В каком возрасте заканчивается миелинизация. Процесс миелинизации

МИЕЛИНИЗАЦИЯ , процесс обложения миелином нервного волокна в период развития организма (см. отдельную таблицу, рисунки 1-3). М. начинается у.зародыша на 5-м месяце внутриутробной жизни; отделы мозга миелинизируются не одновременно, а в известном закономерном порядке. Системы волокон, имеющие одинаковую по сложности функцию, миелинизируются одновременно; чем сложнее функция данной системы, тем волокна ее позднее обкладываются миелином; обложение миелином служит признаком того, что волокно стало деятельным. При рождении ребенка М. далеко еще не закончена: в то время как одни части мозга уже вполне миелинизированы и готовы к функции, другие еще не закончили своего развития й не могут служить ни для физ. ни для псих, отправлений.У новорожденного ребенка спинной мозг очень богат миелино-выми волокнами; необложенные миелином волокна находятся только во внутренних его частях и в области пирамидного пучка. Волокна мозгового ствола и мозжечка в значительном количестве покрыты миелиновой оболочкой. Из подкорковых узлов волокна globi pallidi уже миелинизированы, тогда как волокна nucl. caudati и putamen покрываются миелином только к 5-6 месяцам внеутробной жизни. Полушария большого мозга во многих своих частях лишены миелина и на разрезе имеют сероватый цвет: у нормального новорожденного ребенка миелином снабжены центростремительные (чувствующие) волокна, часть пирамидных путей, часть обонятельных, слуховых и зрительных путей и центров и отдельные участки в corona radiata; большая же часть теменных, лобных, височных и затылочных долей, равно как и комиссур полушария, еще лишены миелина. Ассоциационные системы, назначенные для высших, псих, функций, обкладываются миелином позднее других систем, благодаря чему корковые зоны проекционных центров и волокон остаются изолированными, не связанными между собой; в этот период все ощущения, получаемые ребенком извне, остаются изолированными, все движения его рефлекторны и появляются только вследствие внешних или внутренних раздражений. Постепенно развитие миелиновых оболочек происходит во всех отделах мозга, благодаря чему устанавливается связь между различными центрами и в связи с этим развивается интелект ребенка: он начинает узнавать предметы и понимать их значение. Миелинизация главных систем полушария заканчивается на восьмом месяце внеутробной жизни, и с этого момента она продолжается только в отдельных волокнах в течение еще многих лет (наружные слои мозговой коры по нек-рым данным миелинизируются окончательно лишь к 45 годам жизни и м. б. даже позднее). В зависимости от времени появления миелина в полушариях мозга Флексиг (Flechsig) делит их на разные области: те части, где волокна покры- ваются миелином рано, он называет ранними областями (Primordialgebiete), те же, в к-рых миелин появляется позднее, - поздними (Spatgebiete). На основании этих исследований Флексиг различает в коре головного мозга двоякого рода центры: одни соединены проекционными волокнами с нижележащими образованиями, это - проекционные центры;"другие, не имеющие связи с нижележащими отделами мозга, но связанные ассоциационными волокнами с проекционными центрами коры, являются а с с о-циационными центрами (см. Голов-ной мозг, т. VII, ст. 533-534). При изучении головнбго мозга миелинизацией пользуются как методом-метод миелогенетический или метод Флексига. Лит.: Бехтерев В., Проводящие пути головного и спинного мозга, СПБ, 1896; Flechsig F., Anatomie des menschlichen G-ehirns und Ruckenmarks auf myelogenetischer Grundlage, Lpz., 1920 (лит.); PfeiferR., Myelogenetiscn-anatomische Untersu-chungen uber den zentralen Abschnitt der Sehleitung (Monographien aus dem G-esamtgebiete der Neurologie und Psvchiatrie, hrsg. v. O. Foerster u. K. Wilmanns, B. XLIII, В., 1925).E. Кононова.

6. Что такое миелинизация?

Скачать:


Предварительный просмотр:

Краткая аннотация понятий, представленных в книге Т.М. Уманской «Невропатология» (глава 2):

1. Определение понятий «филогенез» и «онтогенез».

2. Основные периоды онтогенеза и охарактеризуйте их.

3. Основные этапы формирования нервной системы.

4. Что такое «эволюция нервной системы»?

5. Определение критическим периодам.

6. Что такое миелинизация?

7. В какой период жизни человека осуществляется миелинизация?

  1. Определение понятий «филогенез» и «онтогенез».

Филогенез - эволюция вида, т.е. развитие любой группы родственных друг другу организмов, возникающих из ранее существующего вида.

Онтогенез – это процесс индивидуального развития организма человека в течение всей его жизни.

  1. Основные периоды онтогенеза их характеристика.

Онтогенез состоит из двух периодов:

Пренатального (внутриутробного);

Постнатального (внеутробного).

Развитие человека – непрерывный процесс, протекающий в течение всей его жизни. С момента рождения и до смерти в организме протекает ряд последовательных закономерных морфологических, биохимических и физиологических изменений, в связи с чем различают определенные временные отрезки или периоды. Границы, отделяющие один возраст от другого в определенной степени условны, но в тоже время для каждого возраста характерны присущие только ему черты строения и функционирования. В качестве критериев, на основании которых выделяют эти периоды, были предложены: масса тела, окостенение скелета, прорезывание зубов, мышечная сила, степень полового созревания и др.

  1. Основные этапы формирования нервной системы.

Нервная система закладывается и развивается из элементов наружного зародышевого листка - эктодермы . Помимо нервной системы из эктодермы образуются покровные ткани организма .

2-я неделя эмбрионального развития на дорсальной стороне зародыша обособляется участок эпителия - нервная пластинка , клетки которой интенсивно размножаются и дифференцируются, превращаясь в узкие цилиндрические, резко отличающиеся от соседних клеток покровного эпителия.

В конце 3-й недели - в результате интенсивного деления и неравномерного роста края нервной пластинки постепенно приподнимаются, образуя валики, которые развития смыкаются в нервную трубку . Головной отдел нервной трубки преобразуется в мешковидное расширение , дающее начало трем первичным мозговым пузырям. Первый пузырь образует первичный передний мозг, средний пузырь - первичный средний мозг, а из третьего пузыря образуется первичный задний мозг.

К концу 4-й недели - концы нервной трубки зарастают. Головной конец нервной трубки начинает расширяться, и из него образуются мозговые пузыри . Из туловищного отдела мозговой трубки образуется спинной мозг , а из головного отдела - головной мозг .

Полушария головного мозга становятся самой большой частью нервной системы, происходит выделение основных долей, начинается образование извилин и борозд . Из оболочек в ткань мозга врастают кровеносные сосуды . В спинном мозге формируются шейное и поясничное утолщения , связанные с иннервацией верхних и нижних конечностей.

В последние месяцы эмбрионального развития в нервной системе заканчивается формирование внутренней структуры мозга .

В последние два месяца внутриутробного развития начинается процесс активной миелинизации головного мозга .

  1. Что такое «эволюция нервной системы»?

В развитии нервной системы многоклеточных принято выделять три типа нервной системы - диффузную (кишечнополостные), узловую (членистоногие) и трубчатую (позвоночные).

Эволюция нервной системы, ее структура и функции, как считает Е.К. Сепп, должны рассматриваться в неразрывной связи с эволюцией моторики - в каком бы участке тела ни возникло возбуждение, в этот процесс вовлекается вся нервная система, что дает тотальное сокращение всей мускулатуры.

Вторая степень моторики - выделение специализированных частей тела, обеспечивающих передвижение (жгутики, реснички). Характер движения сохраняется прежний - перистальтический, бесскелетный.

Третья ступень - коренное преобразование моторики связано с развитием скелета. В этом случае речь идет о движении с помощью рычагов. Рычаговая форма моторики потребовала чрезвычайного усложнения управляющего аппарата - нервной системы.

Эволюцию структуры и функции нервной системы следует рассматривать как с позиции совершенствования от дельных его элементов - нервных клеток, так и с позиции совершенствования общих свойств, обеспечивающих приспособительное поведение.

Первым этапом развития нервной системы было формирование диффузной нервной системы. Нервные клетки такой нервной системы мало напоминают нейроны позвоночных. Нейроны слабо дифференцированы по функции. Скорость распространения возбуждения по волокнам значительно ниже, чем у животных.

Нейроны узловой нервной системы отличаются от нейрнов диффузной. Происходит увеличение количества нервных клеток, возрастает их разнообразие, возникает большее количество вариаций, увеличивается скорость проведения импульса.

Трубчатая нервная система - высший этап структурной и функциональной эволюции нервной системы. Все позвоночные имеют центральную нервную систему, которая состоит из спинного и головного отделов. Структурно, строго говоря, трубчатый вид имеет только спинной мозг.

Процесс энцефализации , т.е. совершенствование структуры и функций головного мозга у млекопитающих, дополняется кортикализацией - формированием и совершенствованием коры больших полушарий. Построенная по экранному принципу кора больших полушарий содержит не только специфические проекционные (соматочувствительные, зрительные, слуховые и т.д.), но и значительные по площади ассоциативные зоны. Кора мозга обладает рядом свойств, характерных только для нее. Важнейшее из них - чрезвычайно высокая пластичность и надежность, как структурная, так и функциональная.

Изучение этих свойств центральной нервной системы в эволюции позвоночных позволило А.Б. Когану в 60-х гг. XX в. обосновать вероятностно статистический принцип организации высших функций мозга . Этот принцип в наиболее яркой форме выступает в коре мозга, являясь одним из приобретений прогрессивной эволюции.

  1. Определение критическим периодам.

Критическим периодом называется тот период, когда меняется среда обитания, образ питания или накопленное количество переходит в качество.

Критические периоды проявляются в организме человека на протяжении всей его жизни: во внутриутробном и в постнатальном периоде:

Роды , представляют собой сложный и порой небезопасный для организма матери и ребенка процесс.

- 7-й день внутриутробного развития , когда оплодотворенная клетка, попав в полость матки, начинает внедряться в её слизистую оболочку, меняет среду обитания, образ питания, переключение с внутриклеточного питания на питание через кровь материнского организма, и внутри ее клетки идет усиленное размножение клеток (бластомеров), которые меняют свою дифференцировку. В это время имеется несколько пунктов, способствующих наступлению критического периода.

- развитие нервной системы эмбриона и плода - в начале на ступает период образования нервной трубки, затем развитие нервной системы наступает в период развития и деления мозговых пузырей. Сбой в делении мозговых пузырей может привести к отсутствию какого-то из отделов головного мозга, что повлечет за собой развитие уродства.

- закладка извилин и борозд , первые извилины появляются на 100-й день внутри утробного развития. И любое негативное воздействие на организм беременной женщины может привести к сбою в развитии эмбриона. Это может вызвать неправильную закладку коры больших полушарий, а без коры больших полушарий человек жить не может.

- дифференцировка клеток в коре больших полушарий головного мозга (расщепление клеток коры на шесть слоев), это происходит на 5–6-м месяцах внутриутробного развития.

  1. Что такое миелинизация?

Процесс активной миелинизации головного мозга, т.е. отложение миелиновой оболочки в отростках нервных клеток, или нейронов. Миелиновая оболочка отростков нервных клеток является дополнительной, и не все волокна нервной системы покрываются данной оболочкой. Дополнительной миелиновой оболочкой покрываются около половины отростков нервной системы.

7. В какой период жизни человека осуществляется миелинизация?

В последние два месяца внутриутробного развития начинается процесс активной миелинизации головного мозга, завершение этого процесса происходит после рождения.

Наиболее интенсивное покрытие отростков нейронов происходит в певые 2–3 года жизни ребенка. Завершается миелинизация к 10–12 годам жизни ребенка.


Обеспечивается олигодендроцитами. Каждый олигодендроглиоцит образует несколько «ножек», каждая из которых оборачивает часть какого-либо аксона. В результате один олигодендроцит связан с несколькими нейронами. Перехваты Ранвье здесь шире, чем на периферии. Согласно исследованию 2011 г. мощную миелиновую изоляцию в мозге получают наиболее активные аксоны, что позволяет им далее работать ещё эффективнее. Важную роль в этом процессе играет сигнализатор глутамат.

в миелинизированные волокна в НС проводят импульс быстрее, чем немиелинизоровнные

Миелиновая оболочка - это не клеточная мембрана. Оболочку образуют шванновские клетки, типа рулета, они создают области с высоким сопротивлением, и ослабляют ток утечки из аксона. Получается, что потенциал как бы перескакивает от перехваток перехвату, от этого и скорость проведения импульса становится выше.

8. Си́напс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками , причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончаниема ксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

9. Химический синапс - особый тип межклеточного контакта между нейроном и клеткой-мишенью. Состоит из трёх основных частей: нервного окончания с пресинаптической мембраной , постсинаптической мембраны клетки-мишени и синаптической щели между ними.

электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм).Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

При деполяризации пресинаптической терминали открываются потенциал-чувствительные кальциевые каналы, ионы кальция входят в пресинаптическую терминаль и запускают механизм слияния синаптических пузырьков с мембраной. В результате медиатор выходит в синаптическую щель и присоединяется к белкам-рецепторам постсинаптической мембраны, которые делятся на метаботропные и ионотропные. Первые связаны с G-белком и запускают каскад реакций внутриклеточной передачи сигнала. Вторые связаны с ионными каналами, которые открываются при связывании с ними нейромедиатора, что приводит к изменению мембранного потенциала. Медиатор действует в течение очень короткого времени, после чего разрушается специфическим ферментом. Например, в холинэргических синапсах фермент, разрушающий медиатор в синаптической щели - ацетилхолинэстераза. Одновременно часть медиатора может перемещаться с помощью белков-переносчиков через постсинаптическую мембрану (прямой захват) и в обратном направлении через пресинаптическую мембрану (обратный захват). В ряде случаев медиатор также поглощается соседними клетками нейроглии.


10. Нервно-мышечный синапс (мионевральный синапс) - эффекторное нервное окончание на скелетном мышечном волокне.

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с плазматической мембраной мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие «карманы». Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

1. Пресинаптическое окончание
2. Сарколемма
3. Синаптический пузырек
4. Никотиновый ацетилхолиновый рецептор
5. Митохондрия

11. Нейромедиа́торы (нейротрансмиттеры , посредники ) - биологически активные химические вещества, посредством которых осуществляется передача электрического импульса с нервной клетки через синаптическое пространство между нейронами . Нервный импульс, поступающий в пресинаптическое окончание, вызывает освобождение в синаптическую щель медиатора. Молекулы медиаторов реагируют со специфическими рецепторными белками клеточной мембраны, инициируя цепь биохимических реакций, вызывающих изменение трансмембранного тока ионов, что приводит к деполяризации мембраны и возникновению потенциала действия.

Нейромедиаторы являются, как и гормоны, первичными мессенджерами, но их высвобождение и механизм действия в химических синапсах сильно отличается от такового гормонов. В пресинаптической клетке везикулы, содержащие нейромедиатор, высвобождают его локально в очень маленький объём синаптической щели. Высвобожденный нейромедиатор затем диффундирует через щель и связывается с рецепторами на постсинаптической мембране. Диффузия является медленным процессом, но пересечение такой короткой дистанции, которая разделяет пре- и постсинаптические мембраны (0,1 мкм или меньше), происходит достаточно быстро и позволяет осуществлять быструю передачу сигнала между нейронами или между нейроном и мышцей.

Недостаток какого-либо из нейромедиаторов может вызывать разнообразные нарушения, например, различные виды депрессии. Также считается , что формирование зависимости от наркотиков и табака связано с тем, что при употреблении этих веществ задействуются механизмы производства нейромедиатора серотонина, а также других нейромедиаторов, блокирующие (вытесняющие) аналогичные естественные механизмы.

Классификация нейромедиаторов:

Традиционно нейромедиаторы относят к 3 группам: аминокислоты, пептиды, моноамины (в том числе катехоламины)

Аминокислоты :

§ Глутаминовая кислота (глутамат)

Катехоламины :

§ Адреналин

§ Норадреналин

§ Дофамин

Другие моноамины :

§ Серотонин

§ Гистамин

А также :

§ Ацетилхолин

§ Анандамид

§ Аспартат

§ Вазоактивный интестинальный пептид

§ Окситоцин

§ Триптамин

12. Нейроглия, или просто глия - сложный комплекс вспомогательных клеток нервной ткани, общный функциями и, частично, происхождением (исключение - микроглия).Глиальные клетки составляют специфическое микроокружение для нейронов, обеспечивая условия для генерации и передачи нервных импульсов, обеспечивают тканевый гомеостаз и нормальное функц-е клетки, а также осуществляя часть метаболических процессов самого нейрона. Основные функции Нейроглии:

Создание между кровью и нейронами гемато-энцефалического барьера, необходимого как для защиты нейронов, так и главным образом для регуляции поступления веществ в ЦНС и их выведения в кровь;

Обеспечение реактивных свойств нервной ткани (образование рубцов после травмы, участие в реакциях воспаления, в образовании опухолей)

Фагоцитоз (удаление погибших нейронов)

Изоляция синапсов (контактные участки между нейронами)

Источники онтогенетического развития нейроглии:появилась в процессе развития нервной системы из материала нервной трубки.

13. Макроглия (от макро... и греч. glнa - клей), клетки в мозге, заполняющие пространства между нервными клетками - нейронами - и окружающими их капиллярами. М. - основная ткань нейроглии, часто с ней отождествляемая; в отличие от микроглии, имеет общее с нейронами происхождение из нервной трубки . Более крупные клетки М., образующие астроглию и эпендиму, участвуют в деятельности гемато-энцефалического барьера, в реакции нервной ткани на повреждения и инфекции. Более мелкие, так называемые сателлитные клетки нейронов (олигодендроглия), участвуют в образовании миелиновых оболочек отростков нервных клеток - аксонов, обеспечивают нейроны питательными веществами, особенно в период усиленной активности мозга.

14. Эпе́ндима - тонкая эпителиальная мембрана, выстилающая стенки желудочков мозга и спинномозговой канал. Эпендима состоит из эпендимных клеток или эпендимоцитов, относящихся к одному из четырёх типов нейроглии. В эмбриогенезе эпендима образуется из эктодермы.

Отдельных нейронов обычно объединяются в пучки – нервы, а сами аксоны в этих пучках называются нервными волокнами. Природа позаботилась, чтобы волокна максимально хорошо справлялись с функцией проведения возбуждения в виде потенциалов действия. Для этой цели отдельные (аксоны отдельных нейронов) имеют специальные чехлы, выполненные из хорошего электрического изолятора (см. рис. 2.3). Чехол прерывается примерно через каждые 0,5-1,5 мм; это связано с тем, что отдельные участки чехла образуются в результате того, что специальные клетки в очень ранний период развития организма (в основном еще до рождения) обволакивают небольшие участки аксона. На рис. 2.9 показано, как это происходит. В периферических нервах миелин образуется клетками, которые получили название шванновских, а в головном это происходит за счет клеток олигодендроглии.

Этот процесс называется миелинизацией, так как в результате образуется чехол из вещества миелина, примерно на 2 / 3 состоящего из жира и являющегося хорошим электрическим изолятором. Исследователи придают очень большое значение процессу миелинизации в развитии мозга.

Известно, что у новорожденного ребенка миелинизировано примерно 2 / 3 волокон головного мозга. Примерно к 12 годам завершается следующий этап миелинизации. Это соответствует тому, что у ребенка уже формируется функция , он достаточно хорошо владеет собой. Вместе с тем полностью процесс миелинизации заканчивается только при завершении полового созревания. Таким образом, процесс миелинизации является показателем созревания ряда психических функций. В то же время известны заболевания человека, которые связаны с демиелинизацией нервных волокон, что сопровождается тяжелыми страданиями. К самым известным относится . Это заболевание развивается незаметно и очень медленно, последствием является паралич движения.

Почему же так важна миелинизация нервных волокон? Оказывается, миелинизированные волокна в сотни раз быстрее проводят возбуждение, чем немиелинизированные, т. е. нейронные сети нашего мозга могут работать с большей скоростью, а значит, более эффективно. Поэтому не миелинизируются в нашем организме только самые тонкие волокна (менее 1 мкм в диаметре), которые проводят возбуждение к медленно работающим органам кишечнику, мочевому пузырю и др. Как правило, не миелинизируются волокна, проводящие информацию о и температуре.

Как происходит распространение возбуждения по нервному волокну? Вначале разберем случай немиелинизированного нервного волокна. На рис. 2.10 показана схема нервного волокна. Возбужденный участок аксона характеризуется тем, что мембрана, обращенная к аксоплазме, заряжается положительно относительно экстраклеточной среды. Невозбужденные (покоящиеся) участки мембраны волокна отрицательны внутри. Между возбужденным и невозбужденным участками мембраны возникает разность потенциалов и начинает протекать ток. На рисунке это отражено линиями тока, пересекающими мембрану со стороны аксоплазмы,-выходящий ток, который деполяризует соседний невозбужденный участок волокна. Возбуждение движется по волокну только в одном направлении (показано стрелкой) и не может пойти в другую сторону, так как после возбуждения участка волокна в нем наступает рефрактерность – зона невозбудимости. Нам уже известно, что деполяризация приводит к открыванию потенциалзависимых натриевых каналов и в соседнем участке мембраны развивается . Затем натриевый канал инактивируется и закрывается, что и приводит к зоне невозбудимости волокна. Эта последовательность событий повторяется для каждого соседнего участка волокна. На каждое такое возбуждение тратится определенное время. Специальные исследования показали, что скорость проведения возбуждения немиелинизированных волокон пропорциональна их диаметру: чем больше диаметр, тем выше скорость движения импульсов. Например, немиелинизированные волокна, проводящие возбуждение со скоростью 100 – 120 м/с, должны иметь диаметр около 1000 мкм (1 мм).

У млекопитающих животных природа сохранила немиелинизированными только те возбуждение о боли, температуре, управляют медленно работающими внутренними органами мочевым волокна, которые проводят органами – мочевым пузырем, кишечником и пр. Практически все нервные волокна в человека имеют миелиновые чехлы. На рис. 2.11 показано, что если вдоль волокна, покрытого миелином, регистрировать прохождение возбуждения, то потенциал действия возникает только в перехватах Ранвье. Оказывается, миелин, являясь хорошим электрическим изолятором, не пропускает выхода линий тока от предшествующего возбужденного участка. Выход тока в этом случае возможен только через те участки мембраны, которые находятся на стыке между двумя участками миелина. Напомним, что каждый участок образован только одной клеткой, поэтому это стыки между двумя клетками, образующими соседние участки миелиновой оболочки. Мембрана аксона между двумя соседними миелиновыми чехлами оказывается не покрытой миелином (так называемый перехват Ранвье). Благодаря такому устройству мембрана волокна возбуждается только в местах перехватов Ранвье. Вследствие этого потенциал действия (возбуждение) как бы перескакивает через участки изолированной мембраны. Другими словами, возбуждение движется скачками от перехвата к перехвату. Это похоже на те волшебные сапоги-скороходы, которые надевал кот в известной сказке, мгновенно переносясь из одного места в другое.

Процесс миелинизации нервных волокон в онтогенезе тесно связан, как известно, с фосфолипидным обменом (Folch, 1955; Е. М. Крепе и др., 1963). Фосфолипиды - один из важнейших компонентов живой клетки.

Они входят в состав биомембран, участвуя в жизненно важных процессах клеточного метаболизма, включаясь в осуществление циклов внутриклеточных ферментативных реакций. В нервной ткани в процессе развития увеличивается относительное содержание (в % от суммы фосфолипидов) сфингомиелина, серинофосфатида, этаноламинфосфатида. Все эти фосфолипиды входят в состав миелина и поэтому накапливаются в ходе миелинизации нервных волокон. Отмечено также, что в период миелинизации концентрация, в частности, сфингомиелина и этаноламинофосфатида увеличивается не только в нервных проводниках, но и там, где нет миелина,- в митохондриях, ядрах, микросомах (см. обзор Е. М. Крепса, 1967).

Очевидно, скорость формирования и уровень развития холинергической передачи импульсов в волокнах шейных симпатических стволов (как, вероятно, и в волокнах других нервных проводников) в известной степени могут определяться интенсивностью фосфолипидного обмена и включением тех или иных фосфолипидов в онтогенезе в обменные процессы в период миелинизации. Основанием для такого предположения являются структурные особенности липидов, содержащих холин (сфингомиелин, лецитин), который является составной частью ацетилхолина.

По современным воззрениям, синтез ацетилхолина представляет собой цепь реакций, осуществляемых под действием ряда ферментов и требующих подведения источника химической энергии. Из пирувата при участии тиаминпирофосфата, фермента пируватдегидрогеназы, липолевой кислоты и коэнзима А образуется ацетилкоэнзим А.

Из ацетилкоэнзима А и холина путем реакции трансацетилирования (фермент холинацетилаза) образуется ацетилхолин. Предполагается, что холин и уксусная кислота, из которых синтезируется в нервных окончаниях ацетилхолин, являются продуктами его же распада.

Вместе с тем есть данные, непосредственно указывающие на то, что важным источником холина, который идет для синтеза ацетилхолина, участвующего в синаптической передаче возбуждения в ганглиях при раздражении преганглионарных волокон, является холин, получаемый за счет катаболизма холинсодержащих фосфолипидов, находящихся в пресинаптических окончаниях (Friesen et al., 1967). На возможность использования холина фосфолипидов для синтеза ацетилхолина указывали также Ries и Gersch (1953).

Согласно современным представлениям, синтезируемый ацетилхолин накапливается в специальных везикулах пресинаптических окончаний, которые при возбуждении передвигаются к мембране, лопаются и выделяют в синаптическую щель медиатор. Спонтанное опорожнение везикул с ацетилхолином происходит постоянно. Этот фоновый выброс квантов медиатора обусловливает возникновение так называемых миниатюрных потенциалов.

Предполагается, что фоновая импульсация играет роль в постоянной регуляции трофики тканей.


« Онтогенетическое формирование нейро-гуморальной
регуляции возбуждения в тканях организма и канцерогенез»,
В.С.Шевелева