Нобелевские лауреаты по медицине. Проблема на миллиарды: Нобелевскую премию по медицине дали за исследование биологических часов

Райнер Вайс, Барри Бариш и Кип Торн сайт

Нобелевская премия в области физики присуждена в 2017 году Райнеру Вайсу (1/2), Барри Баришу и Кипу Торну по (1/4) за изобретение детектора гравитационных волн и их исследование. Об этом Нобелевский комитет объявил во время специальной пресс-конференции в Стокгольме.

Премия в области физики присуждена с формулировкой: "За решающий вклад в LIGO-детектор и наблюдение гравитационных волн". LIGO-детектор – это лазерно-интерферометрическая гравитационно-волновая обсерватория, расположенная в США. Вокруг нее образовалось Международное научное сообщество LIGO. Нобелианты этого года основали этот проект.

Напомним, в прошлом году Нобелевскую премию по физике разделили Дэвид Таулес (1/2 от суммы награды), Данкан Холдейн (1/4) и Майкл Костерлиц (1/4) . Годом ранее награды были удостоены Такааки Кадзита (Япония) и Артур Манкдоналд (Канада) за . В 2014 году нобелевскими лауреатами за стали японцы Исомо Акасаки, Хироши Амано и гражданин США также японского происхождения Cюдзи Накамура.

Всего с 1901 года и до сегодняшнего дня Нобелевскую премию в области физики вручали 110 раз, отметив ею 204 ученых. Лауреатов высшей научной награды не объявляли только в 1916, 1931, 1934, 1940, 1941 и 1942 годах.

Самым молодым физиком, получившим "нобеля", был австралиец Лоуренс Брэгг. Вместе со своим отцом Уильямом Брэггом он был отмечен в 1915 году за исследования структуры кристаллов с помощью рентгеновских лучей. Ученому на момент оглашения результатов голосования Нобелевского комитета было всего 25 лет. А старейшему нобелевскому лауреату в области физики, американцу Рэймонду Дэвису, в день присуждения награды было 88 лет. Свою жизнь он посвятил астрофизике и смог обнаружить такие элементарные частицы, как космические нейтрино.

Среди лауреатов-физиков наименьшее количество женщин – всего две. Это Мария Кюри, которая вместе с мужем Пьером в 1903 году получила награду за исследования радиоактивности (она в принципе первой из женщин получила высшую научную награду) и Мария Гепперт-Майер – ее в 1963 году наградили за открытия, касающиеся оболочечной структуры ядра.

Лишь один физик получил Нобелевскую премию по физике дважды – американец Джон Бардин был отмечен в 1956 году за исследования полупроводников и в 1972 году за создание теории сверхпроводимости. При этом Мария Кюри своего второго "нобеля" получила в 1911 году, но уже в области химии – за открытие химических элементов радия и полония. Она по сей день остается единственным ученым получившим две премии в разных научных областях.

Нобелевскую премию по медицине и физиологии за 2017 год присудили троим американцам - Джеффри Холлу, Майклу Розбашу и Майклу Янгу - за исследования молекулярных механизмов, отвечающих за циркадные ритмы, то есть биологические часы с суточным периодом. Трансляция велась на сайте Нобелевского комитета.

В 1984 году Холл и Розбаш из Брандейского университета в Бостоне, а также Янг из Рокфеллеровского университета в Нью-Йорке работали с плодовыми мушками и обнаружили ген period, который задает ход биологическим часам. Позже ученые выяснили, что этот ген кодирует белок PER, который накапливается в организме за ночь и разрушается днем. Так, исследователи пришли к выводу уровень белка осциллирует в ходе 24-часового цикла.

Лауреаты Нобелевской премии предположили, что PER ингибирует активность гена period, формируя отрицательную обратную связь. В этом механизме принимает участие второй ген - timeless, кодирующий белок TIM. Последний связывается с PER, и образовавшийся комплекс внедряется в ядро клетки, где блокирует соответствующую ДНК. За деградацию PER отвечает белок DBT, который кодируется геном doubletime, обнаруженным Янгом.

«Циркадные или суточные ритмы проявляются практически у всех организмов на земле. Хотя открытия, удостоившиеся Нобелевской премии, сделаны на дрозофилах, но механизмы суточной регуляции очень древние, и они реализуются сходным образом у сильно различающихся организмов - таких, как цветы, насекомые и млекопитающие» - объяснил Forbes важность открытия, отмеченного Нобелевским комитетом, заведующий Лабораторией генно-клеточной терапии Института регенеративной медицины МГУ, кандидат медицинских наук Павел Макаревич. Он добавил, что таким образом исследования Холла, Розбаша и Янга полезны и для изучения циркадных ритмов людей: «В условиях нашей постоянно растущей цивилизации нарушение суточных ритмов снижает работоспособность людей, которые должны трудиться вне регулярной смены дня и ночи, а их ошибки могут привести к фатальным последствиям. Это многие новые области деятельности человека: суточные вахты, приполярные области и, главное, космос!»

Суммарные убытки американской экономики от последствий расстройства сна (включая отсутствие на работе, несчастные случаи на производстве и снижение продуктивности) уже в 2001 году оценивались в $150 млрд. В исследовании RAND по влиянию недосыпа на экономику США потери оценивались от $226 до $411 млрд на 2016 год в зависимости от сценария. Япония заняла второе место с оценкой убытков экономики в $75-139 млрд, потери Германии, Великобритании и Канады оценивались в десятки миллиардов. Правда стоит отметить, что недосып может быть вызван как бессонницей, так и физической невозможностью поспать положенное время вследствие плотного графика дел.

Таким образом, исследователи раскрыли секрет «внутренних часов клеток» и показали, как этот механизм функционирует. Автономные «внутренние часы» необходимы для адаптации и подготовки нашего организма для различных фаз дня, они контролируют сон, гормональный уровень, температуру и обмен веществ. Правильно работающие ритмы важны для здоровья человека, подчеркивали авторы работы. «Их открытия объясняют, как растения, животные и люди приспосабливают свой биологический ритм, чтобы синхронизироваться с ритмами Земли», - уточнили в Нобелевской ассамблее. Сам Розбаш в интервью Медицинскому институту Ховарда Хьюза в 2014 году говорил , что циркадная система обуславливает «восприимчивость к болезням, темпы роста и размеры фруктов». «Она затрагивает почти каждую часть организма человека», - отмечал ученый.

«После плодотворной работы трех лауреатов циркадная биология превратилась в обширную и динамично развивающуюся область исследований, что сказывается на нашем здоровье и благополучии», - пояснили представители Нобелевской премии. Нобелевский комитет держит в строгом секрете лауреатов премии до объявления. Так, во время пресс-конференции, на которой были объявлены получатели награды, член Нобелевской ассамблеи Каролинского института, который отвечает за присуждение премии, заявил, что когда он сообщил Росбашу, что тот получил награду, ученый ответил: «Вы шутите надо мной».

Церемония награждения лауреатов состоится 10 декабря - в день кончины шведского предпринимателя и изобретателя Альфреда Нобеля. Четыре из пяти завещанных им премий - в области физиологии или медицины, физики, химии и литературы - вручат в Стокгольме. Премия мира, согласно воле ее основателя, вручается в этот же день, но в Осло. Сумма каждой премии составит 9 млн шведских крон ($1 млн). Премию лауреатам вручит король Швеции Карл XVI Густав.

Жизнь на Земле подчиняется ритму, который задаёт вращение планеты вокруг себя и вокруг Солнца. У большинства живых организмов есть внутренние «часы» — механизмы, позволяющие жить сообразно этому ритму. Холл, Росбаш и Янг заглянули в клетку и увидели, как работают биологические часы.

Модельными организмами им служили мушки-дрозофилы. Генетикам удалось вычислить ген, контролирующий ритм жизни насекомых. Оказалось, что он кодирует белок, который накапливается в клетках по ночам и медленно утилизируется днём. Позже обнаружилось еще несколько белков, участвующих в регуляции циркадных ритмов. Сейчас биологам ясно, что механизм, регулирующий распорядок дня, один у всех живых организмов, от растений до людей. Этот механизм управляет активностью, содержанием гормонов, температурой тела и обменом веществ, которые меняются в зависимости от времени суток. Со времени открытий Холла, Росбаша и Янга появилось много данных о том, как резкие или постоянные отклонения образа жизни от заданного «биологическими часами» может быть опасно для здоровья.

Первые доказательства того, что у живых существ есть «чутьё времени» появились еще в XVIII веке: тогда ранцузский натуралист Жан Жак д"Орту де Мэран показал, что мимоза продолжает открывать цветки утром и закрывать вечером, даже находясь в темноте круглые сутки. Дальнейшие исследование показали, что время суток чувствуют не только растения. но и животные, в том числе и люди. Периодическую смену физиологических показателей и поведения в течение суток назвали циркадными ритмами — от лат. circa — круг и dies — день.

В 70-е годы прошлого века Сеймур Бенцер и его ученик Рональд Конопка нашли ген, контролирующий циркадные ритмы у дрозофил, и надвали его period. В 1984 году Джеффри Холл и Майкл Росбаш, работавшие в университете Бранделиса в Бостоне, и Майкл Янг из Рокфеллеровского университета Нью-Йорка, изолировали ген period , а затем Холл и Росбаш выяснили, чем занимается закодированный в нём белок, PER, — а он накапливается в клетке по ночам и тратится весь день, поэтому по его концентрации можно судить о времени суток.

Эта система, как предположили Холл и Росбаш, регулирует сама себя: белок PER блокирует активность гена period, поэтому синтез белка останавливается, как только его становится слишком много, и возобновляется по мере расходования белка. Оставалось только ответить на вопрос о том, как белок попадает в ядро клетки — ведь только там он может влиять на активность гена.

В 1994 году Янг обнаружил второй важный для циркадных ритмов ген — timeless, кодирующий белок TIM, который помогает белку PER преодолевать мембрану ядра и блокировать ген period. Еще один ген, doubletime , оказался ответственен за белок DBT, который замедляет накопление белка PER — так, чтобы цикл его синтеза и пауз между ними растянулся на 24 часа. В последующие годы было открыто много других генов и белков — частей тонкого механизма «биологических часов», в том числе и такие, которые позволяют «подводить стрелки» — белки, активность которых зависит от освещённости.

Циркадные ритмы регулируют самые разные аспекты жизни нашего тела, в том числе и на генетическом уровне: некоторые гены активнее по ночам, некоторые — днём. Благодаря открытиям лауреатов 2017 года биология циркадных ритмов превратилась в обширную научную дисциплину; каждый год пишутся десятки научных работ о том, как устроены «биологические часы» у разных видов, в том числе и человека.

Объявлением лауреатов премии по физиологии и медицине началась в понедельник в Стокгольме ежегодная Нобелевская неделя. Нобелевский комитет заявил, что в этой номинации премии за 2017 год удостоены исследователи Джеффри Холл, Майкл Росбаш и Майкл Янг за

открытие молекулярных механизмов, контролирующих циркадные ритмы — циклические колебания интенсивности различных биологических процессов, связанные со сменой дня и ночи.

Жизнь на Земле адаптирована к вращению планеты. Уже давно было установлено, что все живые организмы, от растений до людей, обладают биологическими часами, которые позволяют организму приспосабливаться к изменениям, происходящим в течение суток в окружающей среде. Первые наблюдения в этой области были сделаны еще в начале нашей эры, с XVIII века начались более тщательные исследования.

К XX веку циркадные ритмы растений и животных были изучены достаточно полно, но оставалось секретом, как именно работают «внутренние часы». Этот секрет удалось раскрыть американским генетикам и хронобиологам Холлу, Росбашу и Янгу.

Модельным организмом для исследований стали плодовые мушки. Команде исследователей удалось обнаружить у них ген, контролирующий биологические ритмы.

Ученые выяснили, что этот ген кодирует белок, который накапливается в клетках на протяжении ночи и разрушается в течение дня.

Впоследствии они выделили и другие элементы, отвечающие за саморегуляцию «клеточных часов» и доказали, что биологические часы аналогичным образом работают и у других многоклеточных организмов, включая людей.

Внутренние часы адаптируют нашу физиологию к совершенно разному времени суток. От них зависит наше поведение, сон, метаболизм, температура тела, уровни гормонов. Наше самочувствие ухудшается, когда появляется несоответствие между работой внутренних часов и окружающей средой. Так, на резкую смену часового пояса организм реагирует бессонницей, усталостью, головной болью. Синдром смены часового пояса, джетлаг, уже несколько десятков лет входит в Международную классификацию болезней. Несовпадение образа жизни с ритмами, диктуемыми организмом, приводит к повышению риска развития множества заболеваний.

Первые задокументированные эксперименты с внутренними часами провел в XVIII веке французский астроном Жан-Жак де Меран. Он обнаружил, что листья мимозы опускаются с приходом темноты и вновь расправляются утром. Когда де Меран решил проверить, как растение будет вести себя без доступа света, оказалось, что листья мимозы опускались и поднимались независимо от освещения - эти явления были связаны с изменением времени суток.

В дальнейшем ученые выяснили, что подобные явления, подстраивающие организм под изменения условий в течение суток, есть и у других живых организмов.

Они были названы циркадными ритмами, от слов circa - «вокруг» и dies - «день». В 1970-х годах физик и молекулярный биолог Сеймур Бензер задался вопросом, можно ли идентифицировать ген, контролирующий циркадные ритмы. Ему удалось это сделать, ген получил название period, но механизм контроля оставался неизвестен.

В 1984 году узнать его удалось Холлу, Ройбашу и Янгу.

Они изолировали необходимый ген и выяснили, что он отвечает за процесс накопления и разрушения в клетках ассоциированного с ним белка (PER) в зависимости от времени суток.

Следующей задачей исследователей стало разобраться, как возникают и поддерживаются циркадные колебания. Холл и Росбаш предположили, что накопление белка блокирует работу гена, тем самым регулируя содержание белка в клетках.

Однако, чтобы заблокировать работу гена, белок, образующийся в цитоплазме, должен добраться до ядра клетки, где находится генетический материал. Оказалось, что PER действительно ночью встраивается в ядро, но как он туда попадает?

В 1994 году Янг открыл еще один ген, timeless, кодирующий белок TIM, необходимый для нормальных циркадных ритмов.

Он выяснил, что когда TIM связывается с PER, они оказываются способны проникнуть в ядро клетки, где и блокируют работу гена period благодаря ингибированию по принципу обратной связи.

Но некоторые вопросы все еще оставались без ответа. Например, что контролировало частоту циркадных колебаний? Янг в дальнейшем обнаружил еще один ген, doubletime, отвечающий за образование белка DBT, который задерживал накопление белка PER. Все эти открытия помогли понять, как колебания приспособлены к 24-часовому суточному циклу.

Впоследствии Холл, Ройбаш и Янг сделали еще несколько открытий, дополняющих и уточняющих предыдущие.

Например, они выявили ряд белков, необходимых для активации гена period, а также раскрыли механизм, с помощью которого внутренние часы синхронизируются со светом.

Наиболее вероятными претендентами на Нобелевскую премию в этой области были названы вирусолог Юань Чанг и ее муж, онколог Патрик Мур, открывшие ассоциированный с саркомой Капоши вирус герпеса восьмого типа; профессор Льюис Кантли, обнаруживший сигнальные пути ферментов фосфоинозитид-3-киназ и изучивший их роль в росте опухолей и профессор Карл Фристон, внесший серьезный вклад в анализ данных, полученных методами визуализации мозга.

В 2016 году лауреатом премии японец Есинори Осуми за открытие механизма аутофагии — процесса деградации и переработки внутриклеточного мусора.

2 октября 2017 года Нобелевский комитет огласил имена лауреатов Нобелевской премии 2017 года по физиологии и медицине. 9 млн шведских крон разделят поровну американские биологи Джеффри Холл (Jeffrey C. Hall), Майкл Розбаш (Michael Rosbash) и Майкл Янг (Michael W. Young) за своё открытие молекулярного механизма работы биологических часов, то есть бесконечно зацикленного циркадного ритма жизнедеятельности организмов, в том числе человека.

За миллионы лет жизнь адаптировалась к вращению планеты. Давным-давно известно, что у нас есть внутренние биологические часы, которые предвосхищают и адаптируются ко времени суток. Вечером хочется заснуть, а утром - проснуться. Гормоны выбрасываются в кровь строго по расписанию, а способности/поведение человека - координация, скорость реакции - тоже зависят от времени дня. Но как работают эти внутренние часы?

Открытие биологических часов приписывают французскому астроному Жан-Жаку де Мерану, который в 18 веке обратил внимание, что листья мимозы раскрываются к Солнцу днём и закрываются ночью. Он задался вопросом, как будет вести себя растение, если поместить его в кромешную темноту. Оказалось, что даже в темноте мимоза следовала плану - у неё как будто были внутренние часы.

Позже такие биоритмы нашли у других растений, животных и человека. Практически все живые организмы на планете реагируют на Солнце: циркадный ритм намертво встроен в земную жизнь, в метаболизм всего живого на планете. Но каким образом работает данный механизм - оставалось загадкой.

Нобелевские лауреаты изолировали ген, который контролирует дневной биологический ритм, у мух-дрозофил (у человека и мухи немало общих генов в силу наличия общих предков). Своё первое открытие они сделали 1984 году. Открытый ген назвали period .

Ген period кодирует протеин PER, который накапливается в клетках ночью и разрушается в течение дня. Концентрация белка PER изменяется по 24-часовому графику в соответствии с циркадным ритмом.

Затем они идентифицировали дополнительные компоненты белка и полностью раскрыли самодостаточный внутриклеточный механизм циркадного ритма - в этой уникальной реакции белок PER блокирует активность гена period , то есть PER блокирует синтез самого себя, но постепенно разрушается в течение дня (см. схему вверху). Это самодостаточный бесконечно зацикленный механизм. Он работает по такому же принципу в других многоклеточных организмах.

После открытия гена, соответствующего протеина и общего механизма работы внутренних часов не хватало ещё нескольких кусочков головоломки. Учёные знали, что белок PER ночью накапливается в ядре клетки. Они знали также, что соответствующая mRNA производится в цитоплазме. Непонятно было, как белок попадает из цитоплазмы в ядро клетки. В 1994 году Майкл Янг открыл ещё один ген timeless , который кодирует белок TIM, тоже необходимый для нормальной работы внутренних часов. Он доказал, что если TIM присоединяется к PER, то пара протеинов способна внедриться в ядро клетки, где они и блокируют активность гена period , таким образом замыкая бесконечный цикл производства белка PER.

Выяснилось, что этот механизм с изысканной точностью адаптирует наши внутренние часы ко времени суток. Он регулирует разные критические функции организма, в том числе поведение человека, уровни гормонов, сон, температуру тела и метаболизм. Человек плохо себя чувствует, если наблюдается временное несоответствие между внешними условиями и его внутренними биологическими часами, например, при путешествии на большие расстояния в разные часовые пояса. Есть также доказательства, что хроническое несоответствие образа жизни и внутренних часов связано с повышенным риском возникновения различных заболеваний, в том числе диабета, ожирения, рака и сердечно-сосудистых заболеваний.

Позже Майкл Янг идентифицировал ещё один ген doubletime , кодирующий белок DBT, который замедляет накопление белка PER в клетке и позволяет организму более точно подстраиваться под 24-часовые сутки.

В последующие годы нынешние нобелевские лауреаты более подробно осветили участие в циркадном ритме других молекулярных компонентов, они нашли дополнительные протеины, которые участвуют в активации гена period , а также выяснили механизмы, как свет помогает синхронизировать биологические часы с внешними условиями среды.

Слева направо: Майкл Розбаш, Майкл Янг, Джеффри Холл

Исследование механизма внутренних часов ещё далеко не закончено. Мы знаем только основные части механизма. Циркадная биология - изучение внутренних часов и циркадного ритма - выделилась в отдельное бурно развивающееся направление исследований. И всё это произошло благодаря трём нынешним лауреатам Нобелевской премии.

Специалисты уже несколько лет обсуждали, что за молекулярный механизм циркадных ритмов дадут Нобелевскую премию - и вот это событие наконец произошло.