Неорганическим полимером является оксид натрия. Неорганические полимеры: примеры и области применения

В современном мире практически нет человека, который бы не имел хоть какого то представления о полимерах. Полимеры идут по жизни вместе с человеком, делая его жизнь все более удобной и комфортной. При упоминании о полимерах первые ассоциации будут связаны с синтетическими органическими веществами, так как они больше находятся на виду. Полимеры природные - натуральные органические вещества - хоть их и больше в окружающем нас мире, в ассоциативном восприятии человека отходят на второй план. Они окружают нас всегда, однако никто не задумывается о природе происхождения флоры и фауны. Целлюлоза, крахмал, лигнин, каучук, белки и нуклеиновые кислоты - основной материал, используемый природой для сотворения окружающего нас животного и растительного мира. И уж совсем никто не будет воспринимать как полимеры драгоценные камни, графит, слюду, песок и глину, стекло и цемент. Тем не менее, наукой установлен факт полимерного строения многих неорганических соединений, в том числе и перечисленных выше. Полимерные вещества состоят из макромолекул. При образовании полимеров большое число атомов или групп атомов связываются между собой химическими связями - ковалентными или координационными. Полимерные макромолекулы содержат десятки, сотни, тысячи или десятки тысяч атомов или повторяющихся элементарных звеньев. Сведения о полимерном строении были получены при исследовании свойств растворов, строения кристаллов, механических и физико-химических свойств неорганических веществ. В подтверждение вышесказанному следует отметить, что имеется достаточное количество научной литературы, подтверждающей факт полимерного строения некоторых неорганических веществ.

Логичным будет замечание: почему так много есть информации о синтетических органических полимерах и так мало о неорганических. Если есть неорганические полимерные вещества, то что конкретно они из себя представляют и где они используются? Выше были приведены несколько примеров неорганических полимеров. Это известные вещества, которые знают все, вот только мало кто знает, что эти вещества можно причислить к отряду полимеров. По большому счету обывателю все равно можно ли отнести графит к полимерам или нет, что касается драгоценных камней, то для кого-то это может быть даже оскорбительно, равнять дорогие украшения с дешевой пластмассовой бижутерией. Тем не менее, если есть основания называть некоторые неорганические вещества полимерами, то почему бы об этом не поговорить. Рассмотрим некоторых представителей таких материалов, остановимся более подробно на самых интересных.
Для синтеза неорганических полимеров чаще всего требуются очень чистые исходные вещества, а также высокие температура и давление. Основными способами их получения, как и органических полимеров, являются полимеризация, поликонденсация и поликоординация. К простейшим неорганическим полимерами относятся гомоцепные соединения, состоящие из цепей или каркасов, построенных из одинаковых атомов. Кроме известного всем углерода, являющегося основным элементом, участвующим в построении практически всех органических полимеров другие элементы тоже могут участвовать в построении макромолекул. К таким элементам относятся бор из третьей группы, кремний, германий и олово из четвертой группы, куда как раз входит и углерод, фосфор, мышьяк, сурьма и висмут из пятой группы, сера, селен теллур из шестой. В основном гомоцепные полимеры, полученные на основе этих элементов, используются в электронике и оптике. Электронная промышленность развивается очень высокими темпами и спрос на синтетические кристаллы давно уже превышает предложение. Особо, все же, следует отметить углерод и неорганические полимеры которые получают на его основе: алмаз и графит. Графит, известный материал, который нашел применение в различных сферах промышленности. Из графита получают карандаши, электроды, тигли, краски, смазки. Тысячи тонн графита идут на нужды атомной промышленности благодаря его свойствам замедлять нейтроны. В статье мы остановимся подробнее на самих интересных представителях неорганических полимеров - драгоценных камнях.
Самым интересным, пафосным, любимым женщинами представителем неорганических полимеров являются алмазы. Алмазы - весьма дорогостоящие минералы, которые также можно отнести к неорганическим полимерам, в природе их добывают пять крупных компаний: «DeBeers», «Alrosa», «Leviev», «BHPBilliton», «RioTinto». Именно компания «DeBeers» создала репутацию этих камней. Искусный маркетинг сводится к слогану, « - это навсегда». «DeBeers» превратила этот камень в символ любви, благополучия, власти, успеха. Интересен тот факт, что алмазы в природе встречаются достаточно часто, например сапфиры и рубины, более редкие минералы, однако ценятся они ниже алмазов. Самое интересное это ситуация, которая сложилась на рынке природных алмазов. Дело в том, что существуют технологии, позволяющие получить синтетические алмазы. В 1954 году исследователь компании «General Electric» Трейси Холл изобрел аппарат, который позволял при давлении 100000 атмосфер и температуре свыше 2500ºС из сульфида железа получать кристаллы алмаза. Качество этих камней было с ювелирной точки зрения невысоко, однако твердость была такая же, как у природного камня. Изобретение Холла было усовершенствовано и в 1960 году «General Electric» создал установку, в которой можно было получать алмазы ювелирного качества. Негативным моментом было то, что цена синтетических камней была выше природных.
На данный момент существуют две технологии синтеза алмазов. Технология HPHT (high pressure/high temperature) - синтез алмазов в сочетании высокого давления и высокой температуры. Технология CVD (chemical vapor deposition) - технология химического осаждения пара, считается более прогрессивной и позволяет выращивать алмаз, как бы моделируя природные условия его роста. Обе технологии имеют достоинства и недостатки. Кампании их использующие решают недостатки технологий, применяя свои собственные изобретения и разработки. Например, еще в 1989 году группе советских ученых из Новосибирска удалось снизить давление синтеза до 60000 атмосфер. После распада Советского Союза разработки в области синтеза алмазов не были прекращены благодаря многим заграничным инвесторам, заинтересованным в получении технологии дешевого синтеза качественных драгоценных камней. Например, «DeBeers», дабы не потерять возможность контролировать рынок финансировала работы некоторых ученых. Некоторые частные предприниматели купили в России оборудование по синтезу алмазов, например процветающая сейчас американская компания «Gemesis» начала с того, что приобрела в России в 1996 году за 60000 долларов установку для выращивания алмазов. Сейчас «Gemesis» производит и продает алмазы редких цветов: желтые и синие, причем разница в цене между этими и точно такими же природными камнями достигает 75%.

Другая крупная компания, синтезирующая алмазы - «Apollo Diamond», совершенствует технологию HPHT, проводя синтез камней в газовой атмосфере определенного состава (технология-симбиоз HPHT и CVD). Такой метод выводит «Apollo Diamond» на рынок ювелирных камней при этом, качество синтетических алмазов, выращиваемых по такой технологии очень высоко. Геммотологам все труднее отличить синтетические камни от природных. Для этого требуется комплекс анализов, на достаточно сложном и дорогостоящем оборудовании. Синтетические ювелирные алмазы «Apollo Diamond» практически невозможно отличить от природных минералов стандартными методами анализа.

Мировая добыча алмазов составляет сейчас 115 миллионов карат или 23 тонны в год. Теоретически этот гигантский рынок может упасть при этом репутация алмазов как драгоценных камней будет потеряна навсегда. Фирмы-монополисты вкладывают средства в стабилизацию ситуации и контроль рынка. Например, проводятся дорогостоящие маркетинговые компании, скупаются патенты на технологии искусственного изготовления алмазов для того чтобы эти технологии никогда не были внедрены, на фирменные бриллианты выдаются сертификаты и паспорта качества, подтверждающие их природное происхождение. Но удержит ли это прогресс технологии синтеза?

Заговорив об алмазах, мы отвлеклись на блеск драгоценных камней ювелирной промышленности, но следует указать и на промышленные камни. В данном случае большинство предприятий, занимающихся выращиванием алмазов, работает в основном для нужд электронной и оптической промышленности. Рынок промышленных камней, возможно, не так интригует как рынок ювелирных, но, тем не менее, он огромен. Например, основной доход «Apollo Diamond» - синтез тонких алмазных дисков для полупроводников. Кстати, сейчас установку для синтеза алмазов производительностью порядка 200 кг алмазов в месяц можно приобрести за 30 тысяч долларов.

Другим представителем драгоценных камней является рубин. Первый синтетический рубин появился на свет в 1902 году. Его синтезировал французский инженер Вернейль, расплавив порошок окиси алюминия и хрома, который потом кристаллизовался в шестиграммовый рубин. Такая простота синтеза позволила относительно быстро развить промышленное производство рубинов по всему миру. Камень этот очень востребован. Ежегодно в мире добывают порядка 5 тонн рубинов, а потребности рынка исчисляются сотнями тонн. Рубины нужны часовой промышленности, нужны при производстве лазеров. Предложенная Вернейлем технология впоследствии дала предпосылки для синтеза сапфиров и гранатов. Наиболее крупные производства искусственных рубинов находятся во Франции, Швейцарии, Германии, Великобритании, США. Экономика производства такова. Львиную долю себестоимости съедают энергетические расходы. При этом себестоимость синтеза килограмма рубинов 60 долларов, себестоимость килограмма сапфиров - 200 долларов. Рентабельность такого бизнеса очень высока, так как закупочная цена на кристаллы минимум в два раза выше. Здесь следует учитывать ряд факторов, таких как тот, что чем больше выращиваемый монокристалл, тем себестоимость его ниже, также при производстве из кристаллов изделий, цена их будет намного выше, нежели цена продаваемых кристаллов (например, производство и реализация стекол). Что касается оборудования, то российские установки для выращивания кристаллов стоят около 50 тысяч долларов, западные на порядок дороже, при этом срок окупаемости организуемого производства в среднем составляет два года. Как уже говорилось потребности рынка в синтетических кристаллах коллосальны. Например, очень востребованы сапфировые стекла. В мире синтезируется порядка тысячи тонн сапфиров в год. Годовые потребности производства доходят до миллиона тонн!
Изумруды синтезируют исключительно для нужд ювелирной промышленности. В отличие от остальных кристаллов получают изумруд не из расплава, а из раствора борного агидрида при температуре 400оС и давлении 500 атмосфер в гидротермальной камере. Любопытно то, что добыча природного камня составляет всего 500 килограмм в год. Синтетические изумруды в мире производят также в не таком большом количестве, как остальные кристаллы, порядка тонны в год. Дело в том, что технология синтеза изумрудов малопроизводительна, однако рентабельность такого производства на высоте. Производя около 5 килограмм кристаллов в месяц при себестоимости 200 долларов за килограмм, цена продажи изумрудов синтетических практически равна цене природных. Стоимость установки для синтеза изумрудов составляет порядка 10 тысяч долларов.
Но самым востребованным синтетическим кристаллом является кремний. Пожалуй, он даст фору любому драгоценному камню. На данный момент кремний занимает 80% всего рынка синтетических кристаллов. Рынок испытывает дефицит кремния ввиду стремительного развития высоких технологий. На данный момент рентабельность производства кремния превышает 100%. Цена килограмма кремния составляет порядка 100 долларов за килограмм, при этом себестоимость синтеза достигает 25 долларов.

Сверхчистый кремний используется в качестве полупроводника. Из его кристаллов делают солнечные фотоэлементы, имеющие высокий коэффициент полезного действия. Кремний, как и углерод, может создавать длинные молекулярные цепи из своих атомов. Таким образом получают силан и каучук, обладающий удивительными свойствами. Несколько лет назад весь мир взбудоражило сообщение об опытах американского инженера Вальтера Роббса, которому удалось изготовить пленку из силиконовой резины толщиной 0,0025 сантиметра. Этой резиной он обтянул клетку, в которой жил хомяк, и опустил хомяка в аквариум. В течение нескольких часов первый в мире хомяк-подводник дышал кислородом, растворенным в воде, и был при этом бодр, не проявлял признаков беспокойства. Оказывается, пленка играет роль мембраны, выполняя те же функции, что и жабры у рыб. Пленка пропускает внутрь молекулы газа жизни, а углекислый газ при этом через пленку вытесняется наружу. Такое открытие делает возможным организацию жизни человека под водой отодвигая в сторону баллоны с дыхательной смесью и кислородные генераторы.

Кремний выпускается трех видов: кремний металлургический (MG), кремний для электронной промышленности (EG) и кремний для производства солнечных батарей (SG). Ввиду череды энергетических кризисов усиленно внедряются альтернативные технологии получения энергии. К таковым относится преобразование солнечной энергии в электрическую, то есть, использование солярных установок, работающих на солнечных батареях. Важной составляющей солнечных батарей является кремний. В Украине на Запорожском титаномагниевом комбинате производился кремний для солнечных батарей. При советском Союзе это предприятие давало 200 тонн кремния, при общесоюзном объеме производства 300 тонн. О том, как обстоит дело с производством кремния в Запорожье сейчас автору ничего неизвестно. Стоимость организации современного производства поликристаллического кремния для нужд энергетической промышленности мощностью 1000 тон в год составляет около 56 миллионов долларов. Синтез кремния для различных нужд во всем мире по востребованности занимает первое место и еще долго будет удерживать эти позиции.

В статье мы рассмотрели только некоторых представителей неорганических полимеров. Быть может многие вещи, рассказанные выше, для кого-то были восприняты с удивлением и неподдельным интересом. Кто-то по-новому взглянул на понятие философского камня, пусть не золото, но драгоценные камни из невзрачных оксидов металлов и других непримечательных веществ получать все-таки можно. Надеемся, что статья дала повод к размышлениям и как минимум развлекла читателя интересными фактами.

Слайд 2

НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп).

В природе широко распространены трехмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав земной коры (напр., кварц).

Слайд 3

В отличие от органических полимеров такие неорганические полимеры не могут существовать в высокоэластичном состоянии. Синтетически могут быть получены, напр., полимеры серы, селена, теллура, германия. Особый интерес представляет неорганический синтетический каучук - полифосфонитрилхлорид. Обладает значительной высокоэластической деформацией

Слайд 4

Главные цепи построены из ковалентных или ионно-ковалентных связей; в некоторых неорганических полимерах цепочка ионно-ковалентных связей может прерываться единичными сочленениями координационного характера. Структурная классификация неорганических
полимеров осуществляется по тем же признакам, что и органических или полимеров.

Слайд 5

Среди природных неорганических полимеров наиб. распространены сетчатые, входящие в состав большинства минералов земной коры. Многие из них образуют кристаллы типа алмаза или
кварца.

Слайд 6

Строение неорганических полимеров

К образованию линейных неорганических полимеров способны элементы верхних рядов III-VI гр. периодич. системы. Внутри групп с увеличением номера ряда способность элементов к образованию гомо- или гете-роатомных цепей резко убывает.

Галогены, как и в орг. полимерах, играют роль агентов обрыва цепи, хотя всевозможные их комбинации с др. элементами могут составлять боковые группы.

Слайд 7

Длинные гомоатомные цепи (образуют лишь углерод и элементы VI гр.-S, Se и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей S, Se и Те различны.

Слайд 8

Линейные полимеры углерода - кумулены =С=С=С=С= ... и кар-бин -С=С-С=С-...; кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы -соответственно графит и алмаз

Общая формула кумуленов: RR¹CnR²R³

Слайд 9

Виды неорганических полимеров

Сера, селен и теллур образуют атомные цепочки с простыми связями.

Их полимеризация имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную нижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы.

Слайд 10

Практический интерес представляют линейные неорганические полимеры, которые в наиб. степени подобны органическим - могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т.п.

Такие неорганические полимеры могут быть термостойкими каучуками, стеклами, волокнообразующими и т.п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, силикаты.

Слайд 11

Применение неорганических полимеров

Переработка неорганических полимеров в стекла, волокна, ситаллы, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимой деполимеризацией. Поэтому используют обычно модифицирующие добавки, позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Посмотреть все слайды

НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ

Имеют неорг. главные цепи и не содержат орг. боковых радикалов. Главные цепи построены из ковалентных или ионно-ковалентных связей; в нек-рых Н. п. цепочка ионно-ковалентных связей может прерываться единичными сочленениями координац. характера. Структурная Н. п. осуществляется по тем же признакам, что и орг. или элементоорг. полиме-ров (см. Высокомолекулярные соединения). Среди природных Н. п. наиб. распространены сетчатые, входящие в состав большинства минералов земной коры. Многие из них образуют типа алмаза или кварца. К образованию линейных Н. п. способны элементы верх. рядов III-VI гр. периодич. системы. Внутри групп с увеличением номера ряда способность элементов к образованию гомо- или гете-роатомных цепей резко убывает. Галогены, как и в орг. полимерах, играют роль агентов обрыва цепи, хотя всевозможные их комбинации с др. элементами могут составлять боковые группы. Элементы VIII гр. могут входить в главную цепь, образуя координац. Н. п. Последние, в принципе, отличны от орг. координационных полимеров, где система координац. связей образует лишь вторичную структуру. Мн. или соли металлов переменной валентности по макроскопич. св-вам похожи на сетчатые Н. п.

Длинные гомоатомные цепи (со степенью полимеризации п >= 100) образуют лишь и элементы VI гр.-S, Se и Те. Эти цепи состоят только из основных атомов и не содержат боковых групп, но электронные структуры углеродных цепей и цепей S, Se и Те различны. Линейные углерода - кумулены =С=С=С=С= ... и кар-бин ЧС = СЧС = СЧ... (см. Углерод); кроме того, углерод образует двухмерные и трехмерные ковалентные кристаллы-соотв. графит и алмаз. Сера, и теллур образуют атомные цепочки с простыми связями и очень высокими п. Их имеет характер фазового перехода, причем температурная область стабильности полимера имеет размазанную нижнюю и хорошо выраженную верхнюю границы. Ниже и выше этих границ устойчивы соотв. циклич. октамеры и двухатомные молекулы.

Др. элементы, даже ближайшие соседи углерода по псриодич. системе-В и Si, уже неспособны к образованию гомоатомных цепей или циклич. олигомеров с п >= 20 (безотносительно к наличию или отсутствию боковых групп). Это обусловлено тем, что лишь атомы углерода способны образовывать друг с другом чисто ковалентные связи. По этой причине более распространены бинарные гетероцепные Н. п. типа [ЧМЧLЧ] n (см. табл.), где атомы М и L образуют между собой ионно-ковалентные связи. В принципе, гетероцепные линейные Н. п. не обязательно должны быть бинарными: регулярно повторяющийся участок цепи м. б. образован и более сложными комбинациями атомов. Включение в главную цепь атомов металлов дестабилизирует линейную структуру и резко снижает и.

КОМБИНАЦИИ ЭЛЕМЕНТОВ, ОБРАЗУЮЩИЕ БИНАРНЫЕ ГЕТЕРОЦЕПНЫЕ НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ ТИПА [ЧМЧLЧ] n (ОБОЗНАЧЕНЫ ЗНАКОМ +)

* Образует также неорг. полимеры состава [ЧВЧРЧ] n .

Особенности электронной структуры главных цепей гомо-цепных Н. п. делают их весьма уязвимыми при атаке нуклеоф. или электроф. агентами. Уже по одной этой причине относительно стабильнее цепи, содержащие в качестве компонента L или др. , соседний с ним по периодич. системе. Но и эти цепи нуждаются обычно в стабилизации, к-рая в прир. Н. п. связана с образованием сетчатых структур и с очень сильным межмол. взаимод. боковых групп (включая образование солевых мостиков), в результате к-рого большинство даже линейных Н. п. не-растворимы и по макроскопич. св-вам сходны с сетчатыми Н. п.

Практич. интерес представляют линейные Н. п., к-рые в наиб. степени подобны органическим - могут существовать в тех же фазовых, агрегатных или релаксационных состояниях, образовывать аналогичные надмол. структуры и т. п. Такие Н. п. могут быть термостойкими каучуками, стеклами, волокнообразующими и т. п., а также проявлять ряд св-в, уже не присущих орг. полимерам. К ним относятся полифосфазены, полимерные оксиды серы (с разными боковыми группами), фосфаты, . Нек-рые комбинации М и L образуют цепи, не имеющие аналогов среди орг. полимеров, напр. с широкой зоной проводимости и . Широкой зоной проводимости обладает , имеющий хорошо развитую плоскую или пространств. структуру. Обычным сверхпроводником при т-ре вблизи 0 К является полимер [ЧSNЧ] х ; при повышенных т-рах он утрачивает сверхпроводимость, но сохраняет полупроводниковые св-ва. Высокотемпературные сверхпроводящие Н. п. должны обладать структурой керамик, т. е. обязательно содержать в своем составе (в боковых группах) и кислород.

Переработка Н. п. в стекла, волокна, керамику и т. п. требует плавления, а оно, как правило, сопровождается обратимой деполимеризацией. Поэтому используют обычно модифицирующие , позволяющие стабилизировать в расплавах умеренно разветвленные структуры.

Лит.: Энциклопедия полимеров, т. 2, М., 1974, с. 363-71; Бартенев Г. М., Сверхпрочные и высокопрочные неорганические стекла, М., 1974; Кор-шак В. В., Козырева Н. М., "Успехи химии", 1979, т. 48, в. 1, с. 5-29; Inorganic polymers, в кн.: Encyclopedia of polymer science and technology, v. 7, N. Y.-L.-Sydney, 1967, p. 664-91. С. Я. Френкель.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "НЕОРГАНИЧЕСКИЕ ПОЛИМЕРЫ" в других словарях:

    Полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп). В природе широко распространены трехмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав… …

    Полимеры, не содержащие в повторяющемся звене связей C C, но способные содержать органический радикал как боковые заместители. Содержание 1 Классификация 1.1 Гомоцепные полимеры … Википедия

    Полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов (обрамляющих групп). В природе широко распространены трёхмерные сетчатые неорганические полимеры, которые в виде минералов входят в состав… … Энциклопедический словарь

    Полимеры с неорганической (не содержащей атомов углерода) главной цепью макромолекулы (См. Макромолекула). Боковые (обрамляющие) группы обычно тоже неорганические; однако полимеры с органическими боковыми группами часто также относят к Н …

    Полимеры, макромолекулы к рых имеют неорганич. гл. цепи и не содержат боковых органич. радикалов (обрамляющих групп). Практич. значение имеет синтетич. полимер полифосфонитрилхлорид (полидихлорфссфазен) [ P(C1)2=N ]n. Из него получают др.… … Большой энциклопедический политехнический словарь

    Полимеры, молекулы к рых имеют неорганич. гл. цепи и не содержат органич. боковых радикалов (обрамляющих групп). В природе широко распространены трёхмерные сетчатые Н.п., к рые в виде минералов входят в состав земной коры (напр., кварц). В… … Естествознание. Энциклопедический словарь

    - (от поли... и греч. meros доля часть), вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. По происхождению полимеры… … Большой Энциклопедический словарь

    Ов; мн. (ед. полимер, а; м.). [от греч. polys многочисленный и meros доля, часть] Высокомолекулярные химические соединения, состоящие из однородных повторяющихся групп атомов, широко применяемые в современной технике. Природные, синтетические п.… … Энциклопедический словарь

    - (от греч. polymeres состоящий из многих частей, многообразный) химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов), молекулы которых (макромолекулы (См. Макромолекула)) состоят из большого числа… … Большая советская энциклопедия

Полимеры с неорганической (не содержащей атомов углерода) главной цепью макромолекулы (См. Макромолекула). Боковые (обрамляющие) группы - обычно тоже неорганические; однако полимеры с органическими боковыми группами часто также относят к Н. п. (строгого деления по этому признаку нет).

Аналогично органическим полимерам Н. п. подразделяют по пространственной структуре на линейные, разветвленные, лестничные и сетчатые (двух- и трёхмерные), по составу главной цепи - на гомоцепные типа [-M-] n и гетероцепные типа [-M-M"-] n или [- М- M"- М"-] n (где М, M", М" - различные атомы). Например, полимерная сера [-S-] n - гомоцепной линейный Н. п. без боковых групп.

Многие неорганические вещества в твёрдом состоянии представляют собой единую макромолекулу, однако, для отнесения их к Н. п. необходимо наличие некоторой анизотропии пространственного строения (и, следовательно, свойств). Этим кристаллы Н. п. отличаются от полностью изотропных кристаллов обычных неорганических веществ (например, NaCI, ZnS). Большинство химических элементов не способно к образованию устойчивых гомоцепных Н. п., и лишь примерно 15 (S, Р, Se, Te, Si и др.) образуют не очень длинные (олигомерные) цепи, значительно уступающие по устойчивости гомоцепным олигомерам со связями С-С. Поэтому наиболее типичны гетероцепные Н. п., в которых чередуются электроположительные и электроотрицательные атомы, например В и N, Р и N, Si и О, образующие между собой и с атомами боковых групп полярные (частично ионные) химические связи.

Полярные связи обусловливают повышенную реакционную способность Н. п., прежде всего склонность к гидролизу. Поэтому многие Н. п. малоустойчивы на воздухе; кроме того, некоторые из них легко деполимеризуются с образованием циклических структур. На эти и др. химические свойства Н. п. можно отчасти влиять, направленно меняя боковое обрамление, от которого главным образом зависит характер межмолекулярного взаимодействия, определяющего эластичные и др. механические свойства полимера. Так, линейный эластомер Полифосфонитрилхлорид [-CI 2 PN-] n в результате гидролиза по связи Р-Сl (и последующей поликонденсации) превращается в трёхмерную структуру, не обладающую эластическими свойствами. Устойчивость к гидролизу этого эластомера можно повысить при замене атомов Cl на некоторые органические радикалы. Многие гетероцепные Н. п. отличаются высокой термостойкостью, значительно превышающей термостойкость органических и элементоорганических полимеров (например, полимерный оксонитрид фосфора n не изменяется при нагревании до 600 °С). Однако высокая термостойкость Н. п. редко сочетается с ценными механическими и электрическими свойствами. По этой причине число Н. п., нашедших практическое применение, сравнительно невелико. Однако Н. п. - важный источник получения новых термостойких материалов.

Е. М. Шусторович.

  • - соли борных к-т: метаборной НВО 2, ортоборной Н 3 ВО 3 и не выделенных в своб. состоянии полиборных Н 3m-2n В mO3m-n. По числу атомов бора в молекуле делятся на моно-, ди-, тетра-, гексабораты и т. д. Бораты называют также...

    Химическая энциклопедия

  • - соли угольной к-ты. Существуют средние карбонаты с анионом СО 32- и кислые, или гидрокарбонаты, с анионом HCO3-. К. - кристаллич...

    Химическая энциклопедия

  • - клеи на основе клеящих в-в неорг. природы. Минеральные клеи производят в виде порошков, р-ров и дисперсий...

    Химическая энциклопедия

  • - соли азотной к-ты HNO3. Известны почти для всех металлов; существуют как в виде безводных солей Mn , так и в виде кристаллогидратов Mn.x>H2O ...

    Химическая энциклопедия

  • - соли азотистой к-ты HNO2. Используют прежде всего нитриты щелочных металлов и аммония, меньше-щел.-зем. и 3d-металлов, Рb и Ag. О Н. остальных металлов имеются только отрывочные сведения...

    Химическая энциклопедия

  • - ярко-красные твердые соед. общей ф-лы Мn, где п заряд катиона М. Ион О -3 имеет симметричную треугольную конфигурацию; в молекуле RbO3 длина связи ОЧО 0,134 нм, угол ООО 114°...

    Химическая энциклопедия

  • - см. Гидроксиды, Кислоты и основания...

    Химическая энциклопедия

  • - см. Фосфаты конденсированные...

    Химическая энциклопедия

  • - соли серной к-ты. Известны средние сульфаты с анионом, кислые, или гидросульфаты, с анионом, основные, содержащие наряду с анионом группы ОН, напр. Zn22SO4...

    Химическая энциклопедия

  • - соед. серы с металлами, а также с более электроположит. неметаллами. Бинарные сульфиды могут рассматриваться как соли сероводородной к-ты H2S -средние, напр. , и кислые, или гидросульфиды, MHS, M2...

    Химическая энциклопедия

  • - соли сернистой к-ты H2SO3. Различают средние сульфиты с анионом и кислые с анионом. Средние С.-кристаллич. в-ва. С. аммония и щелочных металлов хорошо раств. в воде; р-римость: 2SO3 40,0 , K2SO3 106,7 ...

    Химическая энциклопедия

  • - ...

    Энциклопедический словарь нанотехнологий

  • - см. Органические вещества...

    Энциклопедический словарь Брокгауза и Евфрона

  • - К неорганическим относятся соединения всех химических элементов, за исключением большинства соединений углерода...

    Энциклопедия Кольера

  • - неорганические вещества с функциональными свойствами. Различают металлические, неметаллические и композиционные материалы. Примеры - сплавы, неорганические стекла, полупроводники, керамика, керметы, диэлектрики...
  • - НЕОРГАНИЧЕСКИЕ полимеры - полимеры, молекулы которых имеют неорганические главные цепи и не содержат органических боковых радикалов...

    Большой энциклопедический словарь

"Неорганические полимеры" в книгах

Глава 9 Полимеры вечны

Из книги Земля без людей автора Вейсман Алан

Глава 9 Полимеры вечны Портовый город Плимут в юго-западной Англии уже не входит в число живописных городов Британских островов, хотя до Второй мировой войны он им являлся. За шесть ночей в марте и апреле 1941 года бомбы нацистов разрушли 75 тысяч зданий во время того, что

Полимеры

Из книги Справочник строительных материалов, а также изделий и оборудования для строительства и ремонта квартиры автора Онищенко Владимир

Полимеры В технологии производства строительных пластмасс полимеры, получаемые синтезом из простейших веществ (мономеров), по способу производства подразделяются на два класса: класс А – полимеры, получаемые цепной полимеризацией, класс Б – полимеры, получаемые

Карбоцепные полимеры

Из книги Большая Советская Энциклопедия (КА) автора БСЭ

Гетероцепные полимеры

Из книги Большая Советская Энциклопедия (ГЕ) автора БСЭ

Полимеры

Из книги Большая Советская Энциклопедия (ПО) автора БСЭ

Кремнийорганические полимеры

Из книги Большая Советская Энциклопедия (КР) автора БСЭ

Из книги Большая Советская Энциклопедия (ИЗ) автора БСЭ

Синдиотактические полимеры

Из книги Большая Советская Энциклопедия (СИ) автора БСЭ

ПОЛИМЕРЫ

Из книги Эксперимент в хирургии автора Кованов Владимир Васильевич

ПОЛИМЕРЫ В начале нашего столетия химики синтезировали особую группу высокомолекулярных соединений и полимеров. Обладая высокой степенью химической инертности, они сразу же привлекли внимание многочисленных исследователей и хирургов. Так химия пришла на помощь

52. Полимеры, пластмассы

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

52. Полимеры, пластмассы Полимеры – это вещества, макромолекулы которых состоят из многочисленных повторяющихся элементарных звеньев, которые представляют одинаковую группу атомов. Молекулярная масса молекул составляет от 500 до 1000000.В молекулах полимеров различают

В природе существуют элементоорганические, органические и неорганические полимеры. К неорганическим относят материалы, главная цепь которых неорганическая, а боковые ответвления не являются углеводородными радикалами. К формированию полимеров неорганического происхождения наиболее склонны элементы III-VI групп периодической системы химических элементов.

Классификация

Органические и неорганические полимеры активно исследуются, определяются их новые характеристики, поэтому четкой классификации этих материалов еще не выработано. Впрочем, можно выделить определенные группы полимеров.

В зависимости от структуры:

  • линейные;
  • плоские;
  • разветвленные;
  • полимерные сетки;
  • трехмерные и другие.

В зависимости от атомов главной цепи, образующих полимер:

  • гомоцепные типа (-M-)n - состоят из одного вида атомов;
  • гетероцепные типа (-M-L-)n - состоят из различных видов атомов.

В зависимости от происхождения:

  • природные;
  • искусственные.

Для отнесения к неорганическим полимерам веществ, которые в твердом состоянии представляют собой макромолекулы, необходимо также наличие в них определенной анизотропии пространственного строения и соответствующих свойств.

Основные характеристики

Более распространенными являются гетероцепные полимеры, в которых происходит чередование электроположительных и электроотрицательных атомов, например B и N, P и N, Si и O. Получить гетероцепные неорганические полимеры (НП) можно с помощью реакций поликонденсации. Поликонденсация оксоанионов ускоряется в кислой среде, а поликонденсация гидратированных катионов - в щелочной. Поликонденсация может быть проведена как в растворе, так и в при наличии высокой температуры.

Многие из гетероцепных неорганических полимеров можно получить только в условиях высокотемпературного синтеза, например, непосредственно из простых веществ. Образование карбидов, которые являются полимерными телами, происходит при взаимодействии некоторых оксидов с углеродом, а также при наличии высокой температуры.

Длинные гомоцепные цепи (со степенью полимеризации n>100) образуют карбон и p-элементы VI группы: сера, селен, теллур.

Неорганические полимеры: примеры и применение

Специфика НП заключается в образовании полимерных с регулярной трехмерной структурой макромолекул. Наличие жесткого каркаса химических связей предоставляет таким соединениям значительную твердость.

Указанное свойство позволяет использовать в качестве неорганические полимеры. Применение этих материалов нашло широчайшее применение в промышленности.

Исключительная химическая и термическая стойкость НП является также ценным свойством. Например, армирующие волокна, изготовленные из органических полимеров, устойчивы на воздухе до температуры 150-220 ˚С. Между тем борное волокно и его производные остаются устойчивыми до температуры 650 ˚С. Именно поэтому неорганические полимеры являются перспективными для создания новых химически и термостойких материалов.

Практическое значение также имеют НП, которые одновременно являются и приближающимися по свойствам к органическим, и сохраняющими свои специфические свойства. К таким относят фосфаты, полифосфазены, силикаты, полимерные с различными боковыми группами.

Полимеры углерода

Задание: «Приведите примеры неорганических полимеров», - часто встречается в учебниках по химии. Целесообразно его выполнять с упоминанием самых выдающихся НП - производных углерода. Ведь сюда входят материалы с уникальными характеристиками: алмазы, графит и карбин.

Карбин - искусственно созданный, малоизученный линейный полимер с непревзойденными показателями прочности, не уступающими, а согласно ряду исследований и превосходящими графен. Впрочем, карбин - вещество таинственное. Ведь не все ученые признают его существование как самостоятельного материала.

Внешне выглядит как металло-кристаллический черный порошок. Имеет полупроводниковые свойства. Электропроводность карбина значительно увеличивается под действием света. Он не теряет этих свойств даже при температуре до 5000 ˚С, что намного выше, чем для других материалов подобного назначения. Получен материал в 60-х В.В. Коршаком, А.М. Сладковым, В.И. Касаточкиным и Ю.П. Кудрявцевым путем каталитического окисления ацетилена. Самое сложное было определить вид связей между атомами углерода. Впоследствии было получено вещество только с двойными связями между атомами углерода в Институте элементоорганических соединений АН СССР. Новое соединение назвали поликумулен.

Графит - в этом упорядоченность распространяется только в плоскости. Его слои соединены не химическими связями, а слабыми межмолекулярными взаимодействиями, поэтому он проводит тепло и ток и не пропускает свет. Графит и его производные - достаточно распространенные неорганические полимеры. Примеры их использования: от карандашей до атомной промышленности. Окисляя графит, можно получить промежуточные продукты окисления.

Алмаз - его свойства принципиально другие. Алмаз является пространственным (трехмерным) полимером. Все атомы углерода скрепляются между собой прочными ковалентными связями. Потому этот полимер является чрезвычайно прочным. Алмаз не проводит ток и тепло, имеет прозрачную структуру.

Полимеры бора

Если вас спросят о том, какие неорганические полимеры вам известны, смело отвечайте - полимеры бора (-BR-). Это достаточно обширный класс НП, широко применяемый в промышленности и науке.

Карбид бора - его формула правильнее выглядит так (B12C3)n. Его элементарная ячейка - ромбоэдрическая. Каркас образуют двенадцать ковалентно связанных атомов бора. А в середине его - линейная группа из трех ковалентно связанных атомов углерода. В результате образуется очень прочная конструкция.

Бориды - их кристаллы образованы подобно вышеописанному карбиду. Наиболее стойкий из них HfB2, который плавится только при температуре 3250 °C. Наибольшей химической стойкостью отмечается TaB2 - на него не действуют ни кислоты, ни их смеси.

Нитрид бора - его часто называют белым тальком за сходство. Это сходство действительно лишь внешнее. Структурно он аналогичен графиту. Получают его, нагревая бор или его оксид в атмосфере аммиака.

Боразон

Эльбор, боразон, киборит, кингсонгит, кубонит - сверхтвердые неорганические полимеры. Примеры их применения: изготовление абразивных материалов, обработка металлов. Это химически инертные вещества на основе бора. По твердости ближе прочих материалов к алмазам. В частности, боразон оставляет царапины на алмазе, последний тоже оставляет царапины на кристаллах боразона.

Впрочем, эти НП имеют несколько преимуществ перед натуральными алмазами: у них большая термостойкость (выдерживают температуру до 2000 °C, алмаз же разрушается при показателях в пределах 700-800 °C) и высокая устойчивость к механическим нагрузкам (они не такие хрупкие). Боразон был получен при температуре 1350 °C и давлении 62000 атмосфер Робертом Венторфом в 1957 году. Аналогичные материалы ленинградскими учеными были получены в 1963 году.

Неорганические полимеры серы

Гомополимер - эта модификация серы имеет линейную молекулу. Вещество не является устойчивым, при колебаниях температуры распадается на октаэдрические циклы. Образуется в случае резкого охлаждения расплава серы.

Полимерная модификация сернистого ангидрида. Очень похожа на асбест, имеет волокнистую структуру.

Полимеры селена

Серый селен - полимер со спиралевидными линейными макромолекулами, вложенными параллельно. В цепях атомы селена связаны ковалентно, а макромолекулы связаны молекулярными связями. Даже расплавленный или растворенный селен не распадается на отдельные атомы.

Красный или аморфный селен тоже полимер цепной, но малоупорядоченной структуры. В температурном промежутке 70-90 ˚С он приобретает каучукоподобные свойства, переходя в высокоэластичное состояние, чем напоминает органические полимеры.

Карбид селена, или горный хрусталь. Термически и химически устойчивый, достаточно прочный пространственный кристалл. Пьезоэлектрик и полупроводник. В искусственных условиях его получили при реакции и угля в электропечи при температуре около 2000 °C.

Прочие полимеры селена:

  • Моноклинный селен - более упорядоченный, чем аморфный красный, но уступает серому.
  • Диоксид селена, или (SiO2)n - представляет собой трехмерный сетчатый полимер.
  • Асбест - полимер оксида селена волокнистой структуры.

Полимеры фосфора

Существует много модификаций фосфора: белый, красный, черный, коричневый, фиолетовый. Красный - НП мелкокристаллического строения. Получается нагревом белого фосфора без доступа воздуха при температуре 2500 ˚С. Черный фосфор получен П. Бриджменом при следующих условиях: давление 200000 атмосфер при температуре 200 °C.

Фосфорнитридхлориды - соединения фосфора с азотом и хлором. Свойства этих веществ меняются с ростом массы. А именно уменьшается их растворимость в органических веществах. Когда молекулярная масса полимера достигает нескольких тысяч единиц, образуется каучукоподобное вещество. Это единственный достаточно термостойкий безуглеродный каучук. Он разрушается только при температуре свыше 350 °C.

Вывод

Неорганические полимеры в большинстве своем - вещества с уникальными характеристиками. Их применяют на производстве, в строительстве, для разработки инновационных и даже революционных материалов. По мере изучения свойств известных НП и создания новых, сфера их применения расширяется.