Этапы эволюционного развития нервной системы. Основные этапы эволюции ЦНС

Лекция №1

План лекции:

1.Филогенез нервной системы.

2. Характеристика диффузного, ганглионарного, трубчатого типов нервной системы.

3. Общая характеристика онтогенеза.

4. Онтогенез нервной системы.

5. Особенности строения нервной системы человека и его возрастная характеристика.

Строение организма человека нельзя понять без учёта его исторического развития, его эволюции, поскольку природа, а следовательно и человек, как высший продукт природы, как наиболее высокоорганизованная форма живой материи, непрерывно изменяется.

Теория эволюции живой природы по Ч. Дарвину сводится к тому, что в результате борьбы за существование происходит отбор животных, наиболее приспособленных к определённой среде. Без понимания законов эволюции мы не можем понять и законов индивидуального развития (А.Н. Северцов).

Изменения организма, происходящие при становлении его в историческом плане называется филогенезом, а при индивидуальном развитии – онтогенезом.

Эволюция структурной и функциональной организации нервной системы должна рассматриваться как с позиции совершенствования отдельных её элементов – нервных клеток, так и с позиции совершенствования общих свойств, обеспечивающих приспособительное поведение.

В развитии нервной системы принято выделять три этапа (или три типа) нервной системы: диффузный, узловой (ганглионарный) и трубчатый.

Первый этап развития нервной системы – диффузный, характерный для типа кишечнополостных (медуза). Этот тип включает разные формы – прикреплённые к субстрату (неподвижные) и ведущие свободный образ жизни.

Независимо от формы кишечнополостных тип нервной системы характеризуется как диффузный, нервные клетки которого значительно отличаются от нейронов позвоночных. В частности, в них отсутствует субстанция Нисселя, ядро не дифференцированно, количество отростков невелико, их длина незначительна. Короткоотросчатые нейроны образуют «локальные нервные» сети, скорость распространения возбуждения, по волокнам которых низкая и составляет сотые и десятые доли метра в секунду; так как требует многократного переключения в целях короткоотросчатых элементов.

В диффузной нервной системе имеются не только «локальные нервные» сети, но и сквозные проводящие пути, проводящие возбуждение на сравнительно большое расстояние, обеспечивая определённую «адресность» в проведении возбуждения. Передача возбуждения от нейронов к нейрону осуществляется не только синоптическим путём, но и через посредство протоплазматических мостиков. Нейроны слабо дифференцированы по функции. Например: у гидроидов описаны так называемые нервно-сократительные элементы, где соединена функция нервных и мышечных клеток. Таким образом, основной особенностью диффузной нервной системы является неопределённость связей, отсутствие чётко выраженных входов и выходов отростков, надёжности функционирования. Энергетически эта система мало эффективна.

Вторым этапом развития нервной системы было формирование узлового (ганглионарного) типа нервной системы, характерного для типа членистоногих (насекомые, крабы). Эта система имеет существенное отличие от диффузной: увеличивается число нейронов, возрастает разнообразие их видов, возникает большое количество вариаций нейронов, отличающихся по размеру, форме, числу отростков; происходит формирование нервных узлов, что приводит к обособлению и структурной дифференциации трёх основных видов нейронов: афферентных, ассоциативных и эффекторных, у которых все отростки получают общий выход и тело, такого ставшего униполярным, нейрона выходит из периферического узла. Множественные межнейронные контакты осуществляются в толще узла – в густой сети разветвлений отростков, называемой нейропилем. Диаметр их достигает 800-900 мкм, возрастает скорость проведения возбуждения по ним. Проходя вдоль нервной цепочки без перерыва, они обеспечивают срочные реакции, чаще всего оборонительного типа. В пределах узловой нервной системы имеются также волокна, покрытые многослойной оболочкой, напоминающей миелиновую оболочку нервных волокон позвоночных, скорость проведения в которых намного выше, чем в аксонах такого же диаметра беспозвоночных, но меньше, чем у миелинизированных аксонов большинства позвоночных.

Третий этап – нервная трубчатая система. Это высший этап структурной и функциональной эволюции нервной системы.

Все позвоночные, начиная от самых примитивных форм (ланцетных) и заканчивая человеком, имеют центральную нервную систему в виде нервной трубки, оканчивающейся в головном конце большой ганглионарной массой – головным мозгом. Центральная нервная система позвоночных состоит из спинного и головного мозга. Структурно трубчатый вид имеет только спинной мозг. Головной мозг, развиваясь как передний отдел трубки, и проходя стадии мозговых пузырей, к моменту созревания претерпевает значительные конфигурационные изменения при существенном нарастании объёма.

Спинной мозг при своей морфологической непрерывности в значительной степени сохраняет свойство сегментарности метамерности брюшной нервной цепочки узловой нервной системы.

С прогрессирующим усложнением структуры и функции головного мозга нарастает его зависимость от головного мозга, у млекопитающих дополняется кортикализацией – формированием и совершенствованием коры больших полушарий. Кора мозга обладает рядом свойств, характерных только для неё. Построенная по экранному принципу кора больших полушарий содержит не только специфические проекционные (соматические, зрительные, слуховые и т.д.), но и значительные по площади ассоциативные зоны, которые служат для корреляции различных сенсорных влияний, их интеграции с прошлым опытом для того, чтобы по моторным путям передать сформированные процессы возбуждения и торможения для поведенческих актов.

Таким образом, эволюция нервной системы идёт по линии совершенствования базовых и формирования новых прогрессивных свойств. К важнейшим процессам на этом пути относятся централизация, специализация кортикализация нервной системы. Под централизацией понимается группирование нервных элементов в морфофункциональные конгломерации в стратегических пунктах тела. Централизация, наметившаяся у кишечнополостных в виде сгущения нейронов, более ярко выражена у беспозвоночных. У них появляются нервные узлы и аппарат ортогона, формируется брюшная нервная цепочка и головные ганглии.

На этапе трубчатой нервной системы централизация получает дальнейшее развитие. Возникший осевой градиент тела – решающий момент формирования головного отдела центральной нервной системы. Централизация – это не только формирование головного, переднего отдела центральной нервной системы, но и подчинение каудальных отделов центральной нервной системы более ростральным.

На уровне млекопитающих развивается кортикализация – процесс формирования новой коры. В отличие от ганглионарных структур, кора головного мозга обладает рядом свойств, характерных только для неё. Важнейшим из этих свойств является её чрезвычайная пластичность и надёжность, как структурная, так и функциональная.

Проанализировав эволюционные закономерности морфрлогических преобразований мозга и нервно-психической деятельности И.М. Сеченов сформулировал принцип этапности развития нервной системы. По его гипотезе, в процессе саморазвития мозг последовательно проходит критические этапы усложнения и дифференцировки, как в морфологическом, так и в функциональном отношении. Общая тенденция эволюции мозга в онтогенезе и филогенезе осуществляется по универсальной схеме: от диффузных, слабодифференцированных форм деятельности к более специализированным локальным (дискретным) формам функционирования. В филогенезе, несомненно, существует тенденция, действующая в направлении совершенствования морфофункциональной организации мозга и соответственно повышения результативности его нервной (психической) деятельности. Биологическое совершенствование организмов состоит в развитии у них «способности» со всенарастающей эффективностью овладевать, «расширять» сферу окружающей среды, становясь в тоже время всё менее зависимым от неё.

Онтогенез (ontos – существо, genesis – развитие) – полный цикл индивидуального развития каждой особи, в основе которого лежит реализация наследственной информации на всех стадиях существования в определённых условиях внешней среды. Онтогенез начинается с образования зиготы и заканчивается смертью. Выделяют два типа онтогенеза: 1) непрямой (встречается в личиночной форме) и 2) прямой (встречается в неличиночной и внутриутробных формах).

Непрямой (личиночный) тип развития.

В этом случае организм в своём развитии имеет одну или несколько стадий. Личинки ведут активный образ жизни, сами добывают пищу. У личинок имеется ряд провизорных органов (временных органов), которые отсутствуют во взрослом состоянии. Процесс превращения личиночной стадии во взрослый организм называется метаморфозом (или превращением). Личинки, претерпевая превращения, могут резко отличаться от взрослой особи. У зародышей неличиностного типа развития (рыбы, птицы и т.д.) имеются провизорные органы.

Внутриутробный тип развития характерен для человека и высших млекопитающих.

Выделяют два периода онтогенеза: эмбриональный, постэмбриональный.

В эмбриональном периоде выделяют несколько стадий: зиготы, дробления, бластула, гаструляции, гистогенеза и органогенеза. Зигота – представляет собой одноклеточную стадию многоклеточного организма, образуется в результате слияния гамет. Дробление – начальный этап развития оплодотворённого яйца (зиготы), который заканчивается образованием бластулы. Следующая стадия у многоклеточных – гаструляция. Она характеризуется образованием двух или трёх слоёв тела зародыша – зародышевых листков. В процессе гаструляции различают два этапа: 1) образование эктодермы и энтодермы – двухслойный зародыш; 2) образование мезодермы (трёхслойный зародыш0. Третий (средний) листок или мезодерма образуется между наружными и внутренними листками.

У кишечнополостных гаструляция заканчивается на стадии двух зародышевых листков, у более высокоорганизованных животных и человека развиваются три зародышевых листка.

Гистогенез – процесс формирования тканей. Из эктодермы развиваются ткани нервной системы. Органогенез – процесс формирования органов. Завершается к концу эмбрионального развития.

Выделяют критические периоды эмбрионального развития – это периоды, когда зародыш наиболее чувствителен к действию повреждающих разнообразных факторов, что может нарушить его нормальное развитие. Дифференциация и усложнение тканей и органов продолжается и в постэмбриональном онтогенезе.

На основании фактов связи между процессами онтогенетического развития потомков и филогенеза предков был сформулирован биогенетический закон Мюллера-Геккеля: онтогенетическое (особенно зародышевое) развитие индивида сокращено и сжато повторяет (рекапитулирует) основные этапы развития всего ряда предковых форм – филогенеза. При этом, в значительно большей степени рекапитулируют те признаки, которые развиваются в форме «надстроек» конечных стадий развития, т.е. более близких предков; признаки отдалённых предков в большей степени редуцируются.

Закладка нервной системы человека происходит на первой неделе внутриутробного развития из эктодермы в виде медуллярной пластинки, из которой в дальнейшем формируется медуллярная трубка. Передний конец её на второй неделе внутриутробного развития утолщается. В результате роста передней части медуллярной трубки на 5-6 неделе образуются мозговые пузыри, из которых формируются известные 5 частей головного мозга: 1) два полушария, связанные мозолистым телом (telencephalon); 2) промежуточный мозг (diencephalon; 3) средний мозг;

4) мостомозжечёк (metencephalon); 5) продолговатый мозг (myencephalon), непосредственно переходящий в спинной мозг.

Различные отделы головного мозга имеют собственные закономерности сроков и темпов развития. Так как внутренний слой мозговых пузырей растёт значительно медленнее, чем корковый, то избыток роста ведёт к образованию складок и борозд. Рост и дифференцировка ядер гипоталамуса, мозжечка наиболее интенсивные на 4 и 5 месяце внутриутробного развития. Развитие коры головного мозга особенно активно лишь в последние месяцы на 6 месяце внутриутробного развития, начинает отчётливо выявляться функциональное превалирование высших отделов над бульбоспинальными.

Сложный процесс формирования головного мозга не заканчивается к моменту рождения. Головной мозг у новорожденных отличается относительно большой величиной, крупные борозды и извилины хорошо выраженные, но имеют малую высоту и глубину. Мелких борозд относительно мало, они появляются после рождения. Размеры лобной доли относительно меньше, чем у взрослого человека, а затылочный – больше. Мозжечок развит слабо, характеризуется малой толщиной, малыми размерами полушарий и поверхностными бороздами. Боковые желудочки относительно велики, растянуты.

С возрастом изменяется топографическое положение, форма, количество и размеры борозд и извилин головного мозга. Особенно интенсивно этот процесс идёт на первом году жизни ребёнка. После 5 лет развитие борозд и извилин продолжается, но гораздо медленнее. Окружность полушарий в 10-11 лет по сравнению с новорожденными увеличивается в 1,2 раза, длина борозд – в 2 раза, а площадь коры – в 3,5.

К рождению ребёнка головной мозг относительно массы тела большой. Показатели массы мозга на 1 кг массы тела составляет: у новорожденного – 1/8-1/9, у ребёнка 1 года – 1/11-1/12, у ребёнка 5 лет – 1/13-1/14, у взрослого – 1/40. Таким образом, на 1 кг массы новорожденного приходится мозгового вещества 109г, у взрослого – всего 20-25г. Масса мозга удваивается к 9 месяцам, утраивается к 3 годам, а затем с 6-7 лет скорость нарастания замедляется.

У новорожденных серое вещество плохо дифференцированно от белого. Это объясняется тем, что нервные клетки лежат не только близко друг друга по поверхности, но и располагаются в значительном количестве в пределах белого вещества. Кроме того, практически отсутвует миелиновая оболочка.

Наибольшая интенсивность деления нервных клеток головного мозга приходится на период от 10-й до 18-й недели внутриутробного развития, что модно считать критическим периодом формирования центральной нервной системы.

Позднее начинается ускоренное деление глиальных клеток. Если число нервных клеток мозга взрослого человека принять за 100%, то к моменту рождения ребёнка сформировано лишь 25% клеток, к 6-месячному возрасту их будет уже 66%, а к годовалому – 90-95%.

Процесс дифференциации нервных клеток сводится к значительному росту аксонов, их миелинизации, росту и увеличинению разветвлённости дендритов, образованию непосредственных контактов между отростками нервных клеток (так называемых межневральных синапсов). Темп развития нервной системы тем быстрее, чем меньше ребёнок. Особенно энергично он протекает в течение первых 3 месяцев жизни. Дифференцировка нервных клеток достигается к 3 годам, а к 8 годам кора головного мозга по строению похожа на кору взрослого человека.

Развитие миелиновой оболочки происходит от тела нервных клеток к периферии. Миелинизация различных путей в центральной нервной системе происходит в следующем порядке:

Вестибулоспинальный путь, являющийся наиболее примитивным, начинает обнаруживать миенилизацию с 6 месяца внутриутробного развития, руброспинальный – с 7-8 месяца, а кортикоспинальный – лишь после рождения. Наиболее интенсивно Миелинизация происходит в конце первого – начале второго года после рождения, когда ребёнок начинает ходить. В целом, Миелинизация завершается к 3-5 годам постнатального развития. Однако и в старшем детском возрасте отдельные волокна в головном мозге (особенно в коре) всё ещё остаются не покрытыми миелиновой оболочкой. Окончательная Миелинизация нервных волокон заканчивается в старшем возрасте (например, миенилизация тангенциальных путей коры больших полушарий – к 30-40 годам). Незавершённость процесса миелинизации нервных волокон определяет и относительно низкую скорость проведения возбуждения по ним.

Развитие нервных путей и окончаний во внутриутробном периоде и после рождения идёт центростремительно в цефало-каудальном направлении. О количественном развитии нервных окончаний судят по содержанию ацетилнейраминовой кислоты, накапливающейся в области сформированного нервного окончания. Биохимические данные говорят о преимущественно постнатальном формировании большинства нервных окончаний.

Твёрдая мозговая оболочка у новорожденных относительно тонкая, сращена с костями основания черепа на большой площадке. Венозные пазухи тонкостенные и относительно уже, чем у взрослых. Мягкая и паутинная оболочки мозга новорожденных исключительно тонки, субдуральное и субарахноидальное пространства уменьшенные. Цистерны, расположенные на основании мозга, напротив, относительно велики. Водопровод мозга (сильвиев водопровод) шире, чем у взрослых.

Спинной мозг в эмбриональном периоде заполняет позвоночный канал на всём его протяжении. Начиная с 3-го месяца внутриутробного периода, позвоночный столб растёт быстрее спинного мозга. Спинной мозг к рождению более развит, чем головной.У новорожденного мозговой конус находится на уровне 113-го поясничного позвонка, а у взрослого – на уровне 1-11 поясных позвонков. Шейное и поясничное утолщение спинного мозга у новорожденных не определяются и начинают контурироваться после 3 лет жизни. Длина спинного мозга у новорожденных составляет 30% длины тела, у ребёнка 1 года – 27%, а у ребёнка 3 лет – 21%. К 10-летнему возрасту, начальная длина его удваивается. У мужчин длина спинного мозга достигает в среднем 45 см, у женщин – 43 см. Отделы спинного мозга растут в длину неодинаково, больше других увеличивается грудной отдел, меньше шейный, и ещё меньше – поясничный.

Средний вес спинного мозга у новорожденных примерно 3,2 г, к году его вес удваивается, к 3-5 годам – утраивается. У взрослого спинной мозг весит около 30 г, составляя 1/1848 часть всего тела. По отношению к головному мозгу, вес спинного мозга составляет у новорожденных 1%, а у взрослых – 2%.

Таким образом, в онтогенезе различные отделы нервной системы организации человека интегрируют в единую функциональную систему, деятельность которой с возрастом совершенствуется и усложняется. Наиболее интенсивное развитие центральной нервной системы происходит у детей раннего возраста. И.П. Павлов подчёркивал, что характер высшей нервной деятельности является синтезом факторов наследственности и условий воспитания. Считается, что общее развитие умственных способностей человека на 50% происходит в течение первых 4 лет жизни, на 1/3 – между 4 и 8 годами, а на остальные 20% - между 8 и 17 годами. По приблизительным оценкам, за всю жизнь мозг среднего человека усваивает 10 15 (десять квадриллионов) бит информации, то становится понятным, что именно на ранний возраст падает наибольшая нагрузка, и именно в этот период неблагоприятные факторы могут вызывать более тяжёлые повреждения центральной нервной системы.

Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одно­клеточный слой вследствие образования и деления медуллярной трубки. В эволюции нервной системы схематично можно выде­лить такие этапы.

1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединением отростчатых клеток и равномерно распределяется по всему телу, сгущаясь вокруг ро­товых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная систе­ма проводит возбуждения диффузно, по всем направлениям, обеспечивая глобальные рефлекторные реакции. На дальней­ших этапах развития многоклеточных животных она теряет зна­чение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.

2. Ганглиозная нервная система (в червеобразных) синаптическая, проводит возбуждение в одном направлении и обе­спечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные ор­ганы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией распо­лагаются группами или узлами ганглиями, поэтому получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека этот тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.

3. Трубчатая нервная система (в позвоночных) отличается от нервной си­стемы червеобразных тем, что в позвоночных возникли скелетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие цен­тральной нервной системы, отдельные части и структуры которой формиру­ются в процессе эволюции постепенно и в определенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозго­вой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последователь­но развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhombencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментируется на два: задний (metencephalon) и продолговатый (myelencephalon). Таким образом, стадия трех пузырей сменяется стадией образования пяти пузырей, из которых формируются разные отделы центральной нервной системы: из telencephalon большие полушария мозга, diencephalon промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг.

Эволюция нервной системы позвоночных обусловила развитие новой системы, способной образовывать временные соединения функционирую­щих элементов, которые обеспечиваются расчленением центральных нерв­ных аппаратов на отдельные функциональные единицы нейроны. Следо­вательно, с возникновением скелетной моторики в позвоночных развилась нейронная цереброспинальная нервная система, которой подчинены более древние образования, что сохранились. Дальнейшее развитие централь­ной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или соподчинения. Суть принципа субординации состоит в том, что эволюционно новые нервные образования не только ре­гулируют функции более древних, низших нервных структур, а и соподчи­няют их себе путем торможения или возбуждения. Причем субординация существует не только между новыми и древними функциями, между голов­ным и спинным мозгом, но и наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в определенной степени даже между шейным и поясничным утолщениями спинного мозга. С появлением новых функций нервной системы древние не исчезают. При выпадении новых функций появляются древние формы реакции, обусловленные функцио­нированием более древних структур. Примером может служить появление субкортикальных или стопных патологических рефлексов при поражении коры большого мозга.

Таким образом, в процессе эволюции нервной системы можно выделить несколько основных этапов, которые являются основными в ее морфологи­ческом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию в хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны с принципом субор­динации и возрастающей специализацией центров и корковых структур. Функциональной эволюции соответствует эволюция морфологическая. При этом филогенетически более молодые структуры мозга являются более ранимыми и в меньшей степени обладают способностью к восстановлению.

Нервная система имеет нейронный тип строения, т. е. состоит из нерв­ных клеток - нейронов, которые развиваются из нейробластов.

Нейрон является основной морфологической, генетической и функцио­нальной единицей нервной системы. Он имеет тело (перикарион) и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всегда в клетке лишь один. Дендриты - это большое количество коротких древообразных разветвленных отростков. Они передают нервные импульсы по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нерв­ных клеток являются хроматофильная субстанция и нейрофибриллы. Хроматофильная субстанция имеет вид разных по размерам комочков и зерен, содержится в теле и дендритах нейронов и никогда не выявляется в аксонах и начальных сегментах последних. Она является показателем функциональ­ного состояния нейрона: исчезает в случае истощения нервной клетки и вос­станавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в теле клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Гольджи), митохондрии и другие органоиды. Сосредоточение тел нервных кле­ток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В границах центральной нерв­ной системы они образуют проводящие пути - белое вещество мозга. Нервные волокна состоят из осевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). В зависимости от строения оболочки, нервные во­локна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна входят в состав головного и спинного мозга, а также периферических нервов. Они состоят из осевого цилиндра, миелиновой оболочки, нейролемы (шванновской оболочки) и базальной мембраны. Мембрана аксона служит для про­ведения электрического импульса и в участке аксональных окончании выде­ляет медиатор, а мембрана дендритов - реагирует на медиатор. Кроме того, она обеспечивает распознавание других клеток в процессе эмбрионального развития. Поэтому каждая клетка отыскивает определенное ей место в сети нейронов. Миелиновые оболочки нервных волокон не сплошные, а прерыва­ются промежутками сужений - узлами (узловые перехваты Ранвье). Ионы могут проникать в аксон только в области перехватов Ранвье и в участке на­чального сегмента. Безмиелиновые нервные волокна типичны для автономной (вегетативной) нервной системы. Они имеют простое строение: состоят из осевого цилиндра, нейролеммы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем немиелиновыми (1-2 м/с).

Основными функциями нейрона являются восприятие и переработка ин­формации, проведение ее к другим клеткам. Нейроны выполняют также тро­фическую функцию, влияя на обмен веществ в аксонах и дендритах. Различа­ют следующие виды нейронов: афферентные, или чувствительные, которые воспринимают раздражение и трансформируют его в нервный импульс; ассо­циативные, промежуточные, или интернейроны, которые передают нервный импульс между нейронами; эфферентные, или моторные, которые обеспечи­вают передачу нервного импульса на рабочую структуру. Эта классификация нейронов основывается на положении нервной клетки в составе рефлектор­ной дуги. Нервное возбуждение по ней передается лишь в одном направле­нии. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делятся на пирамидные и непирамидные.

Нервные клетки контактируют между собой через синапсы специали­зированные структуры, где нервный импульс переходит из нейрона на ней­рон. Большей частью синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксоаксональные, дендродентритные. Итак, любая часть нейрона может образовывать синапс с разными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать ин­формацию от 1000 других нейронов. В составе синапса различают две части -пресинаптическую и постсинаптическую, между которыми находится синаптическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. Большей частью она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмит-терами, являются разные биологически активные вещества. В частности, медиатором холинергических синапсов является ацетилхолин, адренергических - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропептиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов - возбуждающие, которые способствуют генерации импульсов (де­поляризация), и тормозные, которые могут тормозить действие сигналов (ги­перполяризация). Нервным клеткам присущ низкий уровень возбуждения.

Испанский нейрогистолог Рамон-и-Кахаль (1852-1934) и итальянский гистолог Камилло Гольджи (1844-1926) за разработку учения о нейроне как о морфологической единице нервной системы были удостоены Нобелевской премии в области медицины и физиологии (1906 г.). Суть разработанной ими нейронной доктрины заключается в следующем.

1. Нейрон является анатомической единицей нервной системы; он состо­ит из тела нервной клетки (перикарион), ядра нейрона и аксона / дендритов. Тело нейрона и его отростки покрыты цитоплазматической частично про­ницаемой мембраной, которая выполняет барьерную функцию.

2. Каждый нейрон является генетической единицей, развивается из не­зависимой эмбриональной клетки-нейробласта; генетический код нейрона точно определяет его структуру, метаболизм, связи, которые генетически запрограммированы.

3. Нейрон является функциональной единицей, способной воспринимать стимул, генерировать его и передавать нервный импульс. Нейрон функцио­нирует как единица лишь в коммуникационном звене; в изолированном со­стоянии нейрон не функционирует. Нервный импульс передается на другую клетку через терминальную структуру - синапс, с помощью нейротранс-миттера, который может тормозить (гиперполяризация) или возбуждать (деполяризация) последующие нейроны на линии. Нейрон генерирует или не генерирует нервный импульс в соответствии с законом «все или ничего».

4. Каждый нейрон проводит нервный импульс лишь в одном направле­нии: от дендрита к телу нейрона, аксону, синаптическому соединению (ди­намическая поляризация нейронов).

5. Нейрон является патологической единицей, т. е. реагирует на повреж­дение как единица; при сильных повреждениях нейрон гибнет как клеточная единица. Процесс дегенерации аксона или миелиновой оболочки дистальнее места повреждения называется валлеровской дегенерацией (перерождением).

6. Каждый нейрон является регенеративной единицей: у человека реге­нерируют нейроны периферической нервной системы; проводящие пути в пределах центральной нервной системы эффективно не регенерируют.

Таким образом, в соответствии с нейронной доктриной нейрон является анатомической, генетической, функциональной, поляризованной, патологи­ческой и регенеративной единицей нервной системы.

Кроме нейронов, которые образовывают паренхиму нервной ткани, важ­ным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество ко­торых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секре­торная, защитная. Глиальные клетки принимают участие в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиа­торов центральной нервной системы. Нейроглия играет важную роль так­же в синаптической передаче. Она обеспечивает структурную и метаболи­ческую защиту для сетки нейронов. Итак, между нейронами и глиальными клетками существуют разнообразные морфофункциональные связи.

Основные этапы развития нервной системы

Наименование параметра Значение
Тема статьи: Основные этапы развития нервной системы
Рубрика (тематическая категория) Образование

Нервная система имеет эктодермальное происхождение, т. е. развивается из внешнего зачаточного листка толщиной в одно­клеточный слой вследствие образования и делœения медуллярной трубки. В эволюции нервной системы схематично можно выде­лить такие этапы.

1. Сетевидная, диффузная, или асинаптическая, нервная система. Возникает она у пресноводной гидры, имеет форму сетки, которая образуется соединœением отростчатых клеток и равномерно распределяется по всœему телу, сгущаясь вокруг ро­товых придатков. Клетки, которые входят в состав этой сетки, существенно отличаются от нервных клеток высших животных: они маленькие по размеру, не имеют характерного для нервной клетки ядра и хроматофильной субстанции. Эта нервная систе­ма проводит возбуждения диффузно, по всœем направлениям, обеспечивая глобальные рефлекторные реакции. На дальней­ших этапах развития многоклеточных животных она теряет зна­чение единой формы нервной системы, но в организме человека сохраняется в виде мейснеровского и ауэрбаховского сплетений пищеварительного тракта.

2. Ганглиозная нервная система (в червеобразных) синап-тическая, проводит возбуждение в одном направлении и обе­спечивает дифференцированные приспособительные реакции. Этому отвечает высшая степень эволюции нервной системы: развиваются специальные органы движения и рецепторные ор­ганы, в сетке возникают группы нервных клеток, в телах которых содержится хроматофильная субстанция. Она имеет свойство распадаться во время возбуждения клеток и восстанавливаться в состоянии покоя. Клетки с хроматофильной субстанцией распо­лагаются группами или узлами ганглиями, в связи с этим получили название ганглиозных. Итак, на втором этапе развития нервная система из сетевидной превратилась в ганглиозно-сетевидную. У человека данный тип строения нервной системы сохранился в виде паравертебральных стволов и периферических узлов (ганглиев), которые имеют вегетативные функции.

3. Трубчатая нервная система (в позвоночных) отличается от нервной си­стемы червеобразных тем, что в позвоночных возникли скелœетные моторные аппараты с поперечно-полосатыми мышцами. Это обусловило развитие цен­тральной нервной системы, отдельные части и структуры которой формиру­ются в процессе эволюции постепенно и в определœенной последовательности. Сначала из каудальной, недифференцированной части медуллярной трубки образуется сегментарный аппарат спинного мозга, а из передней части мозго­вой трубки вследствие кефализации (от греч. kephale - голова) формируются основные отделы головного мозга. В онтогенезе человека они последователь­но развиваются по известной схеме: сначала формируются три первичных мозговых пузыря: передний (prosencephalon), средний (mesencephalon) и ромбовидный, или задний (rhombencephalon). В дальнейшем из переднего мозгового пузыря образуются конечный (telencephalon) и промежуточный (diencephalon) пузыри. Ромбовидный мозговой пузырь также фрагментиру-ется на два: задний (metencephalon) и продолговатый (myelencephalon). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, стадия трех пузырей сменяется стадией образования пяти пузырей, из которых формируются разные отделы центральной нервной системы: из telencephalon большие полушария мозга, diencephalon промежуточный мозг, mesencephalon - средний мозг, metencephalon - мост мозга и мозжечок, myelencephalon - продолговатый мозг (рис. см. 1).

Эволюция нервной системы позвоночных обусловила развитие новой системы, способной образовывать временные соединœения функционирую­щих элементов, которые обеспечиваются расчленением центральных нерв­ных аппаратов на отдельные функциональные единицы нейроны. Следо­вательно, с возникновением скелœетной моторики в позвоночных развилась нейронная цереброспинальная нервная система, которой подчинœены более древние образования, что сохранились. Дальнейшее развитие централь­ной нервной системы обусловило возникновение особых функциональных взаимосвязей между головным и спинным мозгом, которые построены по принципу субординации, или соподчинœения. Суть принципа субординации состоит в том, что эволюционно новые нервные образования не только ре­гулируют функции более древних, низших нервных структур, а и соподчи­няют их себе путем торможения или возбуждения. Причем субординация существует не только между новыми и древними функциями, между голов­ным и спинным мозгом, но и наблюдается между корой и подкоркой, между подкоркой и стволовой частью мозга и в определœенной степени даже между шейным и поясничным утолщениями спинного мозга. С появлением новых функций нервной системы древние не исчезают. При выпадении новых функций появляются древние формы реакции, обусловленные функцио­нированием более древних структур.
Размещено на реф.рф
Примером может служить появление субкортикальных или стопных патологических рефлексов при поражении коры большого мозга.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в процессе эволюции нервной системы можно выделить несколько базовых этапов, которые являются основными в ее морфологи­ческом и функциональном развитии. Из морфологических этапов следует назвать централизацию нервной системы, кефализацию, кортикализацию -в хордовых, появление симметричных полушарий - у высших позвоночных. В функциональном отношении эти процессы связаны с принципом субор­динации и возрастающей специализацией центров и корковых структур.
Размещено на реф.рф
Функциональной эволюции соответствует эволюция морфологическая. При этом филогенетически более молодые структуры мозга являются более ранимыми и в меньшей степени обладают способностью к восстановлению.

Нервная система имеет нейронный тип строения, т. е. состоит из нерв­ных клеток - нейронов, которые развиваются из нейробластов.

Нейрон является основной морфологической, генетической и функцио­нальной единицей нервной системы. Он имеет тело (перикарион) и большое количество отростков, среди которых различают аксон и дендриты. Аксон, или нейрит, - это длинный отросток, который проводит нервный импульс в направлении от тела клетки и заканчивается терминальным разветвлением. Он всœегда в клетке лишь один. Дендриты - это большое количество коротких древообразных разветвленных отростков. Οʜᴎ передают нервные импульсы по направлению к телу клетки. Тело нейрона состоит из цитоплазмы и ядра с одним или несколькими ядрышками. Специальными компонентами нерв­ных клеток являются хроматофильная субстанция и нейрофибриллы. Хро-матофильная субстанция имеет вид разных по размерам комочков и зерен, содержится в телœе и дендритах нейронов и никогда не выявляется в аксонах и начальных сегментах последних. Она является показателœем функциональ­ного состояния нейрона: исчезает в случае истощения нервной клетки и вос­станавливается в период покоя. Нейрофибриллы имеют вид тонких нитей, которые размещаются в телœе клетки и ее отростках. Цитоплазма нервной клетки содержит также пластинчатый комплекс (сетчатый аппарат Голь-джи), митохондрии и другие органоиды. Сосредоточение тел нервных кле­ток формируют нервные центры, или так называемое серое вещество.

Нервные волокна - это отростки нейронов. В границах центральной нерв­ной системы они образуют проводящие пути - белое вещество мозга. Нервные волокна состоят из осœевого цилиндра, который является отростком нейрона, и оболочки, образованной клетками олигодендроглии (нейролемоцитами, шванновскими клетками). Учитывая зависимость отстроения оболочки, нервные во­локна делятся на миелиновые и безмиелиновые. Миелиновые нервные волокна входят в состав головного и спинного мозга, а также периферических нервов. Οʜᴎ состоят из осœевого цилиндра, миелиновой оболочки, нейролемы (шван-новской оболочки) и базальной мембраны. Мембрана аксона служит для про­ведения электрического импульса и в участке аксональных окончании выде­ляет медиатор, а мембрана дендритов - реагирует на медиатор.
Размещено на реф.рф
Вместе с тем, она обеспечивает распознавание других клеток в процессе эмбрионального развития. По этой причине каждая клетка отыскивает определœенное ей место в сети нейронов. Миелиновые оболочки нервных волокон не сплошные, а прерыва­ются промежутками сужений - узлами (узловые перехваты Ранвье). Ионы могут проникать в аксон только в области перехватов Ранвье и в участке на­чального сегмента. Безмиелиновые нервные волокна типичны для автономной (вегетативной) нервной системы. Οʜᴎ имеют простое строение: состоят из осœевого цилиндра, нейролеммы и базальной мембраны. Скорость передачи нервного импульса миелиновыми нервными волокнами значительно выше (до 40-60 м/с), чем немиелиновыми (1-2 м/с).

Основными функциями нейрона являются восприятие и переработка ин­формации, проведение ее к другим клеткам. Нейроны выполняют также тро­фическую функцию, влияя на обмен веществ в аксонах и дендритах. Различа­ют следующие виды нейронов: афферентные, или чувствительные, которые воспринимают раздражение и трансформируют его в нервный импульс; ассо­циативные, промежуточные, или интернейроны, которые передают нервный импульс между нейронами; эфферентные, или моторные, которые обеспечи­вают передачу нервного импульса на рабочую структуру. Эта классификация нейронов основывается на положении нервной клетки в составе рефлектор­ной дуги. Нервное возбуждение по ней передается лишь в одном направле­нии. Это правило получило название физиологической, или динамической, поляризации нейронов. Что касается изолированного нейрона, то он способен проводить импульс в любом направлении. Нейроны коры большого мозга по морфологическим признакам делятся на пирамидные и непирамидные.

Нервные клетки контактируют между собой через синапсы специали­зированные структуры, где нервный импульс переходит из нейрона на ней­рон. Большей частью синапсы образуются между аксонами одной клетки и дендритами другой. Различают также другие типы синаптических контактов: аксосоматические, аксоаксональные, дендродентритные. Итак, любая часть нейрона может образовывать синапс с разными частями другого нейрона. Типичный нейрон может иметь от 1000 до 10 000 синапсов и получать ин­формацию от 1000 других нейронов. В составе синапса различают две части -пресинаптическую и постсинаптическую, между которыми находится синап-тическая щель. Пресинаптическая часть образована терминальной веточкой аксона той нервной клетки, которая передает импульс. Большей частью она имеет вид небольшой пуговицы и покрыта пресинаптической мембраной. В пресинаптических окончаниях находятся везикулы, или пузырьки, которые содержат так называемые медиаторы. Медиаторами, или нейротрансмит-терами, являются разные биологически активные вещества. В частности, медиатором холинœергических синапсов является ацетилхолин, адренергиче-ских - норадреналин и адреналин. Постсинаптическая мембрана содержит особый белок рецептор медиатора. На высвобождение нейромедиатора влияют механизмы нейромодуляции. Эту функцию выполняют нейропеп-тиды и нейрогормоны. Синапс обеспечивает односторонность проведения нервного импульса. По функциональным особенностям различают два вида синапсов - возбуждающие, которые способствуют генерации импульсов (де­поляризация), и тормозные, которые могут тормозить действие сигналов (ги­перполяризация). Нервным клеткам присущ низкий уровень возбуждения.

Испанский нейрогистолог Рамон-и-Кахаль (1852-1934) и итальянский гистолог Камилло Гольджи (1844-1926) за разработку учения о нейроне как о морфологической единице нервной системы были удостоены Нобелœевской премии в области медицины и физиологии (1906 ᴦ.). Суть разработанной ими нейронной доктрины состоит в следующем.

1. Нейрон является анатомической единицей нервной системы; он состо­ит из тела нервной клетки (перикарион), ядра нейрона и аксона / дендритов. Тело нейрона и его отростки покрыты цитоплазматической частично про­ницаемой мембраной, которая выполняет барьерную функцию.

2. Каждый нейрон является генетической единицей, развивается из не­зависимой эмбриональной клетки-нейробласта; генетический код нейрона точно определяет его структуру, метаболизм, связи, которые генетически запрограммированы.

3. Нейрон является функциональной единицей, способной воспринимать стимул, генерировать его и передавать нервный импульс. Нейрон функцио­нирует как единица лишь в коммуникационном звене; в изолированном со­стоянии нейрон не функционирует. Нервный импульс передается на другую клетку через терминальную структуру - синапс, с помощью нейротранс-миттера, который может тормозить (гиперполяризация) или возбуждать (деполяризация) последующие нейроны на линии. Нейрон генерирует или не генерирует нервный импульс в соответствии с законом ʼʼвсœе или ничегоʼʼ.

4. Каждый нейрон проводит нервный импульс лишь в одном направле­нии: от дендрита к телу нейрона, аксону, синаптическому соединœению (ди­намическая поляризация нейронов).

5. Нейрон является патологической единицей, т. е. реагирует на повреж­дение как единица; при сильных повреждениях нейрон гибнет как клеточная единица. Процесс дегенерации аксона или миелиновой оболочки дистальнее места повреждения принято называть валлеровской дегенерацией (перерождением).

6. Каждый нейрон является регенеративной единицей: у человека реге­нерируют нейроны периферической нервной системы; проводящие пути в пределах центральной нервной системы эффективно не регенерируют.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, в соответствии с нейронной доктриной нейрон является анатомической, генетической, функциональной, поляризованной, патологи­ческой и регенеративной единицей нервной системы.

Кроме нейронов, которые образовывают паренхиму нервной ткани, важ­ным классом клеток центральной нервной системы являются глиальные клетки (астроциты, олигодендроциты и микроглиоциты), количество ко­торых в 10-15 раз превышает количество нейронов и которые формируют нейроглию. Ее функции: опорная, разграничительная, трофическая, секре­торная, защитная. Глиальные клетки принимают участие в высшей нервной (психической) деятельности. При их участии осуществляется синтез медиа­торов центральной нервной системы. Нейроглия играет важную роль так­же в синаптической передаче. Она обеспечивает структурную и метаболи­ческую защиту для сетки нейронов. Итак, между нейронами и глиальными клетками существуют разнообразные морфофункциональные связи.

Анатомо-топографические отделы нервной системы

Нервная система объединяет ряд отделов и структур, которые в сово­купности обеспечивают связь организма с окружающей средой, регуляцию жизненных процессов, координацию и интеграцию деятельности всœех орга­нов и систем. Нервная система является иерархией уровней, разных по сво­ему строению, фило- и онтогенетическому происхождению. Идея уровней нервной системы была научно доказана на базе эволюционного учения Дарвина. В неврологии эту идею справедливо связывают с именем шот­ландского невролога Джексона (J.H. Jackson). Различают четыре анатомо-топографических отдела нервной системы.

1. Рецепторно-эффекторный отдел берет начало в рецепторах каждого из анализаторов, которые определяют характер раздражения, трансформи­руют его в нервный импульс, не перекручивая информации. Рецепторный отдел - это первый уровень аналитико-синтетической деятельности нерв­ной системы, на базе которой формируются реакции-ответы. Эффекторы бывают двух типов - двигательные и секреторные.

2. Сегментарный отдел спинного мозга и ствола головного мозга вклю­чает передние и задние рога спинного мозга с соответствующими передними и задними корешками и их аналоги в стволе мозга - ядра черепных нервов, а также их корешки. В спинном мозге и стволе находится белое вещество -восходящие и нисходящие проводящие пути, которые осуществляют связь сегментов спинного мозга между собой или с соответствующими ядрами головного мозга. Отростки вставных клеток заканчиваются синапсами в границах серого вещества спинного мозга. На уровне сегментарного отде­ла спинного мозга, мозгового ствола замыкаются рефлекторные дуги без­условных рефлексов. По этой причине данный уровень называют еще рефлекторным. Сегментарно-рефлекторный отдел - это пункт перекодировки информации, которая воспринимается рецепторами. Через сегментарно-рефлекторный уровень спинного мозга и стволовые образования осуществляется связь коры большого мозга, подкорковых структур с окружающей средой.

3. Подкорковый интегративный отдел включает подкорковые (базальные) ядра: хвостатое ядро, скорлупу, бледный шар, таламус. Он содержит афферентные и эфферентные каналы связи, которые соединяют отдельные ядра между собой и с соответствующими участками коры большого мозга. Подкорковый отдел - это второй уровень анализа и синтеза информации. С помощью тонкого аппарата обработки сигналов окружающей и внутренней среды организма он обеспечивает отбор важнейшей информации и готовит ее к приему корой. Другая информация направляется в ядра сетчатой фор­мации, где она интегрируется, а потом восходящими путями поступает в кору, поддерживая ее тонус.

4. Корковый отдел головного мозга - это третий уровень анализа и синтеза. В кору поступают сигналы разной степени сложности. Здесь реализуются раскодирование информации, высший анализ и синтез нервных импульсов. Высшая форма аналитико-синтетической деятельности мозга человека обеспечивает мышление и сознание.

Следует отметить, что четкой границы между отдельными отделами нерв­ной системы не существует. Примером должна быть тот факт, что низшие нервные образования содержат элементы молодых структур.
Размещено на реф.рф
В частности, во­локна корково-спинномозговых путей, которые являются аксонами больших пирамидных клеток коры прецентральной извилины, проходят в границах спинного мозга и оканчиваются на альфа-мотонейронах его передних рогов. Последнее обеспечивает постоянную циркуляцию импульсов между высши­ми и низшими отделами нервной системы. Причем, в случае если учитывать функ­циональные взаимосвязи между корой, подкоркой и спинным мозгом, кото­рые основываются на принципах субординации, становится понятным, что низшие нервные уровни соподчинœены высшим. Формируется своеобразная иерархия нервных уровней, согласно которой более древние нервные обра­зования подчинœены высшим и непосредственно тормозятся всœеми высшими отделами. В случае если поражаются структуры головного мозга, то наступает растор-маживание сегментарного уровня спинного мозга, вследствие чего повыша­ются сухожильные и периостальные рефлексы, появляются патологические рефлексы. По этой причине в настоящее время считают, что существует вертикальная организация управления нервной системой. Знание этих закономерностей имеет принципиальное значение в расшифровке и понимании многих сим­птомов, которые наблюдаются в клинике нервных болезней.

Основные принципы функционирования нервной системы

Основным и специфическим проявлением деятельности нервной си­стемы является рефлекторный принцип. Это способность организма реагировать на внешние или внутренние раздражения двигательной, или секреторной реакцией. Основы учения о рефлекторной деятельности орга­низма были заложены французским ученым Рене Декартом (1596-1650). Наибольшее значение имели его представления о рефлекторном механизме взаимоотношений организма с окружающей средой. Сам термин ʼʼрефлексʼʼ был введен значительно позднее - в основном после выхода работ выдающе­гося чешского анатома и физиолога Г. Прохаски (1749-1820).

Рефлекс - это закономерная реакция организма в ответ на раздраже­ние рецепторов, которая осуществляется рефлекторной дугой при участии центральной нервной системы. Это приспособительная реакция организма в ответ на изменение внутренней или окружающей среды. Рефлекторные реакции обеспечивают целостность организма и постоянство его внутрен­ней среды, рефлекторная дуга является основной единицей интегративной рефлекторной активности.

Значительный вклад в развитие рефлекторной теории внес И.М. Сеченов (1829-1905). Он первым использовал рефлекторный принцип для изучения физиологических механизмов психических процессов. В работе ʼʼРефлексы головного мозгаʼʼ (1863) И.М. Сеченов аргументировано доказал, что пси­хическая деятельность человека и животных осуществляется по механизму рефлекторных реакций, которые происходят в головном мозге, включая са­мые сложные из них - формирование поведения и мышление. На основании проведенных исследований он сделал вывод, что всœе акты сознательной и бессознательной жизни являются рефлекторными. Рефлекторная теория И.М. Сеченова послужила основой, на которой возникло учение И.П. Пав­лова (1849-1936) о высшей нервной деятельности. Разработанный им ме­тод условных рефлексов расширил научное понимание роли коры большого мозга как материального субстрата психики. И.П. Павлов сформулировал рефлекторную теорию работы головного мозга, которая основывается на трех принципах: причинности, структурности, единстве анализа и синтеза. П. К. Анохин (1898-1974) доказал значение обратной связи в рефлекторной деятельности организма. Суть ее состоит в том, что во время осуществления любого рефлекторного акта процесс не ограничивается лишь эффектором, а сопровождается возбуждением рецепторов рабочего органа, от которых информация о последствиях действия поступает афферентными путями к центральной нервной системе. Появились представления о ʼʼрефлекторном кольцеʼʼ, ʼʼобратной связиʼʼ.

Рефлекторные механизмы играют существенную роль в поведении жи­вых организмов, обеспечивая адекватное их реагирование на сигналы окру­жающей среды. Для животных действительность сигнализируется почти исключительно раздражениями. Это первая сигнальная система действи­тельности, общая для человека и животных. И.П. Павлов доказал, что для человека, в отличие от животных, объектом отображения является не только окружающая среда, но и общественные факторы. По этой причине для него решаю­щее значение приобретает вторая сигнальная система - слово как сигнал первых сигналов.

Условный рефлекс лежит в базе высшей нервной деятельности че­ловека и животных. Он всœегда включается как существенный компонент в самых сложных проявлениях поведения. При этом не всœе формы поведения живого организма можно объяснить с точки зрения рефлекторной теории, которая раскрывает лишь механизмы действия. Рефлекторный принцип не дает ответа на вопрос о целœесообразности поведения человека и животных, не учитывает результата действия.

По этой причине на протяжении последних десятилетий на основании рефлек­торных представлений сформировалось понятие относительно ведущей роли потребностей как движущей силы поведения человека и животных. Наличие потребностей является крайне важно й предпосылкой любой дея­тельности. Деятельность организма приобретает определœенную направлен­ность лишь при наличии цели, которая отвечает данной потребности. Каж­дому поведенческому акту предшествуют потребности, которые возникли в процессе филогенетического развития под влиянием условий окружающей среды. Именно в связи с этим поведение живого организма определяется не столь­ко реакцией на внешние воздействия, сколько крайне важно стью реализации намеченной программы, плана, направленных на удовлетворение какой-либо потребности человека или животного.

П.К. Анохин (1955) разработал теорию функциональных систем, которая предусматривает системный подход к изучению механизмов работы голов­ного мозга, в частности, разработки проблем структурно-функциональной основы поведения, физиологии мотиваций и эмоций. Суть концепции - мозг может не только адекватно реагировать на внешние раздражения, но и пред­усматривать будущее, активно строить планы своего поведения и реализо-вывать их. Теория функциональных систем не исключает метода условных рефлексов из сферы высшей нервной деятельности и не заменяет его чем-то другим. Она дает возможность глубже вникать в физиологическую сущность рефлекса. Вместо физиологии отдельных органов или структур мозга си­стемный подход рассматривает деятельность организма в целом. Для любого поведенческого акта человека или животного нужна такая организация всœех мозговых структур, которая обеспечит нужный конечный результат. Итак, в теории функциональных систем центральное место занимает полезный ре­зультат действия. Собственно факторы, которые находятся в базе дости­жения цели, формируются по типу разносторонних рефлекторных процессов.

Одним из важных механизмов деятельности центральной нервной си­стемы является принцип интеграции. Благодаря интегрированию сомати­ческих и вегетативных функций, ĸᴏᴛᴏᴩᴏᴇ осуществляется корой большого мозга через структуры лимбико-ретикулярного комплекса, реализуются разнообразные приспособительные реакции и поведенческие акты. Высшим уровнем интеграции функций у человека являются лобные отделы коры.

Важную роль в психической деятельности человека и животных играет принцип доминанты, разработанный О. О. Ухтомским (1875-1942). Доми­нанта (от лат. dominari господствовать) это превосходящее в централь­ной нервной системе возбуждение, ĸᴏᴛᴏᴩᴏᴇ формируется под влиянием стимулов окружающей или внутренней среды и в определœенный момент подчиняет себе деятельность других центров.

Головной мозг с его высшим отделом - корой большого мозга - это слож­ная саморегулировочная система, построенная на взаимодействии возбуди­тельных и тормозных процессов. Принцип саморегуляции осуществляется на разных уровнях анализаторных систем - от корковых отделов до уровня рецепторов с постоянным подчинœением низших отделов нервной системы высшим.

Изучая принципы функционирования нервной системы, не без основа­ния головной мозг сравнивают с электронной вычислительной машиной. Как известно, основой работы кибернетического оснащения являются прием, передача, переработка и сохранение информации (память) с дальнейшим ее воспроизведением. Для передачи информация должна быть закодирована, а для воспроизведения - раскодирована. Пользуясь кибернетическими поня­тиями, можно считать, что анализатор принимает, передает, перерабатывает и, возможно, сохраняет информацию. В корковых отделах осуществляется ее раскодирование. Это, наверное, достаточно, чтобы сделать возможной попытку сравнить мозг с компьютером. Вместе с тем нельзя отождествлять работу головного мозга с вычислительной машиной: ʼʼ...мозг - наиболее капризная машина в мире. Будем же скромными и осторожными с выво­дамиʼʼ (И.М. Сеченов, 1863). Компьютер - это машина и ничего больше. Все кибернетические устройства работают по принципу электрического или электронного взаимодействия, а в головном мозге, который создан путем эволюционного развития, кроме того, происходят сложные биохимические и биоэлектрические процессы. Οʜᴎ могут осуществляться только в живой ткани. Головной мозг, в отличие от электронных систем, функционирует не по принципу ʼʼвсœе или ничегоʼʼ, а учитывает великое множество градаций между этими двумя крайностями. Эти градации обусловлены не электрон­ными, а биохимическими процессами. В этом существенное отличие физи­ческого от биологического. Головной мозг имеет качества, которые выходят за пределы тех, которые имеет вычислительная машина. Следует добавить, что поведенческие реакции организма в значительной мере определяются межклеточным взаимодействием в центральной нервной системе. К одному нейрону, как правило, подходят отростки от сотен или тысяч других нейро­нов, и он, в свою очередь, ответвляется в сотни или тысячи других нейро­нов. Никто не может сказать, сколько в мозге синапсов, но число 10 14 (сто триллионов) не кажется невероятным (Д. Хьюбел, 1982). Компьютер вме­щает значительно меньше элементов. Функционирование головного мозга и жизнедеятельность организма реализуются в конкретных условиях окружающей среды. По этой причине удовлетворение тех или иных потребностей должна быть достигнуто при условии адекватности этой деятельности суще­ствующим внешнесредовым условиям.

Для удобства изучения базовых закономерностей функционирования головной мозг разделяют на три основные блока, каждый из которых вы­полняет свои определœенные функции.

Первый блок - это филогенетически древнейшие структуры лимбико-ретикулярного комплекса, которые расположены в стволовых и глубинных отделах головного мозга. В их состав входят поясная извилина, морской ко­нек (гиппокамп), сосочкоподобное тело, передние ядра таламуса, гипотала­мус, сетчатая формация. Οʜᴎ обеспечивают регуляцию жизненно необходи­мых функций - дыхания, кровообращения, обмена веществ, а также общего тонуса. Относительно поведенческих актов, то эти образования принимают участие в регуляции функций, направленных на обеспечение пищевого и сексуального поведения, процессов сохранения вида, в регуляции систем, которые обеспечивают сон и бодрствование, эмоциональную деятельность, процессы памяти.Второй блок - это совокупность образований, размещенных позади цен­тральной борозды: соматосœенсорные, зрительные и слуховые зоны коры большого мозга. Основные их функции: прием, переработка и сохранение информации.Нейроны системы, которые размещены преимущественно кпереди от центральной борозды и связаны с эффекторными функциями, реализацией двигательных программ, составляют третий блок.Тем не менее следует признать, что нельзя провести четкой границы между сенсорными и моторными структурами мозга. Постцентральная извилина, которая является чувствительной проекционной зоной, тесно взаимосвязана с прецентральной двигательной зоной, образовывая единое сенсомоторное поле. По этой причине крайне важно четко понимать, что та или дру­гая деятельность человека требует одновременного участия всœех отделов нервной системы. Причем система в целом выполняет функции, которые выходят за пределы функций, присущих каждому из указанных блоков.

Анатомо-физиологическая характеристика и патология черепных нервов

Черепные нервы, отходящие от головного мозга в количестве 12 пар, иннервируют кожу, мышцы, органы головы и шеи, а также некоторые органы грудной и брюшной полостей. Из них III, IV,

VI, XI, XII пары являются двигательными, V, VII, IX, X сме­шанными, I, II и VIII пары - чувствительными, обеспечивающи­ми соответственно специфическую иннервацию органов обоня­ния, зрения и слуха; I и II пары - производные головного мозга, ядер в мозговом стволе не имеют. Все другие черепные нервы выходят из мозгового ствола или входят в него, где находятся их двигательные, чувствительные и вегетативные ядра. Так, ядра III и IV пар черепных нервов расположены в ножке мозга, V, VI, VII, VIII пар - преимущественно в покрышке моста͵ IX, X, XI, XII пар - в продолговатом мозге.

Кора большого мозга

Головной мозг (encephalon, cerebrum) включает правое и левое полушария и мозговой ствол. Каждое полушарие имеет три по­люса: лобный, затылочный и височный. В каждом полушарии различают четыре доли: лобную, теменную, затылочную, височ­ную и островок (см. рис. 2).

Полушария головного мозга (hemispheritae cerebri) назы­вают еще большим, или конечным мозгом, нормальное функ­ционирование которого предопределяет специфические для человека признаки. Головной мозг человека состоит из муль-типолярных нервных клеток - нейронов, количество которых достигает 10 11 (ста миллиардов). Это приблизительно столько же, сколько звезд в нашей Галактике. Средняя масса головного мозга взрослого человека составляет 1450 ᴦ. Стоит сказать, что для нее характер­ны значительные индивидуальные колебания. К примеру, у та­ких выдающихся людей, как писатель И.С. Тургенев (63 года), поэт Байрон (36 лет), она составляла соответственно 2016 г и 2238 г, у других, не менее талантливых - французского писате­ля А. Франса (80 лет) и политолога и философа Г.В. Плеханова (62 года) - соответственно 1017 ᴦ. и 1180 ᴦ. Изучение головного мозга великих людей не раскрыло тайну интеллекта. Зависимо­сти массы мозга от творческого уровня лица не выявлено. Аб­солютная масса мозга женщин на 100-150 г меньше, чем масса мозга мужчин.

Мозг человека отличается от мозга человекообразных обе­зьян и других высших животных не только большей массой, а и значительным развитием лобных долей, что составляет 29 % всœей массы головного мозга. Значительно опережая рост других долей, лобные доли продолжают увеличиваться на протяжении первых 7-8 лет жизни ребенка. Очевидно, это обусловлено тем, что они связаны с двигательной функцией. Именно из лобных долей берет начало пирамидный путь. Важное значение лобной доли и в осуществлении высшей нервной деятельности. В от­личие от животного в теменной доле головного мозга человека дифференцируется нижняя теменная долька. Ее развитие связы­вают с появлением речевой функции.

Мозг человека - наиболее совершенен из всœего, что создала природа. Вместе с тем, это самый сложный объект для познания. Какой же в общем понимании аппарат дает мозгу возможность выполнять свою чрезвычайно сложную функцию? Количество нейронов в мозге составляет около 10 11 , количество синапсов, или контактов между нейронами, равняется около 10 15 . В среднем на каждом нейроне насчитывается несколько тысяч отдель­ных входов, а он сам посылает связи многим другим нейронам (Ф. Крик, 1982). Это лишь отдельные основные положения учения о мозге. Научные исследования мозга прогрессируют, хотя и медленно. Тем не менее, это не означает, что в будущем в любой момент не будет сделано открытие или ряд открытий, благодаря которым раскроются тайны работы мозга. Этот вопрос касается самой сущности человека, и в связи с этим принципиальные изменения в наших взглядах на человеческий мозг значительно повлияют на нас самих, окружающий мир и на другие области научных исследований, дадут ответ на целый ряд биологических и философских вопросов. Тем не менее, это еще перспективы развития науки о мозге. Их осуществление будет подобно тем переворотам, которые были сделаны Коперником, который доказал, что Земля не является центром Вселœенной; Дарвиным, который установил, что человек находится в родственной связи со всœеми другими живыми суще­ствами; Ейнштейном, который ввел новые понятия относительно времени и пространства, массы и энергии; Вотсоном и Криком, которые показали, что биологическую наследственность можно объяснить физическими и химиче­скими понятиями (Д. Хъюбел, 1982).

Кора большого мозга покрывает его полушария, имеет борозды, которые разделяют ее на доли и извилины, вследствие чего значительно увеличи­вается ее площадь. На верхнебоковой (внешней) поверхности полушария большого мозга размещены две самые большие первичные борозды - цен­тральная борозда (sulcus centralis), отделяющая лобную долю от теменной, и боковая борозда (sulcus lateralis), которую нередко называют сильвиевой; она отделяет лобную и теменную доли от височной (см. рис. 2). На ме­диальной поверхности полушария большого мозга различают теменно-затылочную борозду (sulcus parietooccipitalis), которая отделяет теменную долю от затылочной (см. рис. 4). Каждое полушарие большого мозга имеет также нижнюю (базальную) поверхность.

Кора большого мозга - эволюционно наиболее молодое образование, самое сложное по строению и функции. Она имеет исключительно важное значение в организации жизнедеятельности организма. Кора полушарий мозга развивалась как аппарат адаптации к меняющимся условиям окружа­ющей среды. Приспособительные реакции определяются взаимодействием соматических и вегетативных функций. Именно кора большого мозга обе­спечивает интеграцию этих функций через лимбико-ретикулярный ком­плекс. Она не имеет прямой связи с рецепторами, но получает важнейшую афферентную информацию, частично уже переработанную на уровне спинного мозга, в стволе и подкорковом отделœе головного мозга. В коре чувстви­тельная информация поддается анализу и синтезу. Даже по наиболее осто­рожным оценкам в мозге человека на протяжении 1 с осуществляется около 10 11 элементарных операций (О. Форстер, 1982). Именно в коре нервными клетками, связанными между собой многими отростками, осуществляется анализ сигналов, которые поступают в организм, и принимаются решения относительно их реализации.

Подчеркивая ведущую роль коры большого мозга в нейрофизиологиче­ских процессах, крайне важно отметить, что данный высший отдел центральной нервной системы может нормально функционировать лишь при тесном вза­имодействии с подкорковыми образов

Основные этапы развития нервной системы - понятие и виды. Классификация и особенности категории "Основные этапы развития нервной системы" 2017, 2018.


Развитие нервной системы в фило- и онтогенезе

Развитие – это качественные изменения в организме, заключающиеся в усложнении его организации, а также их взаимоотношений и процессов регуляции.

Рост – это увеличение длины, объема и массы тела организма в онтогенезе, связанное с увеличением числа клеток и количества составляющих их органических молекул, то есть рост – это количественные изменения.

Рост и развитие, то есть количественные и качественные изменения, тесно взаимосвязаны и обуславливают друг друга.

В филогенезе развитие нервной системы связано как с двигательной активностью, так и со степенью активности ВНД.

1. У простейших одноклеточных способность отвечать на стимулы присуща одной клетке, которая функционирует одновременно как рецептор и как эффектор.

2. Простейший тип функционирования нервной системы – диффузная или сетевидная нервная система. Диффузная нервная система отличается тем, что здесь имеет место изначальная дифференциация нейронов на два вида: нервные клетки, которые воспринимают сигналы внешней среды (рецепторные клетки) и нервные клетки, которые осуществляют передачу нервного импульса на клетки, выполняющие сократительные функции. Эти клетки образуют нервную сеть, которая обеспечивает простые формы поведения (реагирования), дифференциацию продуктов потребления, манипуляции ротовой областью, изменение формы организма, выделение и специфические формы передвижения.

3. От животных с сетевидной нервной системой произошли две ветви животного мира с различным строением нервной системы и различной психикой: одна ветвь вела к образованию червей и членистоногих с ганглиозным типом нервной системы, которая способна обеспечить только врожденное инстинктивное поведение.

4. Вторая ветвь вела к образованию позвоночных с трубчатым типом нервной системы. Трубчатая нервная система функционально обеспечивает достаточно высокую надежность, точность и быстроту реакций организма. Эта нервная система предназначена не только для сохранения наследственно сформированных инстинктов, но и обеспечивает научение, связанное с приобретением и использованием новой прижизненной информации (условно-рефлекторная деятельность, память, активное отражение).

Эволюция диффузной нервной системы сопровождалась процессами централизации и цефализации нервных клеток.

Централизация представляет собой процесс скопления нервных клеток, при котором отдельные нервные клетки и их ансамбли стали выполнять специфические регулятивные функции в центре и образовали центральные нервные узлы.

Цефализация – это процесс развития переднего конца нервной трубки и формирования головного мозга, связанный с тем, что нервные клетки и окончания стали специализироваться на приеме внешних раздражителей и распознавании средовых факторов. Нервные импульсы от внешних раздражителей и воздействий среды оперативно передавались в нервные узлы и центры.

В процессе саморазвития нервная система последовательно проходит критические этапы усложнения и дифференцировки, как в морфологическом, так и в функциональном отношении. Общая тенденция эволюции мозга в онтогенезе и филогенезе осуществляется по универсальной схеме: от диффузных, слабо дифференцированных форм деятельности к более специализированным, локальным формам функционирования.

На основании фактов о связи между процессами онтогенетического развития потомков и филогенеза предков был сформулирован биогенетический закон Мюллера-Геккеля: онтогенетическое (особенно зародышевое) развитие индивида сокращенно и сжато повторяет (рекапитулирует) основные этапы развития всего ряда предковых форм – филогенеза. При этом в большей степени рекапитулируют те признаки, которые развиваются в форме «надстроек» конечных стадий развития, то есть более близких предков, признаки же отдаленных предков в значительной степени редуцируются.

Развитие любой структуры в филогенезе происходило с увеличением предъявляемой нагрузки к органу или системе. Эта же закономерность наблюдается и в онтогенезе.

В пренатальном периоде у человека выделяют четыре характерных стадии развития нервной деятельности мозга:

· Первичные локальные рефлексы – это «критический» период в функциональном развитии нервной системы;

· Первичная генерализация рефлексов в форме быстрых рефлекторных реакций головы, туловища и конечностей;

· Вторичная генерализация рефлексов в виде медленных тонических движений всей мускулатуры тела;

· Специализация рефлексов, выражающаяся в координированных движениях отдельных частей тела.

В постнатальном онтогенезе также отчетливо выступают четыре последовательных стадии развития нервной деятельности:

· Безусловно-рефлекторная адаптация;

· Первичная условно-рефлекторная адаптация (формирование суммационных рефлексов и доминантных приобретенных реакций);

· Вторичная условно-рефлекторная адаптация (образование условных рефлексов на основе ассоциаций – «критический» период), с ярким проявлением ориентировочно-исследовательских рефлексов и игровых реакций, которые стимулируют образование новых условно-рефлекторных связей типа сложных ассоциаций, что является основой для внутривидовых (внутригрупповых) взаимодействий развивающихся организмов;

· Формирование индивидуальных и типологических особенностей нервной системы.

Созревание и развитие ЦНС в онтогенезе происходит по тем же закономерностям, что и развитие других органов и систем организма, в том числе и функциональных систем. Согласно теории П.К.Анохина, функциональная система – это динамическая совокупность различных органов и систем организма, формирующаяся для достижения полезного (приспособительного) результата.

Развитие головного мозга в фило- и онтогенезе идет согласно общим принципам системогенеза и функционирования.

Системогенез – это избирательное созревание и развитие функциональных систем в пренатальном и постнатальном онтогенезе. Системогенез отражает:

· развитие в онтогенезе различных по функции и локализации структурных образований, которые объединяются в полноценную функциональную систему, обеспечивающую новорожденному выживание;

· и процессы формирования и преобразования функциональных систем в ходе жизнедеятельности организма.

Принципы системогенеза:

1. Принцип гетерохронности созревания и развития структур: в онтогенезе раньше созревают и развиваются отделы головного мозга, которые обеспечивают формирование функциональных систем, необходимых для выживания организма и дальнейшего его развития;

2. Принцип минимального обеспечения: Вначале включается минимальное число структур ЦНС и других органов и систем организма. Например, нервный центр формируется и созревает раньше, чем закладывается иннервируемый им субстрат.

3. Принцип фрагментации органов в процессе антенатального онтогенеза: отдельные фрагменты органа развиваются неодновременно. Первыми развиваются те, которые обеспечивают к моменту рождения возможность функционирования некоторой целостной функциональной системы.

Показателем функциональной зрелости ЦНС является миелинизация проводящих путей, от которой зависят скорость проведения возбуждения в нервных волокнах, величина потенциалов покоя и потенциалов действия нервных клеток, точность и скорость двигательных реакций в раннем онтогенезе. Миелинизация различных путей в ЦНС происходит в таком же порядке, в каком они развиваются в филогенезе.

Общее число нейронов в составе ЦНС достигает максимума в первые 20-24 недели антенатального периода и остается относительно постоянным вплоть до зрелого возраста, лишь незначительно уменьшается в период раннего постнатального онтогенеза.

Закладка и развитие нервной системы человека

I. Стадия нервной трубки. Центральный и периферический отделы нервной системы человека развиваются из единого эмбрионального источника – эктодермы. В процессе развития зародыша она закладывается в виде так называемой нервной пластинки. Нервная пластинка состоит из группы высоких, быстро размножающихся клеток. На третьей неделе развития нервная пластинка погружается в нижележащую ткань и принимает форму желобка, края которого приподнимаются над эктодермой в виде нервных валиков. По мере роста зародыша нервный желобок удлиняется и достигает каудального конца зародыша. На 19-ый день начинается процесс смыкания валиков над желобком, в результате чего образуется длинная трубка – нервная трубка. Она располагается под поверхностью эктодермы отдельно от нее. Клетки нервных валиков перераспределяются в один слой, в результате чего образуется ганглиозная пластинка. Из нее формируются все нервные узлы соматической периферической и вегетативной нервной системы. К 24-му дню развития трубка замыкается в головной части, а сутками позже – в каудальной. Клетки нервной трубки носят название медуллобластов. Клетки ганглиозной пластинки называются ганглиобластами. Медуллобласты затем дают начало нейробластам и спонгиобластам. Нейробласты отличаются от нейронов значительно меньшим размером, отсутствием дендритов, синаптических связей и вещества Ниссля в цитоплазме.

II. Стадия мозговых пузырей. В головном конце нервной трубки после ее замыкания очень быстро образуется три расширения – первичные мозговые пузыри. Полости первичных мозговых пузырей сохраняются в мозгу ребенка и взрослого в видоизмененной форме, образуя желудочки мозга и сильвиев водопровод. Существует две стадии мозговых пузырей: стадия трех пузырей и стадия пяти пузырей.

III. Стадия формирования отделов мозга. Сначала образуются передний, средний и ромбовидный мозг. Затем из ромбовидного мозга образуются задний и продолговатый мозг, а из переднего образуются конечный мозг и промежуточный. Конечный мозг включает в себя два полушария и часть базальных ядер.

Нейроны различных отделов нервной системы и даже нейроны в пределах одного центра дифференцируются асинхронно: а) дифференцировка нейронов вегетативной нервной системы значительно отстает от таковой соматической нервной системы; б) дифференцировка симпатических нейронов несколько отстает от развития парасимпатических. Раньше всего созревают продолговатый и спинной мозг, позже развиваются ганглии ствола головного мозга, подкорковые узлы, мозжечок и кора больших полушарий.

Развитие отдельных областей мозга

1. Продолговатый мозг. На начальных этапах формирования продолговатый мозг имеет сходство со спинным мозгом. Затем в продолговатом мозге начинают развиваться ядра черепных нервов. Количество клеток в продолговатом мозге начинает уменьшаться, но их размеры увеличиваются. У новорожденного ребенка продолжается процесс уменьшения количества нейронов и увеличение из размеров. Вместе с этим увеличивается дифференцировка нейронов. У полуторагодовалого ребенка клетки продолговатого мозга организованы в четко определяемые ядра и имеют почти все признаки дифференцировки. У ребенка 7 лет нейроны продолговатого мозга неотличимы от нейронов взрослого даже по тонким морфологическим признакам.

2. Задний мозг включает в себя мост и мозжечок. Мозжечок частично развивается из клеток крыловидной пластинки заднего мозга. Клетки пластинки мигрируют и постепенно образуют все отделы мозжечка. К концу 3-его месяца клетки-зерна мигрируя, начинают преобразовываться в грушевидные клетки коры мозжечка. На 4-ом месяце внутриутробного развития появляются клетки Пуркинье. Параллельно и чуть отставая от развития клеток Пуркинье идет формирование борозд коры мозжечка. У новорожденного мозжечок лежит выше, чем у взрослого. Борозды неглубокие, слабо обрисовано древо жизни. С ростом ребенка борозды становятся глубже. До трехмесячного возраста в коре мозжечка сохраняется зародышевый слой. В возрасте от 3 месяцев до 1 года происходит активная дифференцировка мозжечка: увеличение синапсов грушевидных клеток, увеличение диаметра волокон в белом веществе, интенсивный рост молекулярного слоя коры. Дифференцировка мозжечка происходит и в более поздние сроки, что объясняется развитием двигательных навыков.

3. Средний мозг, так же как и спинной, имеет крыловидную и базальную пластинки. Из базальной пластинки к концу 3-го месяца пренатального периода развивается одно ядро глазодвигательного нерва. Крыловидная пластинка дает начало ядрам четверохолмия. Во второй половине внутриутробного развития появляются основания ножек мозга и сильвиев водопровод.

4. Промежуточный мозг образуется из переднего мозгового пузыря. В результате неравномерной пролиферации клеток образуются таламусы и гипоталамус.

5. Конечный мозг также развивается из переднего мозгового пузыря. Пузыри конечного мозга, разрастаясь за короткий промежуток времени, покрывают собой промежуточный мозг, затем средний мозг и мозжечок. Наружная часть стенки мозговых пузырей растет значительно быстрее внутренней. В начале 2-го месяца пренатального периода конечный мозг представлен нейробластами. С 3-его месяца внутриутробного развития начинается закладка коры в виде узкой полоски густо расположенных клеток. Затем идет дифференцировка: образуются слои и дифференцируются клеточные элементы. Основными морфологическими проявлениями дифференцировки нейронов коры большого мозга являются прогрессивный рост количества и ветвлений дендритов, коллатералей аксонов и, соответственно, увеличение и усложнение межнейронных связей. К 3-ему месяцу образуется мозолистое тело. С 5-го месяца внутриутробного развития в коре уже видна цитоархитектоника. К середине 6-го месяца неокортекс имеет 6 нечетко разделенных слоев. II и III слои имеют между собой четкую границу только после рождения. У плода и новорожденного нервные клетки в коре лежат сравнительно близко друг от друга, причем часть из них располагается в белом веществе. По мере роста ребенка концентрация клеток снижается. Мозг новорожденного имеет большую относительную массу – 10% от общей массы тела. К концу полового созревания его масса составляет всего около 2% от массы тела. Абсолютная же масса мозга с возрастом увеличивается. Мозг новорожденного незрелый, причем кора больших полушарий является наименее зрелым отделом нервной системы. Основные функции регулирования различных физиологических процессов выполняют промежуточный и средний мозг. После рождения масса мозга увеличивается в основном за счет роста тел нейронов, происходит дальнейшее формирование ядер головного мозга. Их форма меняется мало, однако размеры и состав их, а также топография относительно друг друга претерпевают достаточно заметные изменения. Процессы развития коры заключаются, с одной стороны, в образовании ее шести слоев, а с другой – в дифференцировке нервных клеток, характерных для каждого коркового слоя. Образование шестислойной коры заканчивается к моменту рождения. В то же время дифференцировка нервных клеток отдельных слоев к этому времени еще остается не завершенной. Наиболее интенсивны дифференциация клеток и миелинизация аксонов в первые два года постнатальной жизни. К 2-летнему возрасту заканчивается формирование пирамидных клеток коры. Установлено, что именно первые 2-3 года жизни ребенка являются наиболее ответственными этапами морфологического и функционального становления мозга ребенка. К 4-7 годам клетки большинства областей коры становятся близкими по строению клеткам коры взрослого человека. Полностью развитие клеточных структур коры полушарий большого мозга заканчивается только к 10-12 годам. Морфологическое созревание отдельных областей коры, связанных с деятельностью различных анализаторов, идет неодновременно. Раньше других созревают корковые концы обонятельного анализатора, находящиеся в древней, старой и межуточной коре. В новой коре прежде всего развиваются корковые концы двигательного и кожного анализаторов, а также лимбическая область, связанная с интерорецепторами, и инсулярная область, имеющая отношение к обонятельной и речедвигательной функциям. Затем дифференцируются корковые концы слухового и зрительного анализаторов и верхняя теменная область, связанная с кожным анализатором. Наконец, в последнюю очередь достигают полной зрелости структуры лобной и нижней теменной областей и височно-теменно-затылочной подобласти.

Миелинизация нервных волокон необходима:

1) для уменьшения проницаемости клеточных мембран,

2) совершенствования ионных каналов,

3) увеличения потенциала покоя,

4) увеличения потенциала действия,

5) повышения возбудимости нейронов.

Процесс миелинизации начинается еще в эмбриогенезе. Миелинизация черепных нервов осуществляется в течение первых 3-4 месяцев и заканчивается к 1 году или 1 году и 3 месяцам постнатальной жизни. Миелинизация спинальных нервов завершается несколько позднее – к 2-3 годам. Полная миелинизация нервных волокон завершается в возрасте 8-9 лет. Миелинизация филогенетически более древних путей начинается раньше. Нервные проводники тех функциональных систем, которые обеспечивают выполнение жизненно важных функций миелинизируются быстрее. Созревание структур ЦНС контролируется гормонами щитовидной железы.

Нарастание массы мозга в онтогенезе

Масса головного мозга новорожденного составляет 1/8 массы тела, то есть около 400 г, причем у мальчиков она несколько больше, чем у девочек. У новорожденного хорошо выражены длинные борозды и извилины, но глубина их мала. К 9-месячному возрасту первоначальная масса мозга удваивается и к концу 1-го года жизни составляет 1/11 – 1/12 массы тела. К 3 годам масса головного мозга по сравнению с массой его при рождении утраивается, к 5 годам она составляет 1/13-1/14 массы тела. К 20 годам первоначальная масса мозга увеличивается в 4-5 раз и составляет у взрослого человека всего 1/40 массы тела.

Функциональное созревание

В спинном мозге, стволе и гипоталамусе у новорожденных обнаруживают ацетилхолин, γ-аминомасляную кислоту, серотонин, норадреналин, дофамин, однако их количество составляет лишь 10-50% от содержания у взрослых. В постсинаптических мембранах нейронов уже к моменту рождения появляются специфические для перечисленных медиаторов рецепторы. Электрофизиологические характеристики нейронов имеют ряд возрастных особенностей. Так, например, у новорожденных ниже потенциал покоя нейронов; возбуждающие постсинаптические потенциалы имеют большую длительность, чем у взрослых, более продолжительную синаптическую задержку, в итоге нейроны новорожденных и детей первых месяцев жизни менее возбудимы. Кроме этого постсинаптическое торможение нейронов новорожденных менее активно, так как мало еще тормозных синапсов на нейронах. Электрофизиологические характеристики нейронов ЦНС у детей приближаются к таковым у взрослых в возрасте 8-9 лет. Стимулирующую роль в ходе созревания и функционального становления ЦНС играют афферентные потоки импульсов, поступающие в структуры мозга при действии внешних раздражителей.


Поведение: эволюционный подход Курчанов Николай Анатольевич

8.2. Эволюция нервной системы

8.2. Эволюция нервной системы

Совершенствование нервной системы – одно из главных направлений эволюции животного мира. Это направление содержит огромное количество загадок для науки. Не совсем ясен даже вопрос происхождения нервных клеток, хотя принцип их функционирования удивительно сходен у представителей самых разных таксономических групп. Филогенетические преобразования нервной системы часто не укладываются в рамки традиционных представлений.

Наиболее простой вариант нервной системы (по диффузному типу) наблюдается у кишечнополостных (тип Cnidaria ). Их нервные клетки относительно равномерно распределены в мезоглее. Однако даже у этих животных у подвижных форм наблюдается концентрация нервных клеток.

Более упорядоченную нервную систему мы встречаем в типе плоских червей (тип Plathelminthes ). Нейроны переднего конца их тела концентрируются в головной ганглий, от которого отходят два или четыре нервных ствола. Но, возможно, самый древний тип нервной системы двусторонне-симметричных животных сохранился у нематод (тип Nematoda ). У них не нервные, а мышечные клетки формируют отростки для нервно-мышечного соединения. Сама нервная система нематод представлена четырьмя стволами, соединенными окологлоточным нервным кольцом.

Более сложную структуру нервной системы имеют кольчатые черви (тип Annelida ) с брюшной нервной цепочкой из ганглиев. Окологлоточное нервное кольцо включает в себя самый крупный головной ганглий. Этот вариант нервной системы оказался столь удачным, что сохранился у всех вышестоящих групп беспозвоночных.

Членистоногие (тип Arthropoda ) и моллюски (тип Mollusca ) являются самыми многочисленными типами животного царства, что показывает успех их эволюции. У них наблюдается прогрессирующая концентрация нейронов в головном отделе, параллельно с усложняющимся поведением. Ганглии, как правило, соединены или сливаются. Нервные пути, соединяющие разные отделы нервной системы, в нейрофизиологии называются комиссурами.

У представителей насекомых (класс Insecta ) из членистоногих и головоногих (класс Cephalopoda ) из моллюсков нервная система и поведение достигают исключительной сложности и представляют собой вершину организации в мире беспозвоночных. У насекомых в головном ганглии выделяют грибовидные тела – функциональные аналоги ассоциативных структур мозга позвоночных. Такую же роль выполняют центральные ганглии головоногих, причем их относительный размер весьма велик. Недаром крупных головоногих моллюсков называют «приматами моря».

У этих же представителей наиболее четко можно наблюдать реализацию двух стратегий поведения в эволюции беспозвоночных – ригидности и пластичности.

Ригидность представляет собой эволюционную направленность к генетически жестко программируемым действиям. Она нашла свое наиболее законченное выражение в поведении насекомых. Несмотря на всю сложность поведения, их миниатюрная нервная система имеет готовый набор программ. Так, количество нейронов у пчелы (Apis melifera) всего 950 000, что составляет ничтожную долю от их количества у человека (рис. 8.1). Но это количество позволяет ей осуществлять сложнейшие модели поведения практически без обучения. Большое число исследований посвящено изучению механизмов навигации у насекомых (в том числе пчел ), их уникальной способности находить нужный путь. Эта способность базируется на использовании поляризационного света как компаса, что позволяет зрительная система насекомых.

Некоторые авторы рассматривали насекомых как четкие «машины» (Мак-Фарленд Д., 1988). Однако в этологических экспериментах последних лет были продемонстрированы способности пчел к самым разнообразным формам научения. Даже крошечная мушка дрозофила (ее головной ганглий содержит в 50 раз меньше нейронов, чем у пчелы) способна к научению.

Пластичность подразумевает возможность коррекции генетически детерминированного поведения. Из беспозвоночных эта способность наиболее четко наблюдается у представителей головоногих моллюсков. Так, осьминог (Octopus dofleini ) способен к весьма сложным формам научения (рис. 8.2). Концентрация нейронов осьминога формирует самый крупный и сложный ганглий беспозвоночных (Wells M., 1966). Наиболее важную роль в нем выполняют зрительные доли.

Рис. 8.2 . Осьминог способен к весьма сложным формам научения

Поскольку в направлении пластичности шла эволюция нервной системы позвоночных, особенно млекопитающих, то этот вариант обычно преподносится как более прогрессивный. Однако в природе все за счет чего-то – любое достоинство одновременно является слабостью. Нервная система насекомых позволяет хранить огромное количество поведенческих программ в крошечном объеме нервных ганглиев с эффективной системой гормональной регуляции. Действительно, за компактность и экономичность своей нервной системы они заплатили отсутствием индивидуальности. «Зарегламентированность» мешает даже высокоорганизованным насекомым эффективно корректировать свое поведение. Но и «сверхпластичный» мозг человека оказался таким эволюционным приобретением, за которое ему пришлось заплатить слишком высокую цену. Об этом мы узнаем в последующих главах.

Следует помнить, что ни одна структура не хранит столько тайн, как нервная система. Подчеркнем, что сложность поведения нельзя напрямую связывать со строением нервной системы. У представителей с самой «примитивной» нервной системой иногда можно наблюдать исключительно сложное поведение. В некоторых исследованиях перепончатокрылые, особенно муравьи (рис. 8.3), показали феноменальные интеллектуальные способности (Резникова Ж. И., 2005). На чем они базируются – пока остается загадкой. И наоборот, жесткость генетических рамок в поведении оказалась значительно выше, чем предполагалось ранее, даже у самых «пластичных» видов, в том числе и у человека.

Рис. 8.3. Обладают ли муравьи когнитивными способностями?

Понятия ригидности и пластичности следует рассматривать лишь как полюса единого континуума, аналогичного континууму генетической детерминации поведения. Причем у одного вида разные аспекты поведения могут характеризоваться разной степенью пластичности.

В заключение этого раздела мне хотелось бы коснуться вопроса терминологии. Многие авторы называют головным мозгом головные ганглии насекомых, головоногих, высших ракообразных. Более того, термин «головной мозг» иногда употребляется и в отношении головных ганглиев других беспозвоночных. Хотелось бы выразить несогласие с таким подходом. Но не потому, что беспозвоночные «не достойны» столь «высокого титула» для своих нервных центров. Высшие беспозвоночные демонстрируют не менее совершенное поведение, чем многие позвоночные. Мы уже отметили, что не стоит однозначно решать вопрос прогрессивности. Я предлагаю оставить термин «мозг» только для позвоночных, исходя исключительно из структурных принципов организации нервной системы как производной нервной трубки.

Из книги Здоровье Вашей собаки автора Баранов Анатолий

Заболевания нервной системы Судороги. Судорожные проявления могут отмечаться у щенка в первые недели его жизни. Щенок в течение 30-60 секунд подергивает передними и задними конечностями, иногда отмечается подергивание головы. Пена, моча, кал не выделяются, как при

Из книги Лечение собак: Справочник ветеринара автора Аркадьева-Берлин Ника Германовна

Исследование нервной системы Диагностика заболеваний нервной системы базируется на исследовании головного мозга и поведения собак. Ветеринар должен фиксироваться на следующих вопросах:– наличие у животного чувства страха, резких перемен в поведении;– наличие

Из книги Основы нейрофизиологии автора Шульговский Валерий Викторович

8 Болезни нервной системы Нервная система собак работает по принципу обратной связи: из внешней среды через органы чувств и кожу в мозг поступают импульсы. Мозг воспринимает эти сигналы, перерабатывает их и посылает указания органу-исполнителю. Это так называемая

Из книги Болезни собак (незаразные) автора Панышева Лидия Васильевна

МЕДИАТОРЫ НЕРВНОЙ СИСТЕМЫ Из вышеизложенного понятно, какое значение в функциях нервной системы играют медиаторы. В ответ на приход нервного импульса к синапсу происходит выброс медиатора; молекулы медиатора соединяются (комплементарно – как «ключ к замку») с

Из книги Род человеческий автора Барнетт Энтони

Болезни нервной системы Л. В. Панышева Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при

Из книги Основы психофизиологии автора Александров Юрий

Исследования нервной системы Состояние и деятельность нервной системы имеют большое значение при патологии всех органов и систем организма. Мы опишем кратко только те исследования, которые можно и необходимо проводить при клиническом обследовании собак в условиях

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Типы нервной системы Большое значение в патологии нервных заболеваний и лечении нервнобольных имеют типы нервной деятельности, разработанные академиком И. П. Павловым. В обычных условиях разные собаки по-разному реагируют на внешние раздражения, по-разному относятся к

Из книги Антропология и концепции биологии автора

Механизм действия нервной системы Теперь, вероятно, следует присмотреться к механизму действия этой сложной структуры, начав с простого примера. Если направить в глаза яркий свет, зрачок человека сужается. Эта реакция зависит от целой серии событий, которые начинаются в

Из книги Поведение: эволюционный подход автора Курчанов Николай Анатольевич

1. КОНЦЕПЦИЯ СВОЙСТВ НЕРВНОЙ СИСТЕМЫ Проблема индивидуально-психологических различий между людьми всегда рассматривалась в отечественной психологии как одна из фундаментальных. Наибольший вклад в разработку этой проблемы внесли Б.М. Теплев и В.Д. Небылицын, а также их

Из книги автора

§ 3. Функциональная организация нервной системы Нервная система необходима для быстрой интеграции активности различных органов многоклеточного животного. Иначе говоря, объединение нейронов представляет собой систему для эффективного использования сиюминутного

Из книги автора

§ 5. Энергетические расходы нервной системы Сопоставив размеры мозга и размеры тела животных, легко установить закономерность, по которой увеличение размеров тела чётко коррелирует с увеличением размеров мозга (см. табл. 1; табл. 3). Однако мозг является только частью

Из книги автора

§ 24. Эволюция ганглиозной нервной системы На заре эволюции многоклеточных сформировалась группа кишечнополостных с диффузной нервной системой (см. рис. II-4, а; рис. II-11, а). Возможный вариант возникновения такой организации описан в начале этой главы. В случае

Из книги автора

§ 26. Происхождение нервной системы хордовых Наиболее часто обсуждаемые гипотезы происхождения не могут объяснить появление одного из основных признаков хордовых - трубчатой нервной системы, которая располагается на спинной стороне тела. Мне хотелось бы использовать

Из книги автора

§ 47. Особенности нервной системы млекопитающих Центральная нервная система у млекопитающих развита больше, чем у какой-либо другой группы животных. Диаметр спинного мозга обычно несколько больше, чем у других тетрапод (см. рис. III-18, а). Он имеет два утолщения в грудном и

Из книги автора

Направления эволюции нервной системы Мозг – структура нервной системы. Появление нервной системы у животных давало им возможность быстро адаптироваться к меняющимся условиям среды, что, безусловно, можно рассматривать как эволюционное преимущество. Общей

Из книги автора

8.1. Принципы функционирования нервной системы Нервная система включает в себя нервную ткань и вспомогательные элементы, которые являются производными всех других тканей. В основе функционирования нервной системы лежит рефлекторная деятельность. Понятие рефлекса