотной и второй материальной сферами над освещённой поверхностью.

Таким образом, главной причиной атмосферных явлений является периодическая смена дня и ночи. Надо заметить, что вполне определённая продолжительность дня и ночи является одним из важнейших условий появления жизни на планете, о чём подробно рассказывает Николай Левашов в вышеуказанной книге.

Теперь давайте посмотрим, что происходит в недрах нашей планеты. От правильного понимания того, что на самом деле происходит под поверхностью нашей планеты, зависит правильно ли мы представляем себе прошлое Земли, исследование которого опирается в основном на исследование недр, и, что более важно, её будущее. А от будущего планеты зависит и будущее нашей цивилизации.


Почему двигаются материки

В процессе изучения причин движения материков относительно друг друга учёными предлагались две разные теории. В основе первой лежало утверждение, что Земля расширяется (увеличивается в диаметре) и этим объяснялось движение материков. Другая теория основывалась на утверждении о постоянном размере планеты. В рамках этой теории движение материков объяснялось движением литосферных плит по мантии планеты. В настоящее время господствует вторая модель, названная теорией тектоники плит .

От правильного понимания мироздания в целом и в частности того, что в действительности происходит в недрах нашей планеты, зависит развитие нашей цивилизации. Человек уже давно вышел за рамки жизни за счёт охоты и собирательства. Поэтому давайте попытаемся разобраться с этим вопросом.

Для начала вспомним, как устроена наша планета. На рис. 2 мы приводим строение Земли. Как видно из рисунка, твёрдая земная кора (или литосфера) покоится на мощных пластах мантии, состоящей из жидких расплавленных пород. Верхний очень вязкий слой мантии называется астеносферой. Под мантией находится жидкое внутреннее ядро, внутри которого - твёрдое внутреннее ядро. Толщина коры приблизительно составляет от 5 км в океанах до 70 км в районе материковых плит. Общий радиус Земли около 6400 км .

Рис. 2 - Строение Земли.

«Из анализа перемещений континентов было сделано эмпирическое наблюдение, что континенты каждые 400-600 млн лет собираются в огромный материк, содержащий в себе почти всю континентальную кору - суперконтинент . Современные континенты образовались 200-150 млн. лет назад, в результате раскола суперконтинента Пангеи…».

Рис. 3 – Восходящие потоки возле Южной Америки.

По нашему мнению, это первый «тревожный звоночек» , который заставляет насторожиться и задуматься о правильности теории тектоники плит. По этой теории получается, что материки то разбегаются, то снова сбиваются в единую кучу. Что удивительно, каждый раз они поворачиваются друг к другу именно так, чтобы выступ на окраине одного континента пришёлся на выемку в окраине другого, и зазоры между ними оказались минимальными. Волшебство какое-то! Волшебство создателям и приверженцам этой теории понадобилось по простой причине. Современные материки образовались около 200 миллионов лет назад, а Земле, по мнению учёных, - 4,5 миллиарда лет. Чтобы ни у кого не возникало вопросов, почему суперконтинент был целёхонький на протяжении 95 % времени существования планеты, пришлось заявить примерно так: а суперконтинент всегда то разбежится на части, то соберётся!

Второй «тревожный звоночек». Оказывается, возраст всех океанических плит составляет не более 250 миллионов лет, а планете (и соответственно материковым плитам), как мы помним, 4,5 миллиарда лет. Как могло случиться так, что возраст океанических плит опять-таки составляет всего 5 % от возраста материков?!

Объяснение этому придумали такое: в местах разломов формируются новые поверхности океанических плит, а старые непрерывно подныривают под материковые плиты и там расплавляются…

У нас возникает резонный вопрос. Что, прямо все океанические плиты «поднырнули и расплавились»? Такое просто невозможно .

Третий «тревожный звоночек». Согласно теории тектоники плит Южная Америка удаляется от Африки под действием Срединно-Атлантического восходящего потока магмы. При этом ширина Атлантического океана увеличивается. Это действительно так и есть. Однако Срединно-Атлантический восходящий поток магмы очень слабый , а с другой стороны Южной Америки расположен очень мощный Южно-Тихоокеанский горячий восходящий поток (рис. 3).

Но по законам физики более мощный поток должен сдвигать Южную Америку к Африке и ширина Атлантического океана должна наоборот уменьшаться! В реальности же ширина Атлантического океана увеличивается , что фиксируется спутниками. Получается так, что либо законы физики не работают, либо механизм движения материков выглядит иначе, нежели его представляют геологи .

Рис. 4 – Уровни мерности сфер планеты.

  1. уровень мерности атмосферы;
  2. уровень мерности океанов;
  3. уровень мерности земной коры;
  4. уровень мерности магмы.

Даже перечисленные шероховатости и нестыковки теории тектоники плит вызывают обоснованные сомнения в её правоте, но у неё есть и другие проблемы. Заинтересовавшиеся этими вопросами читатели за дополнительной информацией могут обратиться к книге Андрея Склярова «Сенсационная история Земли » , материалы которой мы использовали при написании читаемой вами статьи. Мы не будем уделять много времени мало что поясняющей теории тектоники плит. И так ясно, что она не только не даёт полной картины происходящего, но и во многом ошибочна. А по сему, она должна уступить место более точной и обоснованной модели.

Если предположить, что наша планета в какой-то момент своей жизни начала расширяться, то вопросы, возникшие к теории тектоники плит, разъясняются, а все нестыковки и неясности отпадают. При таком ходе геологических событий по причине относительной хрупкости поверхности планеты в старой земной коре будут образовываться трещины, в которых будет постоянно формироваться новая поверхность планеты, а осколки старой коры совершенно естественно будут удаляться друг от друга. Теоретически расширение планеты возможно в результате синтеза новой материи в её недрах или снижении плотности ядра. Нам представляется, что основной движущей силой расширения Земли является разуплотнение её недр.

Перед тем как изложить модель расширяющейся Земли, нам в очередной раз нужно вернуться к уникальной книге Николая Левашова «Неоднородная вселенная ».


Рис. 5 – Упрощённый вид геохронологической шкалы.


«Недалеко от поверхности, на глубине от 100 до 300 километров, находится слой под названием астеносфера. Астеносфера, как считают геофизики, представляет из себя слой мантии, в котором вещество находится в более разогретом и (вследствие этого) более пластичном текучем состоянии, чем окружающие слои. В астеносфере происходит так называемая зонная плавка, которая сопровождается фазовыми физико-химическими превращениями вещества мантии. Вследствие этих превращений в области астеносферы происходит разделение материала по плотности: наверх (по закону Архимеда) вытесняются более лёгкие элементы, а более тяжёлые - опускаются вниз. Это и составляет, собственно, процесс зонной плавки, при которой изменяется фазовое состояние вещества (меняется плотность упаковки атомов и объём, который занимает та или иная составляющая мантии). При этом реакции, меняющие состояние вещества в астеносфере, являются экзотермическими, то есть сопровождаются выделением дополнительного тепла, порождающего нечто вроде фронта повышенной температуры в мантии.

Более лёгкие продукты этих сложных реакций устремляются вверх, а более тяжёлые - опускаются вниз, разогревая нижележащие слои и запуская в них процесс зонной плавки. Таким образом, астеносфера постепенно как бы сама прокладывает себе путь вниз, вглубь мантии - туда, где вещество ещё не претерпело фазового изменения и ещё содержит лёгкие вещества, необходимые для зонной плавки. А вместе с астеносферой в глубь мантии продвигается и фронт повышенной температуры!..

…Предположим, что современная астеносфера является уже «вторичной», а до нее существовала некая другая – «первичная» астеносфера, которая после ее формирования (одновременно с формированием коры планеты) двигалась гораздо быстрее, нежели это предполагается, и где-то в районе пермского периода достигла ядра малой Земли.

Однако вместе с зонной плавкой двигается и её зона повышенных температур, а гидриды (находящиеся в твёрдом ядре) и водородный раствор в металлах (жидкое внешнее ядро) довольно сильно реагируют на изменение температуры. Ясно, что в этом случае при достижении астеносферой ядра должно начаться активное выделение водорода из него.

Вот и спусковой крючок процесса расширения планеты!..

При этом в начале процесса, когда повышается температура внешнего ядра, где водород лишь растворён в металле и его там меньше, чем в гидриде, выделение водорода не столь активно, хотя явный скачок должен иметь место. Но когда это неизбежно приводит (с некоторой задержкой по времени) к изменению условий и во внутреннем ядре, тогда выделение водорода резко усиливается.

Отметим, что именно такой характер процессов прослеживается и в событиях на поверхности: в конце перми и триасе - лишь раскол старой коры на современные континенты и излияние магмы, вытесняемой водородом из верхней мантии в виде траппов, а с юрского периода – бурное расширение и активный рост новой океанической коры.

Но выделяемый водород, устремляясь вверх в соответствии всё с тем же законом Архимеда, производит как механическое перемешивание различных слоев мантии, так и вступает с веществом мантии в химические реакции, изменяя её состав и осуществляя своеобразную «водородную продувку». Этот же водород - вместе с другими лёгкими веществами, которые образуются в ходе «водородной продувки» - и порождает горячие восходящие конвективные потоки в мантии, что вызывает в итоге значительное усиление тектонических и вулканических процессов на поверхности планеты.

При этом «водородная продувка» приводит к насыщению мантии лёгкими летучими веществами (т.н. флюидами), что создаёт возможность для повторной «зонной плавки» вещества мантии. Таким образом, через некоторое время (по умозрительным прикидкам, ориентировочно с периода триаса-юры) формируется новая «вторичная» астеносфера, которая вновь начинает свой путь в глубины Земли, и которую мы наблюдаем ныне.

Любопытно, что получаемая в рамках предлагаемой гипотезы скорость продвижения вторичной астеносферы, равная (по порядку величины) около километра за миллион лет, даёт именно то значение скорости, которую должна иметь первичная астеносфера для того, чтобы пройти путь от коры до ядра малой Земли как раз за период от момента формирования консолидированной коры до рубежа пермь-триас…

Поскольку зона плавки – это область выделения дополнительного тепла в ходе фазовых физико-химических превращений, постольку и положение самой астеносферы в недрах неизбежно будет отражаться на характере процессов, в том числе, и во внешней оболочке Земли. Ясно, что чем глубже опускается астеносфера, тем меньше её фронт взаимодействия, тем меньше количество выделяемого нагретого флюида из ее зоны. А это должно проявляться как в снижении тектонической активности внешних слоёв планеты, так и в уменьшении притока тепла из недр к поверхности. Именно эти процессы можно наблюдать в целом на протяжении всего протерозоя и особенно палеозоя, конец которого (пермский период) вообще напоминает затишье перед бурей: тектоническая активность минимальна, платформы в целом стабильны, на поверхности заметное похолодание. Оно и понятно - первичная астеносфера опустилась уже довольно глубоко и дополнительное тепло от неё до поверхности практически не доходит…

Геологические события этого периода, несмотря на кажущеюся неинтересной стабильность, представляют очень любопытную картину. Создаётся впечатление, что Земля как будто «усыхает», а её кора начинает напоминать кожуру засыхающего яблока, роль морщин и трещин которой выполняют так называемые авлакогены и геосинклинали , а также складчатые области…

…Интересно отметить, что общая картина палеозоя в корне противоречит предположению В.Ларина и других исследователей о непрерывном росте количества выделяемого из недр водорода и (как следствие) непрерывном расширении Земли. И гораздо больше соответствует высказанной здесь гипотезе о важнейшей роли астеносферы в этом процессе…»

Теперь, когда механизм расширения планеты и возможные первопричины этого процесса стали понятны, можно ответить на вопрос, который наверняка уже созрел у читателя - какие же первоначальные размеры были у планеты Земля?

Для того чтобы найти исходные размеры нашей планеты необходимо сложить вместе не сами материки, а материковые плиты. Эту работу проделал А. Скляров . Предоставим ему слово.

«Поскольку задача выходила за рамки простых плоских географических карт, моделирование осуществлялась в трёхмерном варианте с помощью программы 3D Studio MAX таким образом, чтобы обеспечить минимальное отклонение от современного взаимного расположения материковых плит. При этом, приоритет был отдан тем местам состыковки, которые буквально бросались в глаза: плита Северной Америки идеально соединяется с Евразийской плитой по арктическим окраинам, Африка с Европой по Средиземноморью, Африка с Южной Америкой по атлантическому побережью, а Антарктическая плита с Австралийской по взаимному положению плит относительно современной географической долготы. В результате была получена трёхмерная модель малой, «нерасширившейся» Земли, которая превзошла все ожидания».

Полученный Скляровым результат мы приводим на рисунке 6 .


Рис. 6 – Реконструкция расположения материковых плит до расширения Земли.


По расчётам А. Склярова сначала интенсивнее всего формировался Тихий океан, затем - Атлантический, и в последнюю очередь - Индийский. Именно такая последовательность формирования океанов очень хорошо соответствует сценарию, по которому должно было происходить расширение, чтобы из смоделированной малой Земли получить современное расположение материков.

При увеличении Земли и разбегании материков в разные стороны происходило их перемещение в зоны с другими климатическими и магнитными данными. Реконструкция малой Земли позволила А. Склярову получить значительно лучшее согласование палеомагнитных и палеоклиматических данных, чем восстановление прошлого на основе дрейфа материков. Желающих узнать детали «скитания» материков мы отправляем к книге автора исследований. Более интересным являются следствия теории расширяющейся Земли. Радиус планеты до расширения составлял приблизительно 65 % от нынешнего, сила тяжести на поверхности была в 2,33 раза больше современной…

Что означает факт наличия более чем в 2 раза высокой чем сейчас силы тяжести на планете? Фигурально выражаясь, это означает, что вам, уважаемые читатели, каждое утро нужно будет затрачивать в 2 с лишним раза больше усилий, чтобы подняться с постели. То есть вы должны будете стать более сильным. Но сила тяжести будет оказывать влияние не только на вас, но и на всю окружающую вас природу. Поэтому капли дождя будут гораздо сильнее бить по поверхности земли, атмосфера будет гораздо плотнее и, следовательно, ветры будут гораздо более разрушительными, а генетика живой природы должна будет адаптироваться к борьбе с такой гравитацией.

Прежде чем продолжить рассказ о вашей гипотетической «борьбе» с повышенной гравитацией, разрешите задать вам один вопрос. Знаете ли вы природу той силы, с которой вы каждое утро боретесь во время подъёма с постели? Конечно, знаем! - наверняка подумали многие и вспомнили стандартную формулировку закона всемирного тяготения Ньютона, - два тела притягиваются с силой пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. До знакомства с фактами, указывающими на несостоятельность классической теории гравитации, и с теорией неоднородности пространства Николая Левашова, объясняющей все нестыковки в общепринятой теории, мы тоже так думали. Но оказалось, что всё совсем не так, как нас уверяют так называемые физики. Давайте разберёмся с этой очередной загадкой мироздания!

Природа гравитации

В статье О.Х. Деревенского с весёлым названием «Бирюльки и фитюльки всемирного тяготения » в непринуждённой атмосфере ставятся весьма серьёзные вопросы о природе сил гравитации. Эти вопросы выпячивают проблемы теории настолько сильно, что делать вид будто с теорией всемирного тяготения всё в порядке по меньшей мере легкомысленно. Для иллюстрации приведём некоторые факты.

Во-первых , в рамках современных представлений не ясно что является посредником между телами при их гравитационном взаимодействии. По расчётам американского астронома Тома Ван Фландерна скорость распространения гравитационного воздействия как минимум на 11 порядков больше скорости света ! Напомним, что скорость света составляет примерно 300 000 км/с. Дорисуйте к этой цифре ещё 11 нулей и получите в первом приближении скорость гравитационного взаимодействия…

Во-вторых , есть огромное количество опытных данных, которые вопиют о том, что вещество не имеет никакого отношения к производству тяготения . Вещество не притягивает, оно лишь подчиняется тяготению. Например, даже вблизи огромных горных массивов маятник не отклоняется в сторону миллиардов тонн вещества!

В-третьих , малые космические тела не имеют собственного тяготения. В Солнечной системе всех обладателей тяготения можно пересчитать по пальцам: это Солнце, планеты, Луна, и, возможно, Титан. Что же касается других спутников планет, а также комет и астероидов - то, несмотря на интенсивные поиски признаков их собственного тяготения, такие признаки не обнаруживаются!

В-четвёртых , космические тела, имеющие тяготение, делят пространство на собственные сферы тяготения таким образом, что где бы ни находилось маленькое пробное тело, оно везде притягивается только к одному «силовому центру» - к планетарному или к солнечному. То есть области действия тяготения Солнца и планет разграничены - там, где оказывается планетарная сфера тяготения, солнечное тяготение отключается! Кроме того, радиусы орбит планет таковы, что исключено хотя бы частичное перекрывание сфер тяготения соседних планет. (Нам известно исключение из этого правила - в окрестностях Луны. Впрочем, у Луны нет ни одного «нормального» свойства, все её свойства аномальны; по нашему мнению, Луна - это искусственный спутник ).

В подтверждение каждого из вышеперечисленных фактов О.Х. Деревенский приводит многочисленные примеры. А что же наши учёные? Как обычно - они заняты придумыванием нелепых объяснений всем перечисленным казусам или делают вид что казусов таких нет вовсе…

Но, к нашему счастью, на русской земле были и есть настоящие учёные! Николай Левашов в рамках созданной им теории неоднородности прояснил и природу гравитационного поля. Давайте в очередной раз обратимся к книге «Неоднородная вселенная ».

Рис. 7 – Синтез шести сфер планеты
в зоне неоднородности пространства.

Согласно теории Николая Левашова при взрыве сверхновой образуются зоны первичной деформации пространства, в которых образуются перепады мерности, направленные от уровня с большей мерностью к уровню с меньшей (от внешних границ неоднородности к её центру). При этом перепад мерности заставляет свободные первичные материи двигаться внутрь этих зон, где они оказываются в других качественных условиях, при которых происходит синтез гибридных материй и формируется планета. Например, Земля (рис. 7).

Первичные материи после завершения процесса синтеза гибридных материй продолжают пронизывать зону деформации, в которой этот синтез происходил. Зона деформации пространства не исчезает , а только заполняется гибридными формами материй. Поэтому, изначальный перепад мерности, хоть и компенсируется гибридными материями, продолжает существовать для свободных первичных материй, которые, двигаясь вдоль этого градиента, создают собой направленный поток. Этот направленный поток первичных материй, в зоне перепада мерности и создаёт, так называемое, гравитационное поле .

Аналогичным образом другие космические объекты, возникшие при взрывах сверхновой, также находятся в зонах деформации пространства и поэтому имеют своё гравитационное поле.

Теперь мы можем разобраться с ребусами, которые загадал в своей статье О.Х Деревенский. Ответить на эти вопросы теперь совсем не сложно.

Что будет, если взять часть физически плотного вещества (вещества, образованного при слиянии семи первичных материй) и вывести его за пределы зоны деформации пространства? Будет ли данное тело создавать гравитационное поле? Ответ очевиден - нет . Именно поэтому различного рода астероиды не имеют ни малейших признаков собственного тяготения.

Почему малое тело притягивается только к одному силовому центру? Отвечаем. Это тело находится в зоне деформации пространства конкретного космического объекта, к центру которой двигаются первичные материи, которые за счёт эффекта «паруса» увлекают рассматриваемое малое тело.

Почему маятник не отклоняется в сторону горных массивов с массой много миллиардов тонн? Потому что именно неоднородность пространства является причиной гравитационного поля, а не вещество планеты…

Теперь давайте снова вернёмся к расширению нашей планеты и связанному с этим изменению силы тяготения.

Последствия расширения Земли

Рис. 8 – Эриопс - земноводное перми
(скелет и реконструкция).

Как мы уже отметили выше, радиус малой Земли составлял порядка 65 % от его нынешнего размера. При таком радиусе сила тяжести была в 2,3 раза больше современной и соответственно ускорение свободного падения составляло не 9,8 м/с 2 , а уже около 23 м/с 2 . При таком увеличении гравитации капля дождя, падающая на поверхность земли, будет иметь скорость примерно в полтора раза большую, чем до увеличения. Ручьи и реки при таком увеличении гравитации при том же уклоне местности будут течь более стремительнее, атмосфера при той же массе воздуха станет более плотной и давление у поверхности вырастет до 5,5 атмосфер. Это значит, что ветер станет намного более разрушительным. В совокупности увеличение тяготения приведёт к значительному увеличению эрозионных процессов и как следствие к более сглаженному рельефу местности.

Рис. 9 – Тапиноцефалы -
пермские предшественники динозавров.

«Посмотрим на обитателей пермского периода – то есть на тех, кто жил в условиях малой Земли при вдвое с лишним большей гравитации (рис. 8 и рис. 9). В это время наступал конец

царства земноводных, которые обладали приземистым туловищем и мощными лапами, расставленными по бокам туловища. Вся конституция их тел была выдержана так, чтобы в случае усталости тут же залечь на брюхо, которое для передвижения и не нужно было высоко поднимать над землёй. Отличная приспособленность к жизни в условиях повышенной гравитации!..

Но и переходные формы от земноводных к пресмыкающимся, и даже ранние представители пресмыкающихся, которые уже появились в это время, не далеко оторвались от земли. На реконструкциях их так и изображают как бы постоянно в присевшем состоянии, и чуть приподнятой головой над передними лапами, которые лишь чуть осмеливаются распрямиться. Все построенные на основе реальных ископаемых останков изображения животных этого периода создают полнейшее ощущение «придавленности тяжелым грузом». Жить в буквальном смысле слова было тяжело, но животный мир приспособился…

Перенесёмся теперь вперёд…


Рис. 10 – Гиганты юрского периода.

Позади пермско-триасовое побоище. Позади и триас. Наступает юрский период с его интенсивным изменением размеров планеты и уменьшением гравитации. Животный мир, долгое время существовавший в условиях большой силы тяжести попадает теперь в ситуацию, когда гравитация меньше, чем та, на которую рассчитан весь генетический запас. А гены не перестраиваются мгновенно. Есть излишний запас прочности – и он реализуется, выливаясь в неудержимый рост и громадный вес. Так что совершенно естественно, что именно в это время начинается взлёт гигантомании (рис. 10).

В дальнейшем, после гибели гигантов в конце мелового периода, животный мир уже успевает адаптироваться к квазистационарным условиям постоянно растущей Земли и уменьшающейся гравитации. Эволюции уже не нужно рассчитывать на огромную силу тяжести, а старый «запас прочности», породивший гигантоманию, закончился. Вот и получаем необходимые условия для постепенного сброса излишних размеров и «обмельчания» животного мира…»

Разрушение металлогидридов в ядре планеты, вызвавшие расширение Земли, явились причиной многих других процессов. При продувке недр водородом образовывались различные химические соединения. Наиболее распространённым элементом земной коры является кислород, поэтому происходило бурное образование воды мирового океана. Судя по всему, на малой Земле мирового океана как такового не было, а были изолированные моря. Следы этих морей на материках известны.

Весьма распространённым элементом на нашей планете является углерод, поэтому вполне естественно будет предположить, что поднимающийся из недр водород соединялся с углеродом и таким образом образовывались углеводороды. Вот мы и подошли к вопросу природы образования ископаемого топлива.»

Происхождение ископаемого топлива

Рис. 11 – «Растение», полученное
при газофазном осаждении
пиролитического графита.

В современном научном мире господствует мнение, что нефть, газ, а также уголь образовались из отложений когда-то живших организмов под воздействием высокой температуры и давления. Вообразить себе, что миллионы тонн живых организмов животного и растительного происхождения собирались в недрах и образовывали уголь, нефть и газ очень сложно, но, тем не менее, именно этому учат студентов высших учебных заведений. Однако даже те люди, которые имеют богатое воображение, при вдумчивом анализе этой теории находят в ней существенные противоречия. В уже неоднократно упоминаемой здесь книге Андрея Склярова приводятся такие примеры вдумчивого отношения к изучаемому материалу.

Взять, например, уголь . Считается, что он образовывался из торфа путём постепенной углефикации. По теории, в процессе углефикации торф превращается в бурый уголь, последний - в каменный и так далее вплоть до образования антрацитов. Углефикация начинается вслед за торфообразованием, после покрытия торфяника толщей осадков, под влиянием физико-химических превращений. Углефикация не влияет на соотношение микрокомпонентов. Но в угле содержится от 1 до 10 % серы . Ни в какой древесине или растениях такого количества серы нет, не было и не могло быть. Её там на несколько порядков меньше!

Ещё один факт, не укладывающийся в теорию. Каменный уголь якобы образуется под большим давлением и температурой, что должно происходить на большой глубине. Но существует достаточно много месторождений каменного угля, где он залегает настолько близко к поверхности, что его добыча ведётся открытым способом. И при этом, вдобавок, слои угля нередко расположены горизонтально . Если в процессе своего образования уголь на какой-то стадии находился на глубине в несколько километров, а потом поднялся выше в ходе геологических процессов, сохранив своё горизонтальное положение, то куда делись те самые километры иных пород, которые были над углём и под давлением которых он образовывался?

Не спасает приверженцев органического происхождения угля и наличие в пластах якобы «углефицированных растительных остатков». Дело в том, что при пиролизе метана происходит образование более тяжёлых углеводородов - газообразных, жидких, твёрдых - любых! Причём твердые могут приобретать самые удивительные формы. Приведём несколько любопытных иллюстраций из книги .

  1. Гидридные соединения в недрах нашей планеты, распадаются при нагревании, выделяя при этом водород, который в полном соответствии с законом Архимеда устремляется вверх - к поверхности Земли.
  2. На своём пути водород, благодаря высокой химической активности, взаимодействует с веществом недр, образуя различные соединения. В том числе и такие газообразные вещества как метан СН 4 , сероводород Н 2 S, аммиак NH 3 , водяной пар Н 2 О и тому подобные.
  3. В условиях высоких температур и в присутствии других газов, входящих в состав флюидов недр, происходит постадийное разложение метана, что в полном соответствии с законами физической химии приводит к образованию газообразных углеводородов - в том числе и сложных.
  4. Поднимаясь как по имеющимся трещинам и разломам земной коры, так и образуя под давлением новые, эти углеводороды заполняют все доступные им полости в геологических породах. А из-за контакта с этими более холодными породами, газообразные углеводороды переходят в другое фазовое состояние и (в зависимости от состава и окружающих условий) образуют залежи жидких и твердых ископаемых - нефти, бурого и каменного угля, антрацита, графита и даже алмазов.
  5. В процессе образования твердых отложений в соответствии с (далеко ещё неизученными) законами самоорганизации материи при соответствующих условиях происходит образование упорядоченных форм - в том числе напоминающих и формы живого мира.
  6. В заключение статьи мы бы хотели отметить, что согласно теории неоднородности пространства Николая Левашова образование различных химических соединений в недрах планеты происходит не только в момент синтеза вещества планеты из первичных материй, но и после. Это в свою очередь может быть второй причиной образования полезных ископаемых (впрочем, как и «бесполезных» тоже). По мнению Николая Левашова именно поэтому, несмотря на непрерывную потерю атмосферы, земляне всё ещё дышат воздухом…

На сегодняшний день ортодоксальные не имеют сколько-нибудь жизнеспособной и логичной теории, объясняющей рождение вселенной, звёзд и планетарных систем, зарождения и развития жизни на планетах. Отсутствие внятных представлений о природе вещей связано не с недостатком серого вещества в головах горе-учёных, а с политическим заказом мировой закулисы, которая делает всё возможное, чтобы люди не узнали ответов на эти ключевые вопросы. Отсутствие чёткого понимания этих фундаментальных вещей позволяет власть предержащим манипулировать людьми и управлять ими как стадом овец (овнов). Но время Обмана заканчивается, и Знание пробивает себе дорогу к людям...

Сев за написание этой статьи и сопоставив сведения о мироздании, о Земле и её истории, которые я получил около четверти века назад в , с тем, что я знаю сейчас, я ещё раз убедился в том, что школа и ВУЗы заняты не столько обучением, сколько муштрой и зомбированием молодёжи! Точно так же, как церковники разных мастей и пошиба. Возвращаясь в своей памяти к временам юности, я вновь чувствую отторжение невнятных, высосанных из пальца теорий возникновения звёзд и планет, развития земной цивилизации и понимаю, что это было интуитивное отторжение фальшивой информации, которая не резонирует со мной на генетическом уровне.

Постоянно пытаясь докопаться до правды, я, как и многие другие люди, окончил университет, аспирантуру, защитил кандидатскую диссертацию и сам оказался в роли «священника от науки». Недавно мне пришлось рассказывать своим студентам официальную теорию происхождения нефти, угля и газа из планктона и торфа. Этот бред сивой кобылы студенты всё ещё должны знать, чтобы получить свои «пятёрки», но пора уже активно открывать и пропагандировать действительное положение вещей. Для этого и написана эта статья.

Солнечная система

Согласно общепринятой в настоящее время гипотезе , «формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителем для нескольких звёзд».

Очевидно, что за термином «гравитационный коллапс » , как это в современной науке бывает сплошь и рядом, ничего вразумительного не стоит. За наукообразными терминами современные скрывают своё незнание. Дальше, уважаемые читатели, теория учит, что вышеуказанный «гравитационный коллапс » с маниакальным усердием сжал это облако так, что его вещество разогрелось, и вследствие этого началась термоядерная реакция…

Когда вы читаете такое описание зарождения звёзд, возникает ли у вас понимание того, что написано? У меня нет. Каждое слово по отдельности понятно, а общий смысл предложения как-то ускользает! А что же было на самом деле ? Откуда берутся планеты, да и сами звёзды? И что это за «чёрные дыры» в Космосе, в которые миллиарды лет улетают звёзды?

Пора рассказать об этом правду.

Некоторую информацию о происхождении нашей планетарной системы можно узнать из главы 1.5 второго тома запрещённой книги Николая Левашова «Россия в кривых зеркалах» . По словам Николая Левашова, в далёком прошлом у нашего Солнца была звезда-спутник, которая взорвалась сверхновой. Выброшенные при взрыве сверхновой материи этой звезды, стали фундаментом для формирования у Солнца некоторых планет, а огарок звезды-спутника превратился в маленькую нейтронную звезду, орбита которой резко изменилась после взрыва. Огарок стал вращаться вокруг Солнца по очень вытянутой орбите с периодом обращения около 3600 лет.

Каждый раз, вторгаясь в солнечную систему, эта мёртвая звезда своей мощной гравитацией вызывала резкое возрастание солнечной активности. Предпоследнее её появление нашло своё отражение в «древнегреческом» мифе о Фаэтоне, сыне Гелиоса. Согласно древнегреческой мифологии Гелиос – это Солнца, а Фаэтоном они называли планету, орбита которой раньше находилась между Марсом и Юпитером.

В Славяно-Арийской традиции имя этой планеты-земли было Дея . При очередном прохождении через Солнечную систему мёртвой звезды (Немезиды или Нибиру) силами её гравитации была разорвана на части пятая планета от Солнца – Дея. Досталось тогда и Марсу – с него была сорвана большая часть атмосферы. Предпоследнее появление мёртвой звезды было около 1600 лет до нашей эры. Что пришлось, примерно, на середину первого периода «древнегреческой» истории, который «историки» назвали ахейским (XX-XII века до н.э.). Поэтому у «древних греков» и родилась легенда о Фаэтоне, который не справился с управлением колесницей своего отца – Гелиоса-Солнца! В результате чего, стало выжигать всё живое на Земле и чтобы спасти от гибели Землю, Гелиос уничтожил своего сына Фаэтона вместе со своей колесницей, кони которой отказались повиноваться Фаэтону.

На самом деле мёртвая звезда, пройдя тогда слишком близко к Дее (Фаэтону), сорвала эту планету со своей орбиты, что привело к тому, что силы гравитации разорвали эту планету на части. С тех пор и появился пояс астероидов, все орбиты которых пересекаются в точке, где раньше была орбита погибшей планеты. Помимо уничтожения Деи, прохождение мёртвой звезды через Солнечную систему вызвало резкое увеличение свечения Солнца, и оно стало выжигать своими лучами Землю. Подтверждение этому Николай Левашов нашёл в «Диалогах» Платона. Ответы на вопросы о механизме возникновения звёзд, чёрных дыр, планет и на многие другие можно найти в монографии Николая Левашова « ».

Теория Н.В. Левашова о неоднородности пространства сложна, необычна и требует кропотливого изучения, но в рамках этой статьи мы всё же поверхностно рассмотрим интересующие нас положения…

Всё пространство заполнено материей, однако, вследствие того, что разные виды материй и их соединений взаимодействуют друг с другом только при определённых условиях, то мы можем наблюдать так называемый вакуум, который свидетельствует лишь о том, что в данном конкретном месте нет материи, которая может взаимодействовать с материей нашего физического мира. Отсутствие взаимодействия между материей «вакуума» и материей нашего мира делает другие «слои» как бы не существующими для нас. Вследствие наличия неоднородности пространства, в некоторых областях оного происходит «смыкание» таких параллельных пространств, и мы наблюдаем появление звёзд и чёрных дыр.

Наш слой-пространство состоит из семи первичных материй, которые и образуют всё вещество нашей Вселенной. Наиболее близкими по качествам к нашему слою являются слои-пространства, состоящие из 6 и 8 первичных материй. Это – так называемые, параллельные Вселенные , которые имеют различную качественную структуру (мерность) и поэтому не имеют прямого контакта между собой. Но они, при всём этом, имеют в своей качественной структуре общие качества – то или иное количество первичных материй, входящих в качественный состав каждой из этих Вселенных.

При смыкании пространства-вселенной L 7 и пространства из шести первичных материй (L6 ), вновь возникают условия для перетекания материй, только на этот раз вещество из пространства L 7 перетекает в пространство L6 . Таким образом, пространство-вселенная L7 (наша Вселенная) теряет своё вещество. И именно так возникают загадочные «чёрные дыры » (Рис. 2 ). Вот таким образом, в зонах неоднородностей мерности пространств-вселенных образуются звёзды и «чёрные дыры». При этом, возникает перетекание вещества, материй между разными пространствами-вселенными.

Не менее увлекательно и интересно Николай Левашов рассказывает об эволюции жизни звёзд.

«Каждая звезда «живёт» миллиарды лет, после чего она «умирает». В течение этих миллиардов лет вещество из пространства-вселенной с большей мерностью L8 , через зону смыкания попадает в пространство-вселенную с меньшей мерностью L7 . При этом это вещество становится неустойчивым и распадается на первичные материи его образующие. Семь первичных материй сливаются вновь, образуя физически плотное вещество пространства-вселенной L7 . При этом, в зоне смыкания такой уровень мерности, что происходит синтез тех элементов, собственный уровень мерности которых позволяет им сохранить свою устойчивость. В верхней зоне устойчивости физически плотного вещества «находятся» только, так называемые, лёгкие элементы такие, как водород (H ) и гелий (He ) (то есть, наиболее устойчивые. – А.К.). Поэтому в зоне смыкания происходит синтез этих элементов. И неслучайно большая часть вещества нашей Вселенной – водород…»

Как видите, если принять во внимание накопленные факты о неоднородности пространства (которые в достаточном количестве приводятся в вышеуказанной монографии Н. Левашова), то не понадобится придумывать «гравитационные коллапсы » и прочие витиеватые термины! Мы уже отмечали выше, что в результате действия радиального перепада мерности происходит сжатие звезды, нарушается баланс между излучающей поверхностью и излучающим объёмом.

В результате этого, продолжает Николай Левашов , «первичные материи скапливаются внутри звезды. С течением времени, в результате термоядерных реакций, звёздное вещество теряет простейшие , такие, как водород, гелий и др., и всё больший процент в нём начинают составлять атомы тяжёлых элементов. Размер звезды уменьшается, она становиться всё более и более плотной, тяжёлой и степень влияния на мерность окружающего пространства становится всё более и более сильной. Если в начале своей эволюции звезда имела определённую мерность окружающего её пространства, то, при своём сжатии она вызывает вторичное вырождение пространства на некоторую величину, то есть мерность окружающего её пространства уменьшается и начинает приближаться к мерности L7 . По мере развития этого процесса, канал между пространствами-вселенными с мерностями L8 и L7 уменьшается. Всё меньшее и меньшее количество вещества перетекает из пространства с мерностью L8 в пространство с мерностью L7 . При этом, активность излучений такой звезды становится всё меньше и меньше, пока не прекращается совсем. Наступает смерть звезды. Звезда «тухнет». Если в начале своей эволюции звезда имела большую массу, но меньше десяти солнечных масс, то к концу своей жизни она вызывает вторичное вырождение мерности, когда мерность окружающего её пространства становится меньше мерности L7 . Она производит прогиб в другую сторону. Возникает, так называемая, нейтронная звезда (Рис. 3 ).

Если, в начале своей эволюции, звезда имела массу большую, чем десять солнечных, вторичное вырождение становится столь значительным, что вызывает смыкание пространств-вселенных с мерностями L7 и L6 . При этом материя из пространства с мерностью L7 начинает перетекать в пространство с мерностью L6 . Образуется «чёрная дыра» (Рис. 2 ). Таким образом, «чёрные дыры» возникают в ходе эволюции звёзд, точнее «окончание жизни» звезды в нашем пространстве-вселенной приводит к рождению звезды в нижележащем пространстве-вселенной...»

Удивительная теория, которая впервые непротиворечиво и всеобъемлюще описывает микро- и макромир, а также живую материю!

Теперь рассмотрим механизм рождения планет. Ортодоксальная наука утверждае т, что «Земля и другие планеты Солнечной системы, сформировались 4,54 млрд. лет назад из протопланетарного диска пыли и газа, оставшегося после формирования Солнца. сформировалась позднее, вероятно, в результате касательного столкновения Земли с объектом, по размерам близким Марсу и массой 10 % от земной. Часть массы этого тела слилась с Землёй, а часть была выброшена в околоземное пространство и образовала кольцо обломков, со временем агрегировавшееся и давшее начало Луне...»

Как видно из вышеприведённого утверждения «учёных», планеты образовались из «протопланетарного диска пыли и газа» . По их мнению, пыль и газ самопроизвольно слиплись. Луна же «агрегировалась » из обломков некоего объекта, врезавшегося в Землю. Всё бы ничего, если бы горе-учёные объяснили, как происходит эта «агрегация ». Интересно, почему, по их мнению, не «агрегируется » из своих собственных обломков Дея (Фаэтон)…

Анализировать выдумки «учёных» – это напрасная потеря времени, давайте лучше вернёмся к объяснению феномена образования планет, данного Николаем Левашовым . Он единственный на сегодняшний день учёный, сумевший непротиворечиво и без непонятностей объяснить всё то, что «учёные» пока способны только обзывать свежепридуманными терминами.

«В начале своей жизни звезда имеет баланс между её размером, каналом между пространствами с мерностями L7 и L8 и количеством вещества, перетекающего через эту звезду из пространства с мерностью L8 в пространство-вселенную с мерностью L7 (Рис. 4 ). В результате термоядерных реакций, при потере простых атомов, размеры звезды уменьшаются, и она не в состоянии пропустить через себя всю массу материй, текущих из пространства с мерностью L8 в пространство с мерностью L7 .

Этот дисбаланс со временем увеличивается и достигает в конечном итоге критического уровня. Происходит колоссальный взрыв, часть вещества звезды выбрасывается в окружающее её пространство. При этом уменьшается мерность этого окружающего звезду пространства и формируется канал, по которому перетекает такое количество материи, которое звезда в состоянии через себя пропустить (Рис. 5 ). Такой взрыв называют взрывом сверхновой.

Выброшенные взрывом сверхновой поверхностные слои звезды, которые, кстати, состоят из наиболее лёгких элементов, попадают в искривления пространства, созданные продольными колебаниями мерности, возникшими при этом взрыве. В этих зонах искривления пространства из первичных материй происходит активный синтез вещества, причём, синтезируется целый спектр различных элементов, включая тяжёлые и сверхтяжёлые. Чем больше перепад между уровнем собственной мерности звезды и уровнями собственной мерности зон искривления пространства, тем более тяжёлые элементы в состоянии «родиться» внутри этих зон и тем более устойчивы эти тяжёлые элементы. В зависимости от изначальных размеров, в течение жизни звезды может быть один или несколько взрывов сверхновой. При каждом таком взрыве собственный уровень мерности звезды уменьшается, что приводит к уменьшению синтеза лёгких элементов и увеличению синтеза тяжёлых. В результате этого, плотность, а следовательно, степень влияния звезды на окружающее пространство увеличивается. При взрыве сверхновой, возникают колебания мерности пространства аналогичные волнам, которые появляются на поверхности воды после броска камня. Массы материи, выброшенные при взрыве, заполняют эти неоднородности мерности пространства вокруг звезды. Из этих масс материи начинают образовываться планеты (Рис. 6 и Рис. 7 ).»

Теперь, когда мы в общих чертах разобрались с механизмом образования звёзд и планет, давайте подробнее остановимся на нашей Солнечной системе. Множество фактов указывает на то, что в её формировании приняли участие очень могущественные и очень разумные силы! Обратимся к разделу «Мы все – пришельцы на этой планете » сайта «Пища Ра ».

Во-первых , учёным известны многие сотни планет в других солнечных системах, но там планетарные системы построены по принципу – самая большая планета расположена ближе всего к своему солнцу. Прослеживается чёткая закономерность: чем меньше планета, тем дальше она от звезды. У нас же вблизи Солнца «крутится» маленький Меркурий. А орбиты планет-гигантов Юпитера и Сатурна проходят вдали от светила. На практике , в телескопы, астрономы не обнаружили ни одной системы, похожей на нашу .

Во-вторых , в Солнечной системе наблюдаются удивительные закономерности во вращении планет и спутников.

Движение согласовано с движением Земли. Время от времени Меркурий находится с Землёй в нижнем соединении. Так называют положение, когда Земля и Меркурий оказываются по одну сторону Солнца, выстраиваясь с ним на одной прямой. Нижнее соединение повторяется каждые 116 суток, что совпадает со временем двух полных оборотов Меркурия, и, встречаясь с Землёй, Меркурий всегда обращён к ней одной и той же стороной .

Венера с периодичностью в 584 дня сближается с Землёй на минимальное расстояние, оказываясь в нижнем соединении, причём в эти моменты Венера всегда обращена к Земле одной и той же стороной . Этот странный взгляд «глаза в глаза» не может быть объяснён с точки зрения классической небесной механики.

Луна также является небесным телом, одна сторона которого постоянно обращена к нашей планете.

Но самая удивительная в этом отношении пара Плутон – Харон . Они вращаются, будучи всегда обращёнными одними и теми же сторонами друг к другу.

Почти у всех спутников осевое вращение синхронно с орбитальным. Астрономические сайты констатируют, что синхронно вращаются вокруг своих планет (постоянно обращены к ним одной стороной) спутники Земли, Сатурна (кроме Гипериона, Фебы и Имира), Урана, Нептуна (кроме Нереиды) и Плутона. В системе Юпитера такое вращение характерно для значительной части спутников, в том числе всех галилеевых.

В-третьих , расстояния от Солнца до планет определяется простейшей закономерностью и выражаются очень простой формулой! Для такого вычисления нужно лишь знать расстояние от земли до Солнца. Не нужны никакие астрономические вычисления!

На обелиске над могилой нашего великого соотечественника К.Э. Циолковского приведены его ставшие хрестоматийными слова: «Человечество не останется вечно на Земле, но, в погоне за светом и пространством, сначала робко проникнет за пределы атмосферы, а потом завоюет все околосолнечное пространство».

Всю свою жизнь Циолковский мечтал о космическом будущем человечества и пытливым взглядом ученого всматривался в его фантастические горизонты. Он был не одинок. Начало ХХ века для многих было открытием Вселенной, хотя и видимым сквозь призму научных заблуждений того времени и фантазии литераторов. Итальянец Скиапарелли открыл «каналы» на Марсе - и человечество уверилось, что на Марсе существует цивилизация. Берроуз и А. Толстой населили этот воображаемый Марс похожими на людей жителями, и вслед за ними сотни фантастов последовали их примеру.

Земляне просто привыкли к мысли, что жизнь на Марсе есть, и что эта жизнь - разумная. Поэтому призыв Циолковского лететь в космос был встречен пусть не сразу с энтузиазмом, но, во всяком случае, с одобрением. Прошло всего 50 лет после первых выступлений Циолковского, и в стране, которой он посвятил и передал все свои труды, был запущен Первый спутник и в космос полетел Первый космонавт.

Казалось бы, дальше все пойдет по замыслам великого мечтателя. Идеи Циолковского оказались настолько яркими, что самый знаменитый из его последователей - Сергей Павлович Королёв - все свои планы развития космонавтики выстраивал так, чтобы еще в ХХ веке человеческая нога ступила на Марс. Жизнь внесла свои поправки. Сейчас мы не очень-то уверены, что пилотируемая экспедиция к Марсу состоится хотя бы до конца XXI века.

Наверное, дело не только в технических трудностях и роковых обстоятельствах. Любые трудности можно одолеть мудростью и пытливостью человеческого ума, если перед ним поставлена достойная задача. А такой задачи нет! Есть доставшееся в наследство желание - долететь до Марса, но нет ясного понимания - зачем? Если заглянуть глубже, этот вопрос стоит перед всей нашей пилотируемой космонавтикой.

Циолковский видел в космосе неосвоенные просторы для человечества, которому становится тесной родная планета. Эти просторы нужно, разумеется, осваивать, но прежде нужно глубоко изучить их свойства. Полувековой опыт изучения космоса показывает, что очень, очень многое можно исследовать автоматическими аппаратами, не рискуя самой высокой ценностью мироздания - человеческими жизнями. Полвека назад эта идея еще была темой споров и обсуждений, но сейчас, когда мощь компьютеров и возможности роботов приближаются к человеческим пределам, этим сомнениям уже не место. За последние сорок лет автоматические аппараты успешно исследуют Луну, Венеру, Марс, Юпитер, Сатурн, спутники планет, астероиды и кометы, а американские «Вояджеры» и «Пионеры» уже достигли границ Солнечной системы. Хотя в планах космических агентств и проходят порой сообщения о подготовке пилотируемых миссий в дальний космос, пока не прозвучало в них ни одной научной задачи, для решения которой работа космонавтов совершенно необходима. Так что изучение Солнечной системы можно продолжать автоматами еще долго.

Давайте вернемся, все-таки, к проблеме освоения космоса. Когда наше знание о свойствах космических просторов позволит нам начать обживать их, и когда мы сможем для самих себя ответить на вопрос - зачем?

Оставим пока вопрос о том, что в космосе много энергии, в которой нуждается человечество, и много минеральных ресурсов, которые в космосе, возможно, будет добывать дешевле, чем на Земле. И то, и другое, есть пока на нашей планете, и не они являются главной ценностью космоса. Главное в космосе - это то, чего нам крайне трудно обеспечить на Земле - устойчивость условий обитания, и, в конечном счете, устойчивость развития человеческой цивилизации.

Жизнь на Земле постоянно подвергается рискам стихийных бедствий. Засухи, наводнения, ураганы, землетрясения, цунами и иные неприятности не только наносят прямой ущерб нашей экономике и благополучию населения, но требуют сил и затрат на восстановление потерянного. В космосе мы надеемся на избавление от этих привычных угроз. Если мы найдем такие иные земли, где природные стихийные бедствия оставят нас, то это и будет та «земля обетованная», которая станет достойным новым домом для человечества. Логика развития земной цивилизации с неизбежностью приводит к мысли, что в будущем, и возможно не столь далеком, человек будет вынужден искать вне планеты Земля среду обитания, которая могла бы вместить большую часть населения и обеспечить продолжение его жизни в стабильных и комфортных условиях.

Именно это имел в виду К.Э. Циолковский, когда говорил, что человечество не останется вечно в колыбели. Его пытливая мысль нарисовала нам привлекательные картины жизни в «эфирных поселениях», то есть в больших космических станциях с искусственным климатом. Первые шаги в этом направлении уже сделаны: на постоянно обитаемых космических станциях мы научились поддерживать почти привычные условия жизни. Правда, неприятным фактором этих космических станций остается невесомость, - непривычное и губительное для земных организмов состояние.

Циолковский догадывался, что невесомость может быть нежелательной, и предложил создавать в эфирных поселениях искусственную тяжесть осевым вращением станций. Во множестве проектов «космических городов» эта идея была подхвачена. Если вы посмотрите на иллюстрации к теме «космические поселения» в Интернете, то увидите разнообразные торы и колеса со спицами, застекленные со всех сторон как земные оранжереи.

Можно понять Циолковского, во времена которого была попросту неизвестна космическая радиация, предлагавшего создавать открытые солнечному свету космические оранжереи. На Земле мы защищены от радиации мощным магнитным полем родной планеты и достаточно плотной атмосферой. Магнитное поле практически непробиваемо для заряженных частиц, выбрасываемых Солнцем, - оно отбрасывает их в сторону от Земли, позволяя лишь небольшому количеству достигать атмосферы вблизи магнитных полюсов и вызывать красочные полярные сияния.

Сегодняшние обитаемые космические станции расположены на орбитах, находящихся внутри радиационных поясов (по сути - магнитных ловушек), и это позволяет космонавтам годами находиться на станции, не получая опасных доз излучения.

Там, где от радиации уже не защищает земное магнитное поле Земли, радиационная защита должна быть намного серьёзнее. Главным препятствием для радиации является любое вещество, в котором оно поглощается. Если считать, что поглощение космической радиации в земной атмосфере снижает ее уровень до безопасных значений, то в открытом космосе нужно ограждать обитаемые помещения слоем вещества такой же массы, то есть каждый квадратный сантиметр площади помещений должен быть укрыт килограммом вещества. Если принять плотность укрывающего вещества равной 2.5 г/см3 (каменные породы), то геометрическая толщина защиты должна быть не меньше 4 метров. Стекло - тоже силикатное вещество, поэтому для защиты оранжерей в открытом космосе потребуются стекла 4-метровой толщины!

К сожалению, не только космическая радиация заставляет отказаться от заманчивых проектов. Внутри помещений нужно будет создавать искусственную атмосферу с привычной плотностью воздуха, то есть с давлением в 1 кг/см2. Когда помещения имеют небольшой размер, прочность строительных конструкций космических аппаратов позволяет выдержать такое давление. Но огромные поселения с диаметром обитаемых помещений в десятки метров, способных выдерживать такое давление, технически построить будет сложно, а то и невозможно. Создание искусственной тяжести вращением тоже заметно увеличит нагрузку на конструкцию станции.

К тому же движение всякого тела внутри вращающегося «бублика» будет сопровождаться действием кориолисовой силы, создавая большие неудобства (вспомните детские ощущения на дворовой карусели)! Ну и наконец, большие помещения окажутся очень уязвимыми для метеоритных ударов: достаточно разбить одно стекло в большой оранжерее, чтобы из нее вышел весь воздух, и находящиеся в ней организмы погибли бы.

Словом, «эфирные поселения» при внимательном рассмотрении оказываются невыполнимыми мечтаниями.

Может быть, не зря надежды человечества связывались с Марсом? Это достаточно крупная планета с вполне подходящей силой тяжести, у Марса есть атмосфера, и даже сезонные изменения погоды. Увы! Это - только внешнее сходство. Средняя температура на поверхности Марса держится на уровне -50°С, зимой там так холодно, что замерзает даже углекислый газ, а летом тепла недостаточно, чтобы мог растаять водяной лёд.

Плотность марсианской атмосферы - такая же, как земной на высоте 30 км, где даже самолеты не могут летать. Понятно, конечно же, что Марс никоим образом не защищен от космической радиации. В довершение всего, на Марсе очень слабые почвы: это или песок, который даже ветры разреженного марсианского воздуха вздымают в обширные бури, или тот же песок, смерзшийся со льдом в крепкую на вид породу. Только на такой породе ничего нельзя построить, да и подземные помещения не будут выходом без надежного их укрепления. Если в помещениях будет тепло (а люди не собираются жить в ледяных дворцах!), то мерзлота растает, и тоннели обрушатся.

Множество «проектов» марсианской застройки предполагает размещение на поверхности Марса готовых жилых модулей. Это очень наивные идеи. Для защиты от космической радиации каждое помещение нужно укрыть четырехметровым слоем защитных перекрытий. Проще говоря, укрыть все постройки толстым слоем марсианского грунта, и тогда в них можно будет жить. Но ради чего стоит обживать Марс? Ведь на Марсе нет той желанной стабильности условий, которой нам уже не хватает на Земле!

Марс все еще волнует людей, хотя уже никто не надеется найти на нем прекрасных Аэлит или хотя бы собратьев по разуму. На Марсе мы в первую очередь ищем следы внеземной жизни, чтобы понять, как и в каких формах возникает жизнь во Вселенной. Но это - исследовательская задача, и для ее решения вовсе не обязательно жить на Марсе. А для строительства космических поселений Марс - совсем не подходящее место.

Может быть, стоит обратить внимание на многочисленные астероиды? Судя по всему, условия на них очень стабильные. После Великой метеоритной бомбардировки, которая три с половиной миллиарда лет назад превратила поверхности астероидов в поля больших и малых воронок от метеоритных ударов, с астероидами ничего не происходит. В недрах астероидов можно построить обитаемые туннели, и каждый астероид превратить в космический город. Достаточно крупных для этого астероидов в нашей Солнечной системе немного - около тысячи. Так что они не решат проблему создания обширных обитаемых территорий вне Земли. При этом все они будут иметь болезненный недостаток: в астероидах очень малая сила тяжести. Безусловно, астероиды станут для человечества источниками минерального сырья, но для строительства полноценного жилья они совершенно непригодны.

Так неужели бесконечные космические просторы для людей все равно, что безбрежный океан без клочка суши? Неужели все наши мечтания о чудесах космоса - только сладкие грёзы?

Но нет, есть в космосе место, где сказки можно сделать былью, и, можно сказать, оно совсем по соседству. Это - Луна.

Из всех тел Солнечной системы Луна имеет наибольшее число достоинств с точки зрения человечества, ищущего стабильности в космосе. Луна достаточно велика, чтобы иметь заметную силу тяжести на ее поверхности. Основные породы Луны - прочные базальты, простирающиеся на глубину в сотни километров под поверхностью. На Луне нет вулканизма, землетрясений и климатических нестабильностей, так как у Луны нет ни расплавленной мантии в недрах, ни воздушных, ни водных океанов. Луна - ближайшее к Земле космическое тело, благодаря чему колониям на Луне будет легче оказать экстренную помощь и снизить транспортные издержки. Луна все время повернута к Земле одной стороной, и это обстоятельство может оказаться очень полезным во многих отношениях.

Итак, первое достоинство Луны - ее стабильность. Известно, что на освещенной солнцем поверхности температура поднимается до +120°С, а ночью опускается до -160°С, но при этом уже на глубине 2 метра перепады температуры становятся незаметными. В недрах Луны температура очень стабильная. Поскольку базальты имеют низкую теплопроводность (на Земле базальтовую вату используют как очень эффективную теплоизоляцию), в подземных помещениях можно поддерживать любую комфортную температуру. Базальт - газонепроницаемый материал, и внутри базальтовых сооружений можно создать искусственную атмосферу любого состава и поддерживать ее без особых усилий.

Базальт - очень прочная порода. На Земле есть базальтовые скалы высотой 2 километра, а на Луне, где сила тяжести в 6 раз меньше, чем на Земле, базальтовые стены выдержали бы свой вес даже при высоте 12 километров! Следовательно, в базальтовых недрах можно строить залы с высотой потолков в сотни метров, и не применять при этом дополнительных креплений. Поэтому в лунных недрах можно построить тысячи этажей построек самого разного назначения, не используя иных материалов, кроме самого лунного базальта. Если вспомнить, что площадь лунной поверхности только в 13.5 раз меньше площади поверхности Земли, то легко подсчитать, что площадь подземных построек на Луне может быть в десятки раз больше всей территории, которую занимают на нашей родной планете все формы жизни от глубин океанов до вершин гор! И всем этим помещениям не будут угрожать никакие стихийные бедствия миллиарды лет! Перспективно!

Нужно, конечно, сразу задуматься: а куда девать добытый из туннелей грунт? Вырастить на поверхности Луны терриконы километровой высоты?

Оказывается, и тут можно предложить интересное решение. На Луне нет атмосферы, а лунный день длится полмесяца, поэтому две недели в любом месте Луны непрерывно светит жаркое солнце. Если большим вогнутым зеркалом сфокусировать его лучи, то в получившемся пятне света температура будет почти такой же, как на поверхности Солнца - почти 5000 градусов. При такой температуре плавятся почти все известные материалы, в том числе и базальты (они плавятся при 1100°С). Если в это горячее пятно медленно насыпать базальтовую крошку, то она будет плавиться, и из нее можно наплавлять слой за слоем стены, лестничные пролеты и перекрытия. Можно создать строительный робот, который будет это делать по заложенной в него программе совсем без участия человека. Если такой робот запустить на Луну сегодня, то к тому дню, когда на неё прибудет пилотируемая экспедиция, космонавтов уже будут ждать если не дворцы, то уж во всяком случае, комфортабельное жильё и лаборатории.

Простое строительство помещений на Луне не должно быть самоцелью. Эти помещения будут нужны для жизни людей в комфортных условиях, для размещения сельскохозяйственных и промышленных предприятий, для создания зон отдыха, транспортных магистралей, школ и музеев. Только сначала нужно получить все гарантии, что переселившиеся на Луну люди и другие живые организмы не начнут деградировать из-за не совсем привычных условий. В первую очередь нужно исследовать, как длительное воздействие пониженной тяжести будет сказываться на организмах разнообразной земной природы. Эти исследования будут масштабными; едва ли опыты в пробирках смогут гарантировать биологическую устойчивость организмов на протяжении многих поколений. Нужно строить большие оранжереи и вольеры, и в них вести наблюдения и опыты. С этим не справятся никакие роботы, - только сами ученые-исследователи смогут заметить и проанализировать наследственные изменения в живых тканях и живых организмах.

Подготовка к созданию полноценных самообеспечиваемых колоний на Луне - вот та целевая задача, которая должна стать маяком для движения человечества к магистрали его устойчивого развития.

Сегодня многое в техническом построении обитаемых поселений в космосе не имеет ясного понимания. Энергетическое обеспечение в условиях космоса достаточно просто может быть обеспечено солнечными станциями. Один квадратный километр солнечных батарей даже при коэффициенте полезного действия всего 10% будет обеспечивать мощность 150 МВт, правда только в течение лунного дня, т. е. средняя генерация энергии будет вдвое меньшей. Кажется, что это немного. Однако согласно прогнозам на 2020 год мирового потребления электроэнергии (3,5 ТВт) и численности населения Земли (7 млрд человек) среднему землянину достается 0,5 киловатта электрической мощности. Если же исходить из привычного для городского жителя среднесуточного энергообеспечения, скажем 1,5 кВт на человека, то такая солнечная электростанция на Луне сможет удовлетворить потребности 50 тысяч человек - вполне достаточно для небольшой лунной колонии.

На Земле мы значительную часть электроэнергии расходуем на освещение. На Луне многие традиционные схемы будут радикально изменены, в частности, схемы освещения. Подземные помещения на Луне должны освещаться на хорошем уровне, особенно оранжерейное хозяйство. Нет никакого смысла на поверхности Луны производить электроэнергию, передавать ее в подземные постройки, а там снова преобразовывать электроэнергию в свет. Намного эффективнее на поверхности Луны установить концентраторы солнечного света и освещать от них световолоконные кабели. Уровень сегодняшней технологии изготовления световодов позволяет передавать свет почти без потерь на тысячи километров, поэтому не должно составить больших трудностей из освещенных областей Луны передать свет по системе световодов в любое подземное помещение, переключая концентраторы и световоды вслед за движеним солнца по лунному небосводу.

На первых этапах строительства лунной колонии Земля может быть донором необходимых для обустройства поселений ресурсов. Но многие ресурсы в космосе будет добывать легче, чем доставлять с Земли. Лунные базальты наполовину состоят из окислов металлов - железа, титана, магния, алюминия и т. д. В процессе извлечения металлов из добываемых в шахтах и штольнях базальтов будут получаться кислород для разнообразных нужд и кремний для световодов. В открытом космосе можно перехватывать кометы, содержащие до 80% водяного льда, и обеспечить снабжение поселений водой из этих обильных источников (ежегодно мимо Земли не далее 1.5 млн. км от нее пролетает до 40000 миникомет размером от 3 до 30 метров).

Мы уверены, что на ближайшие три-пять десятилетий исследования в области создания поселений на Луне станут доминантой перспективных разработок человечества. Если станет ясно, что на Луне могут быть созданы комфортные условия для жизни людей, то колонизация Луны несколько веков будет путем земной цивилизации к обеспечению ее устойчивого развития. Во всяком случае, никаких других более подходящих для этого тел в Солнечной системе нет.

Может быть, ничего этого не случится по совершенно иной причине. Освоение космоса - это не просто его исследование. Для освоения космоса требуется создание эффективных транспортных магистралей между Землей и Луной. Если такая магистраль не появится, то у космонавтики не окажется будущего, а человечество будет обречено оставаться в границах родной планеты. Ракетная техника, которая позволяет выводить в космос научное оборудование, является дорогостоящей технологией, а каждый пуск ракеты - еще и громадной нагрузкой на экологию нашей планеты. Нам потребуется дешевая и безопасная технология для вывода в космос полезной нагрузки.

В этом смысле Луна представляет для нас исключительный интерес. Поскольку она всегда обращена к Земле одной стороной, из середины обращенного к Земле полушария можно протянуть к нашей планете трос космического лифта. Пусть вас не пугает его длина - 360 тысяч километров. При толщине троса, выдерживающего 5-тонную кабину, общая его масса составит около тысячи тонн, - он весь уместится в нескольких карьерных самосвалах БелАЗ.

Материал для троса нужной прочности уже изобретен, - это углеродные нанотрубки. Нужно только научиться делать его бездефектным по всей длине волокна. Конечно же, космический лифт должен двигаться намного быстрее своих земных аналогов, и даже намного быстрее скоростных поездов и самолетов. Для этого трос лунного лифта нужно покрыть слоем сверхпроводника, и тогда кабина лифта сможет перемещаться вдоль него, не касаясь самого троса. Ничто тогда уже не помешает кабине двигаться с любой скоростью. Можно будет половину пути ускорять кабину, и половину пути - тормозить ее. Если при этом применять привычное на Земле ускорение «1 g», то весь путь от Земли до Луны займет всего 3.5 часа, а кабина сможет делать три рейса в сутки. Физики-теоретики утверждают, что сверхпроводимость при комнатной температуре не запрещена законами природы, и над ее созданием работают многие институты и лаборатории мира. Мы можем показаться кому-то оптимистами, но на наш взгляд, лунный лифт может стать реальностью уже через полвека.

Мы здесь рассмотрели только несколько сторон огромной проблемы колонизации космоса. Анализ обстановки в Солнечной системе показывает, что единственным приемлемым в ближайшие столетия объектом колонизации может стать только Луна.

Хотя Луна и ближе к Земле, чем любые другие тела в космосе, для ее колонизации обязательно нужно иметь средства ее достижения. Если их не будет, то Луна останется такой же недостижимой, как большая земля для Робинзона, застрявшего на маленьком острове. Если бы человечество имело в своем распоряжении много времени и достаточно ресурсов, то можно не сомневаться, что оно преодолело бы любые трудности. Но есть тревожные признаки иного развития событий.

Масштабные климатические изменения, на наших глазах меняющие условия жизни людей на всей планете, могут в очень недалеком будущем заставить нас все свои силы и ресурсы направить на элементарное выживание в новых условиях. Если поднимется уровень мирового океана, то придется заниматься переносом городов и сельскохозяйственных угодий в неосвоенные и непригодные для ведения сельского хозяйства территории. Если климатические изменения приведут к глобальному похолоданию, то придется решать проблему не только обогрева жилья, но и замерзающих полей и пастбищ. Все эти проблемы могут отнять у человечества все силы, и тогда на освоение космоса их может попросту не хватить. А человечество останется жить на родной планете как на родном, но единственном обитаемом острове в безбрежном океане космоса.

А.В. Багров, В.А. Леонов, А.В. Павлов