Закон нарастания энтропии. Как продлить и сохранить успех

Если замкнутая система не находится в состоянии статистического равновесия, то с течением времени ее макроскопическое состояние будет изменяться, пока система в конце концов не придет в состояние полного равновесия. Характеризуя каждое макроскопическое состояние системы распределением энергии между различными подсистемами, мы можем сказать, что ряд последовательно проходимых системой состояний соответствует все более вероятному распределению энергии.

Это возрастание вероятности, вообще говоря, чрезвычайно велико в силу выясненного в предыдущем параграфе экспоненциального ее характера. Именно, мы видели, что вероятность определяется выражением , в экспоненте которого стоит аддитивная величина - энтропия системы. Мы можем поэтому сказать, что процессы, протекающие в неравновесной замкнутой системе, идут таким образом, что система непрерывно переходит из состояний с меньшей в состояния с большей энтропией, пока, наконец, энтропия не достигнет наибольшего возможного значения, соответствующего полному статистическому равновесию.

Таким образом, если замкнутая система в некоторый момент времени находится в неравновесном макроскопическом состоянии, то наиболее вероятным следствием в последующие моменты времени будет монотонное возрастание энтропии системы. Это так называемый закон возрастания энтропии или второй закон термодинамики. Он был открыт Клаузиусом (R. Clausius, 1865), а его статистическое обоснование было дано Больцманом (L. Boltzmann, 1870-е годы).

Говоря о «наиболее вероятном» следствии, надо иметь в виду, что в действительности вероятность перехода в состояния с большей энтропией настолько подавляюще велика по сравнению с вероятностью сколько-нибудь заметного ее уменьшения, что последнее вообще фактически никогда не может наблюдаться в природе. Отвлекаясь от уменьшений энтропии, связанных с совершенно ничтожными флуктуациями, мы можем поэтому сформулировать закон возрастания энтропии следующим образом: если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает - увеличивается или в предельном случае остается постоянной.

В том, что изложенные простые формулировки соответствуют реальной действительности, - нет никакого сомнения; они подтверждаются всеми нашими ежедневными наблюдениями. Однако при более внимательном рассмотрении вопроса о физической природе и происхождении этих закономерностей обнаруживаются существенные затруднения, в известной мере до настоящего времени еще не преодоленные.

Прежде всего, если мы попытаемся применить статистику к миру как целому, рассматриваемому как единая замкнутая система, то мы сразу же столкнемся с разительным противоречием между теорией и опытом. Согласно результатам статистики вселенная должна была бы находиться в состоянии полного статистического равновесия. Точнее, должна была бы находиться в равновесии любая сколь угодно большая, но конечная ее область, время релаксации которой во всяком случае конечно.

Между тем ежедневный опыт убеждает нас в том, что свойства природы не имеют ничего общего со свойствами равновесной системы, а астрономические данные показывают, что то же самое относится и ко всей доступной нашему наблюдению колоссальной области Вселенной.

Выход из создающегося таким образом противоречия следует искать в общей теории относительности. Дело в том, что при рассмотрении большинства областей вселенной важную роль начинают играть существующие в них гравитационные поля. Как известно, последние представляют собой не что иное, как изменение пространственно-временной метрики. При изучении статистических свойств тел метрические свойства пространства времени можно в известном смысле рассматривать как «внешние условия», в которых эти тела находятся. Но утверждение о том, что замкнутая система должна в течение достаточно длительного времени перейти в состояние равновесия, разумеется, относится лишь к системе, находящейся в стационарных внешних условиях. Между тем общее космологическое расширение вселенной означает, что ее метрика существенно зависит от времени, так что «внешние условия» отнюдь не являются в данном случае стационарными. При этом существенно, что гравитационное поле не может быть само включено в состав замкнутой системы ввиду того, что при этом обратились бы в тождество законы сохранения, являющиеся, как мы видели, основой статистики. Благодаря этому в общей теории относительности мир как целое должен рассматриваться не как замкнутая система, а как система, находящаяся в переменном гравитационном поле; в связи с этим применение закона возрастания энтропии не приводит к выводу о необходимости статистического равновесия.

Таким образом, в изложенной части вопроса о мире как целом ясны физические корни кажущихся противоречий. Существуют, однако, еще и другие трудности в понимании физической природы закона возрастания энтропии.

Как известно, классическая механика сама по себе полностью симметрична по отношению к обоим направлениям времени. Уравнения механики остаются неизменными при замене времени t на -t, поэтому, если эти уравнения допускают какое-либо движение, то они же допускают и прямо противоположное, при котором механическая система проходит через те же самые конфигурации в обратном порядке. Естественно, что такая симметрия должна сохраниться и в основанной на классической механике статистике. Поэтому, если возможен какой-либо процесс, сопровождающийся возрастанием энтропии замкнутой макроскопической системы, то должен быть возможен и обратный процесс, при котором энтропия системы убывает. Приведенная выше формулировка закона возрастания энтропии сама по себе еще не противоречит этой симметрии, так как в ней идет речь лишь о наиболее вероятном следствии макроскопически описанного состояния.

Другими словами, если дано некоторое неравновесное макроскопическое состояние, то закон возрастания энтропии утверждает лишь, что из всех микроскопических состояний, удовлетворяющих данному макроскопическому описанию, подавляющее большинство приведет в следующие моменты времени к возрастанию энтропии.

Противоречие возникает, однако, если обратить внимание на другую сторону этого вопроса. Формулируя закон возрастания энтропии, мы говорили о наиболее вероятном следствии заданного в некоторый момент времени макроскопического состояния. Но это состояние само должно было возникнуть из каких-то других состояний в результате происходящих в природе процессов. Симметрия по отношению к обоим направлениям времени означает, что во всяком произвольно выбранном в некоторый момент времени макроскопическом состоянии замкнутой системы можно утверждать не только, что подавляюще вероятным его следствием при будет увеличение энтропии, но и что подавляюще вероятно, что оно само возникло из состояний с большей энтропией; другими словами, подавляюще вероятно должно быть наличие минимума у энтропии как функции времени в момент в который макроскопическое состояние выбирается нами произвольно.

Но такое утверждение, разумеется, ни в какой степени не эквивалентно закону возрастания энтропии, согласно которому во всех реально осуществляющихся в природе замкнутых системах энтропия никогда не убывает (отвлекаясь от совершенно ничтожных флуктуаций). Между тем именно эта общая формулировка закона возрастания энтропии полностью подтверждается всеми происходящими в природе явлениями. Подчеркнем, что она отнюдь не эквивалентна формулировке, данной в начале этого параграфа, как это могло бы показаться. Для того чтобы получить одну формулировку из другой, нужно было бы ввести понятие о наблюдателе, искусственно «изготовившем» в некоторый момент времени замкнутую систему, так, чтобы вопрос о ее предыдущем поведении вообще отпадал; такое связывание физических законов со свойствами наблюдателя, разумеется, совершенно недопустимо.

Вряд ли сформулированный таким образом закон возрастания энтропии вообще мог бы быть выведен на основе классической механики. К тому же, ввиду инвариантности уравнений классической механики по отношению к изменению знака времени, речь могла бы идти лишь о выводе монотонного изменения энтропии. Для того чтобы получить закон ее монотонного возрастания, мы должны были бы определить направление времени как то, в котором происходит возрастание энтропии. При этом возникла бы еще проблема доказательства тождественности такого термодинамического определения с квантовомеханическим {см. ниже).

В квантовой механике положение существенно меняется. Как известно, основное уравнение квантовой механики - уравнение Шредингера само по себе симметрично по отношению к изменению знака времени (при условии одновременной замены, волновой функции на . Это значит, что если в некоторый момент времени волновая функция задана, ), и, согласно уравнению Шредингера, в другой момент времени она должна стать равной то переход от к обратим; другими словами, если в начальный момент было бы , то в момент будет . Несмотря, однако, на эту симметрию, квантовая механика в действительности существенным образом содержит неэквивалентность обоих направлений времени. Эта неэквивалентность проявляется в связи с основным для квантовой механики процессом взаимодействия квантовомеханического объекта с системой, подчиняющейся с достаточной степенью точности классической механике. Именно, если с данным квантовым объектом последовательно происходят два процесса взаимодействия (назовем их А и В), то утверждение, что вероятность того или иного результата процесса В определяется результатом процесса А, может быть справедливо лишь в том случае, если процесс А имел место раньше процесса В (см. также III, § 7),

Таким образом, в квантовой механике имеется физическая неэквивалентность обоих направлений времени, и в принципе закон возрастания энтропии мог бы быть ее макроскопическим выражением. В таком случае должно было бы существовать содержащее квантовую постоянную h неравенство, обеспечивающее справедливость этого закона и выполняющееся в реальном мире. Однако до настоящего времени никому не удалось сколько-нибудь убедительным образом проследить такую связь и показать, что она действительно имеет место.

Вопрос о физических основаниях закона монотонного возрастания энтропии остается, таким образом, открытым. Не имеет ли его происхождение космологической природы и не связано ли оно с общей проблемой начальных условий в космологии?

Играет ли, и какую роль, в этом вопросе нарушение временной симметрии в некоторых процессах слабых взаимодействий между элементарными частицами? Возможно, что на подобные вопросы будут получены ответы лишь в процессе дальнейшего синтеза физических теорий.

Резюмируя, еще раз повторим общую формулировку закона возрастания энтропии: во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает она увеличивается или, в предельном случае, остается постоянной. Соответственно этим двум возможностям все происходящие с макроскопическими телами процессы принято делить на необратимые и обратимые. Под первыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы; процессы, которые бы являлись их повторениями в обратном порядке, не могут происходить, так как при этом энтропия должна была бы уменьшиться. Обратимыми же называются процессы, при которых энтропия замкнутой системы остается постоянной и которые, следовательно, могут происходить и в обратном направлении. Строго обратимый процесс представляет собой, разумеется, идеальный предельный случай; реально происходящие в природе процессы могут быть обратимыми лишь с большей или меньшей степенью точности.

Формулировка теоремы

Если в некоторый момент времени энтропия замкнутой системы отлична от максимальной, то в последующие моменты энтропия не убывает - увеличивается или в предельном случае остается постоянной.

Локальное убывание энтропии

Вероятность перехода в состояния с большей энтропией настолько подавляюще велика по сравнению с вероятностью сколько-нибудь заметного ее уменьшения, что последнее вообще фактически никогда не может наблюдаться в природе.

Обратимые и необратимые процессы

Так как во всех осуществляющихся в природе замкнутых системах энтропия никогда не убывает - она увеличивается или, в предельном случае, остается постоянной - все процессы, происходящие с макроскопическими телами, можно разделить на необратимые и обратимые .

Под первыми подразумеваются процессы, сопровождающиеся возрастанием энтропии всей замкнутой системы. Процессы, которые были бы их повторениями в обратном порядке - не могут происходить, так как при этом энтропия должна была бы уменьшиться.
Обратимыми же называют процессы, при которых термодинамическая энтропия замкнутой системы остается постоянной. (Энтропия отдельных частей системы при этом не обязательно будет постоянной.)

См. также

Литература

  • Ландау, Л. Д. , Лифшиц, Е. М. Статистическая физика. Часть 1. - Издание 3-е, дополненное. - М .: Наука , 1976. - 584 с. - («Теоретическая физика» , том V).

Wikimedia Foundation . 2010 .

Смотреть что такое "Закон неубывания энтропии" в других словарях:

    Начала термодинамики Статья является частью серии «Термодинамика». Нулевое начало термодинамики Первое начало термодинамики Второе начало термодинамики Третье начало термодинамики Разделы термодинамики … Википедия

    Начала термодинамики Статья является частью серии … Википедия

    Термодинамика … Википедия

    Термодинамические величины … Википедия

    Статистическая физика … Википедия

    - (от др. греч. θερμη тепло и др. греч. δυναμις сила) раздел физики, изучающий соотношения и превращения теплоты и других форм энергии. В отдельные дисциплины выделились химическая термодинамика, изучающая физико химические… … Википедия

    У этого термина существуют и другие значения, см. Золотой век (значения). Золотой век общей теории относительности период примерно с 1960 до 1975 года, в течение которого исследования в общей теории относительности, ранее считавшейся просто… … Википедия

    - («симметрия по отношению к обращению времени») симметрия уравнений, описывающих законы физики, по отношению к операции замены времени t на −t (то есть к обращению времени). В квантовой механике математически записывается, как равенство нулю … Википедия

    T симметрия(«симметрия по отношению к обращению времени») симметрия уравнений, описывающих законы физики, по отношению к операции замены времени t на −t (то есть к обращению времени). В квантовой механике математически записывается, как равенство … Википедия

Книги

  • Закон сохранения информации и его проявления в культуре , Черносвитов П.Ю.. Настоящая монография представляет собой культурологическое исследование, основания которого автором углублены в естественно-научную сферу, в ту ее часть, где лежат фундаментальные понятия ее…

Понятие «энтропия» ввел немецкий физик Рудольф Юлиус Эмануэль Клаузиус для обозначения тенденции вещей к и изнашиванию. В 1865 году он писал:

«Я предлагаю назвать величину S [энергию, которой не хватает для работы] энтропией тела, от греческого слова превращение... Энергия Вселенной постоянна - энтропия Вселенной стремится к максимуму «.

Люди стареют. Дома рушатся. Звезды сгорают. Утесы оседают в море.

Закон энтропии - это перефразировка первых двух законов термодинамики, сформулированных за несколько лет до 1850 года в процессе поиска способов усовершенствования паровых двигателей. Французский физик Никола Леонар Сади Карно обнаружил, что процесс потери тепла можно направить на выполнение какой-либо работы. Англичанин Джеймс Пре-скотт Джоуль открыл явление конверсии: при каком-либо действии выделяется дополнительное тепло.

Первое начало термодинамики, которое сформулировали независимо друг от друга Джоуль и немецкий естествоиспытатель Юлиус Роберт Майер, утверждает, что энергию нельзя ни создать, ни уничтожить - она может только менять свою форму. Затем в 1850 году Клаузиус, основываясь на работах Карно, дал определение второго начала термодинамики: любая химическая система, будь то твердое тело, жидкость или газ, стремится к максимальному беспорядку. Поток энергии движется только в одном направлении, к термическому равновесию. Тепло передается от одного тела другому, и этот переход необратим. Тепло можно использовать только один раз - оно перетекает в более холодное тело, и извлечь его оттуда невозможно (не добавляя еще больше энергии). Великий шотландский ученый Джеймс Клерк Максвелл (1831–1879) заметил по этому поводу:

«Если вы бросите в море бокал, полный воды, вы не сможете достать из воды тот же самый бокал».

У закона энтропии есть параллели с двумя биологическими концепциями, рассмотренными нами в части первой: эффектом черной королевы и эволюционной гонкой вооружений. Мир изменяется, и чтобы сохранить то, что у нас было раньше, мы должны сделать больше, чем сделали вчера. Вещи можно содержать в порядке или даже улучшить (краска на доме может выцвести, но дом можно покрасить снова еще лучше, чем раньше), но эта задача требует новых действий. Энергия системы разряжается и теряется, поэтому жизнь требует вливаний новой энергии.

Поддержание успеха требует постоянных усилий. Естественное состояние природы не равновесие, а энтропия. Конкурентное положение компании основывается на сложных взаимосвязях уникальных ресурсов и отношений, живых и беспокойных. Так же как любые системы и любые отношения, эти взаимосвязи, если о них не заботиться, не подкреплять и не обновлять, слабеют и распадаются. Противостоять энтропии вполне возможно (иначе как бы мы смогли накопить столько материальных ценностей за последние 250 лет?), но эта задача требует постоянных инноваций и улучшенного использования имеющейся в наличии энергии.

Пусть при необратимом процессе 1- a -2 система является адиабатически изолированной. Так как адиабатический процесс осуществляется без теплообмена с окружающей средой , то приведенная теплота процесса1- a -2 равна нулю
. С учетом этого условия неравенства
и
можно записать:

и
. (14.12)

Полученные неравенства выражают закон возрастания энтропии :в любом процессе , который осуществляется в адиабатически изолированной системе , энтропия либо возрастает , либо остаётся постоянной.

Для равновесных обратимых адиабатических процессов
и
, т.е. энтропия остается постоянной (S = const).

Если все процессы в системе, в конце концов, завершились, и система перешла из одного равновесного состояния в другое равновесное состояние, её энтропия имеет максимальное значение.

Итак, в произвольном (обратимом или необратимом) процессе любой термодинамической системы приращение энтропии больше или равно приведенной теплоте процесса:

;
. (14.13)

Знак равенства имеет место для равновесных (обратимых) процессов. В произвольном (обратимом или необратимом) процессе с адиабатически изолированной системой приращение энтропии больше или равно нулю (энтропия возрастает):
;
, знак равенства имеет место для обратимых процессов.

Тема 15 энтропия и вероятность. Термодинамическая вероятность

15.1. Энтропия

Итак, мы ввели понятие энтропии. Энтропия – функция состояния системы. Если тело (или система тел) при переходе из одного состояния в другое на бесконечно малом участке этого перехода получает бесконечно малое количество теплоты
, то отношениеявляется дифференциалом некоторой функцииS . Эта функция– энтропия:

. (15.1)

При обратимом процессе изменение энтропии:

, (15.2)

при этом изменение энтропии S не зависит от пути перехода из состояния 1 в состояние 2 .

Теплоизолированная (или замкнутая ) система – это система, не получающая и не отдающая тепла. Теоретически доказано, что в замкнутой системе все необратимые процессы протекают в сторону возрастания энтропии, т.е. S  0. В частном случае, когда все процессы системы обратимы, то изменение энтропии равно нулю, т.е. S = 0. Кратко выше сказанное можно записать так:

S  0, (15.3)

(знак равенства относится к обратимым процессам, знак неравенства – к необратимым). Выражение S  0 тоже является одной из формулировок второго начала термодинамики, энтропия – критерий обратимости и необратимости процессов. По тому, как изменяется S , можно узнать: обратим процесс или нет. Энтропия, так же как и внутренняя энергия, является важнейшей функцией, определяющей термодинамический процесс, поскольку именно энтропия определяет направление протекания процесса.

Согласно второму началу термодинамики все процессы в замкнутой системе происходят в направлении возрастания энтропии. Если система в конечном состоянии находится в равновесном состоянии, то энтропия достигает максимума, и все процессы в системе прекращаются. Этот вывод противоречит основным положениям молекулярно-кинетической теории. Рассмотрим, например (рис. 15.1), закрытый сосуд, разделённый перегородкойАВ на две одинаковые части 1 и 2. Пусть сначала в части 1 сосуда находится N молекул идеального газа, а в части 2 – вакуум. В момент t = 0 мгновенно уберем перегородку АВ . Газ начинает расширяться. Молекулы из части 1 переходят в часть 2. Спустя некоторое время возникнет обратный поток частиц из части 2 в часть 1, после чего начнется, и будет продолжаться обмен молекулами между частями 1 и 2.

Когда число молекул N 1 и N 2 в обеих частях сосуда, а также потоки туда и обратно станут одинаковыми, наступит состояние равновесия. Это состояние будет динамическое, а не статическое равновесие. В состоянии динамического равновесия
почти никогда не выполняется, потому что молекулы движутся хаотично, аN 1 и N 2 мгновенные значения числа молекул в обеих частях сосуда. Однако среднее число частиц за достаточно большой промежуток времени в обоих частях сосуда будет одинаковым и тогда можно записать:
. Самопроизвольные отклонения числа частицN 1 и N 2 от средних значений обусловленные тепловым движением молекул, называются флуктуациями.

В рассматриваемом примере возможна такая ситуация, когда все молекулы газа, первоначально распределенные равномерно по всему объёму сосуда, самопроизвольно соберутся в одной из частей сосуда – в части 1 или в части 2. С точки зрения молекулярно-кинетической теории такая ситуация возможна, но при большом числе частиц маловероятна.

Энтропия – это функция состояния термодинамической системы, приращение которой равно приведенной теплоте равновесного перехода системы из начального состояния в конечное. Такое определение основывается на началах термодинамики. Рассмотрим молекулярно-кинетический смысл энтропии.

Следствием второго начала термодинамики является закон возрастания энтропии в адиабатически изолированной системе. Все процессы в адиабатически изолированной системе происходят в направлении возрастания энтропии: , где
и
– энтропия в конечном и начальном состояниях. Если в термодинамической адиабатически изолированной системе все макропроцессы, которые могли сопровождаться только увеличением энтропии, завершены и система пришла в состояние равновесия, то энтропия такой системы имеет максимальное значение. Таким образом,в состоянии равновесия энтропия адиабатически изолированной системы максимальна.

Обратный переход такой системы из состояния с большей энтропией в состояние с меньшей энтропией невозможен , т.к. его осуществление противоречит второму началу термодинамики.

В молекулярно-кинетической теории для описания свойств термодинамических систем и процессов применяется понятие вероятности состояния. Тогда, используя понятие вероятности состояния, следствия второго начала термодинамики можно сформулировать так: всякий процесс в адиабатически изолированной системе представляет собой переход из состояния с меньшей вероятностью в состояние с большей вероятностью. Вероятность равновесного состояния максимальна. А переход системы из состояния с большей вероятностью в состояние с меньшей вероятностью невозможен.

Отсюда следует, что понятие энтропии и вероятности состояния должны быть тесно связаны между собой. Найдем эту взаимосвязь.

Закон энтропии

В восьмом принципе мы рассмотрим механизм уничтожения систем, неспособных эволюционировать. Этот механизм основан на возрастании энтропии вокруг развивающихся систем. Для того чтобы разобраться с действием этого механизма, необходимо отметить, что рассматривать его следует только в совместном взаимодействии системы и надсистемы, в терминах “внутренняя среда и окружающая среда”. Понятие внутренней среды системы вряд ли нуждается в какой-то конкретизации. А вот понятию окружающей среды нужно дать следующее определение. Под окружающей средой будем понимать совокупность всех взаимодействующих систем, входящих в надсистему. Поскольку система является частью будущей надсистемы, и занимает пространство, принадлежащее ей, то окружающая среда является внутренней средой самой надсистемы. Поэтому то, что происходит вокруг системы, совсем не безразлично для надсистемы, т.к. имеет непосредственное к ней отношение.
Интеграция системы адекватна понятию самоорганизации. Объединение системы со своим противоположным свойством переводит ее из неравновесного состояния в равновесное или из непроявленного состояния в проявленное.

Главной особенностью, которая отличает полученные холономные системы, является низкая энтропия внутренней среды. Понятие энтропии вводится только на эволюционном пути развития систем. По определению эволюционных процессов интеграция противоположностей в исходное целое сопровождается упорядочиванием внутренней структуры.
Мы уже установили, что для обеспечения энергетической стабильности в конструктивных процессах им сопутствуют некоторые дезорганизационные процессы. Поэтому проявленная необходимость обеспечения организации системы некой дезорганизацией и обусловлена в восьмом принципе. В принципе, тезис о том, что любое созидание оплачивается разрушением, отнюдь не нов. Но он станет более понятным, если сформулировать его в следующем виде: организация внутренней структуры системы сопровождается дезорганизацией внутренней структуры надсистемы, т.е. разрушением окружающей среды. Этот тезис подразумевает, что созидание первично и является причиной разрушения окружающей среды. Таким образом, причиной повышения энтропии окружающей среды является необратимость эволюционных процессов самоорганизации, которые сопровождаются понижением энтропии внутренней среды системы.

О том, что энтропия в природе все время возрастает, было установлено еще в 19 веке в виде знаменитого второго начала термодинамики. Чаще всего второе начало термодинамики звучит так: всякое изменение состояния системы самопроизвольно может происходить лишь в сторону увеличения энтропии. Открытие второго начала термодинамики привнесло в физическую науку представление об эволюции как о движении от абсолютной организованности к полному хаосу или полному рассеянию энергии во Вселенной.
Однажды в одной очень умной книге я прочитала, что американские студенты-физики, чтобы лучше помнить законы термодинамики, заучивают следующую фразу: «Если первый закон утверждает, что вы не можете выиграть, то второй закон говорит, что у вас даже нет шанса остаться при своих».

До сих пор энтропию мы рассматривали как количественную меру хаоса, не вводя никаких формул. Теперь на энтропию посмотрим с механистической точки зрения, воспользовавшись именно теми понятиями, которые с самого начали и ввели понятие энтропии в физику. Снова прибегнем к примеру с газовой системой. Вероятность события, при котором все молекулы газа соберутся случайным образом в одном месте, чрезвычайно мала. Логарифм этой вероятности и будем называть энтропией системы. Наибольшая вероятность для нашего газа, наблюдается в том случае, когда все молекулы равномерно распределены по всему объему системы. Но именно такое состояние и называется равновесным, значит, система находится в равновесии, когда энтропия максимальна. Понизим температуру нашего газа. Кинетическая энергия молекул уменьшается, начинают действовать межмолекулярные силы взаимодействия, молекулы объединяются, образуется твердое кристаллическое тело. В результате все молекулы собрались в одном месте. Порядок для такого состояния системы выше, чем у газа, значит, энтропия уменьшилась. Мы имеем два процесса: установление равновесия с повышением энтропии – первый, и преобразование тепловой энергии системы в какой-нибудь другой вид энергии с понижением энтропии – второй процесс. Переход из неравновесного состояния в равновесное состояние совершается произвольно, причем он может идти как с преобразованием, так и без преобразования тепловой энергии в другие виды энергии. А обратный процесс - процесс перехода систем из равновесного состояния в неравновесное состояние – самопроизвольно идти не может. В этом и заключен основной смысл второго начала термодинамики.

Но ведь мы на Земле и в космосе повсеместно наблюдаем обратную тенденцию, в биологических и социальных системах наблюдается именно преобразование хаоса в упорядоченные структуры.
Почему современная физика указывает только на фундаментальные законы, объясняющие причины деградационных или дезорганизационных процессов? Почему до сих пор не найден сравнимый по фундаментальности контрфактор, который позволил бы последовательно объяснить конструктивные феномены? Парадокс между биологическим эволюционизмом и термодинамической необратимостью остается до сих пор нерешенным, хотя ушли уже в историю попытки опровержения второго начала на чисто физической основе. Но все же большие трудности, которые возникают в области термодинамики и, особенно, в наиболее важных случаях открытых систем, включающих живое вещество, служит поводом к ограничению второго начала.

Причем фактические противоречия между реальными процессами самоорганизации систем и законом возрастания энтропии во внешней среде отсутствуют. Не обнаруживается нарушений термодинамических законов и в связи с активностью живых организмов, поскольку энтропия отходов всегда превышает энтропию поступающих веществ. Это свидетельствует в пользу того, что конструктивные феномены, определяющие внутреннюю самоорганизацию систем, опосредуются процессами рассеяния энергии в окружающей среде. Объяснить возникший парадокс между восходящими тенденциями эволюционного развития в биологии, обществоведении и нисходящим направлением эволюции, обусловленным вторым началом термодинамики, не возможно вне единства системы и надсистемы. Даже в самых простых формулировках, дающих определение понятию необратимых процессов, можно увидеть явное указание на этот факт: “необратимыми называются такие процессы, которые могут самопроизвольно протекать только в одном направлении; в обратном направлении они могут протекать только как одно из звеньев более сложного процесса”. Этот более сложный процесс, как правило, и связан с функциональными действиями надсистемы.
Таким образом, законы количественного изменения энтропии нужно рассматривать только на уровне взаимодействий системы и надсистемы. Если до сих пор наши основные принципы описывали иерархичность взаимоотношений, при которых только изменения в надсистеме вызывали соответствующие изменения в системе, то теперь появляется обратная связь, и изменения в системе также вызывают ответные реакции в надсистеме. Теперь любые процессы, происходящие в системе, будут иметь определенный отклик в надсистеме, что в основном объясняется нелокальностью интегральной структуры и целевой детерминацией внутренних процессов системы. Как видим, в этом случае еще лишний раз подтверждается, что сама интегральная структура мироздания играет в процессах эволюции главенствующую роль. И никакими другими факторами вы не сможете объяснить парадокс между восходящими тенденциями эволюционного развития в биологии, обществоведении и нисходящим направлением эволюции, обусловленным вторым началом термодинамики.
В этом случае второе начало можно рассматривать, как частный случай более общего закона, который гласит: процессы понижения энтропии внутренней среды и повышения энтропии окружающей среды, которые сопровождают самоорганизацию системы, взаимно дополняют, определяют и обусловливают друг друга. Этот закон в дальнейшем будем называть законом сохранения энтропии. Поскольку насколько уменьшится энтропия системы, настолько увеличится энтропия в надсистеме.

Другими словами закон энтропии можно сформулировать и так: понижение энтропии внутри системы при ее самоорганизации сопровождается повышением энтропии в окружающей среде. Обратное утверждение не верно, т.е. повышение энтропии в окружающей среде не ведет к понижению энтропии внутренней среды. В этом случае закон энтропии устанавливает прямую однозначную зависимость между причиной – самоорганизацией системы и следствием – изменением энтропии внутри и снаружи неравновесной системы. Вследствие необратимости эволюционных процессов из этого закона можно сделать еще один вывод: целенаправленное разрушение окружающей среды сопровождается разрушением внутренней структуры системы, вызвавшей это разрушение.

Механизм действия закона энтропии в данном случае сводится к следующему. Если система производит в окружающей среде какие-либо разрушительные действия, то со стороны надсистемы возникает ответная реакция, направленная на восстановление причиненного ущерба. Процесс восстановления, сопровождаемый теперь понижением энтропии в окружающей среде, должен быть оплачен принудительным повышением энтропии в системе, которая произвела эти разрушения. Поскольку здесь затронуты интересы надсистемы, предусматривающие сохранения ее целостности, то в самой системе через интегральную структуру включается механизм действия обратных связей в подсистеме, регулирующей функции контроля. Потому что именно здесь на этом уровне и происходит накопление той самой энтропии, которую произвела система. Причем как видно, количество ее будет удвоено за счет возвращения произведенной энтропии из внешней среды и за счет самого процесса возврата, который тоже самопроизвольно происходить не может, а только с повышение энтропии внутри системы. Управление включением подобного механизма обусловлено детерминизмом интегральной структуры и опосредствовано функцией целеполагания, которая в данном случае защищает интересы надсистемы.

Конструктивные феномены, определяющие внутреннюю самоорганизацию систем, описаны в 7 принципе. Каждая системная функция представляет собой антиэнтропийный фактор, который участвует в процессах самоорганизации систем.
Принято считать, что действие антиэнтропийных факторов заключается в том, чтобы только противостоять разрушающему влиянию окружающей среды. На самом деле структурообразующие функции, которые отвечают за внутреннюю организацию системы, являются основной причиной повышения энтропии в системе. А действие управляющих функций не только приспосабливает окружающую среду к собственным нуждам, но в основном направлено на уменьшение энтропии на своем контролирующем уровне. Поскольку большое количество накопленной энтропии здесь может привести систему к самоуничтожению. Такие процессы будут успешными только в том случае, если система постоянно способна уменьшать энтропию вокруг себя.

Таким образом, из закона энтропии можно сделать еще один вывод. Система будет уничтожена в любом случае, если она не способна к самоорганизации, к эволюционным преобразованиям с соблюдением основных ее критериев. Поэтому для системы есть единственный путь – эволюционный, это значит, что в этом мире невозможно выжить, если не двигаешься вверх, даже простая остановка в развитии может привести к уничтожению.

Девятый принцип

Мы уже говорили о том, что для полноценного развития систем возможность появления каких-то новых не запрограммированных возможностей принципиально важна. Интеграция исходной целостности с приобретением новых свойств есть одно из неоспоримых преимуществ такого типа эволюции. Поэтому в эволюционное развитие систем была введена случайная компонента, которая определяет порождение новых состояний.
В этом случае для большинства систем целевая причина эволюции обретает статус скрытого параметра, и свобода выбора теперь осуществляется в условиях неопределенного будущего. Поэтому на передний план в эволюционном развитии выступают внутренние побудительные мотивы системы, ее предшествующее состояние и характер взаимодействия с окружающей средой. Отсутствие конкретных знаний об эволюционной цели развития заменяется в данном случае вероятностным характером “попадания” в цель.
Таким образом, в девятом принципе закладывается вероятностно-статистический принцип детерминации. Возможность статистического способа достижения целей эволюции основывается на “трех китах”, во-первых, на бесконечном многообразии различных материальных форм, во-вторых, на возможности неоднократной попытки “попадания в цель”, в третьих, используется фактор самообучения систем, при котором каждое удачное “попадание в цель” поощряется, каждое неудачное - наказывается (по принципу действия обратных связей).

Рис.23. Усилитель отбора

Механизм действия такого способа достижения цели близок по описанию «усилителю отбора», предложенному У. Эшби еще в 50-х годах. Он назвал его усилителем мыслительных способностей. Схема показана на рисунке 23. Генератор шума поставляет «сырье» в первую ступень усилителя. Преобразователь шума 2 создает разные случайные варианты объектов отбора. В блоке 3 происходит отбор в соответствии с заложенными в устройство критериями отбора. Если результат отбора удовлетворяет критерию, срабатывает блок управления 4, открывая клапан 5 и пропуская отработанную информацию в преобразователь следующей ступени усилителя. Можно представить, что в первой ступени усилителя, куда поступают случайные буквы, происходит отбор отдельных случайно возникших слов или характерных слогов. Во второй ступени происходит отбор сочетаний слов, в третьей – отбор фраз и т.д. В процессе случайного поиска возникает как раз та информации, которая нужна системе для перевода ее в новое состояние. Этот процесс назван отбором информации из шума.

В эволюционном «усилителе отбора» роль «генератора шума», который поставляет «сырье» играет интегральная схема мироздания. Она устроена таким образом, что способна порождать бесконечно большое количество структурных форм в виде различных развивающихся систем. Роль усилителей первой, второй и т.д. ступеней играют системные функции седьмого принципа. Восьмой принцип в «усилителе отбора» не описан, но его принцип понять не сложно. В блоке 3 усилителя, в котором происходит отбор, только часть систем проходят в преобразователь следующей ступени. Большинство же систем остаются в блоке. Наступает момент, когда блок переполняется и требуется основательная его очистка. Вот тут и вступает в действие восьмой принцип, и все оставшиеся системы в блоке 3 уничтожаются.

Таким образом, первым условием 9 принципа является закон необходимого разнообразия, дающий возможность создания достаточно большого количества вариантов.
Второе условие 9 принципа – фактор самообучения систем. Основные эволюционные критерии для развивающихся систем не известны, но чтобы сократить время на поиск необходимой информации из шума, каждая ступень разбивается на ряд дополнительных уровней, на которых происходит закрепление полученных признаков. При этом каждое удачное случайно образованное сочетание поощряется, каждое неудачное наказывается.

Такой механизм можно обыграть на следующем примере. Стрелок стреляет по невидимой мишени, и где она находится ему не известно. Но каждый раз, когда попадает предельно близко к цели, он получает определенный положительный знак, но зато после этого, стреляя не в ту сторону, он получает отрицательные знаки. Поэтому третьим условием, хотя его можно назвать и вместо второго, это возможность пройти одну и туже ступень с нескольких попыток. Фактически давая возможность нашему стрелку сделать несколько выстрелов, мы тем самым значительно выигрываем во времени. В противном случае нам приходилось бы заменять каждый раз стрелка на нового, и его единственный случайный выстрел мог бы очень долгое время не давать никого результата.

49 ступеней развития планеты

Прогрессивная эволюция материи характеризуется тем, что в развитии планеты постепенно снизу вверх проявляются семь созидающих сил. Одну из этих сил, которая фактически сформировала окружающую физическую Вселенную в том виде, в каком мы ее знаем, мы уже рассмотрели. Эта сила, прообразом которой был исходный D-признак, завершив процесс холономной интеграции, полностью вошла всеми своими исходными компонентами в единую целостность, называемую Вселенной. Как было показано ранее, в этом процессе участвуют производные четвертого и более высоких порядков. Интеграция с субъектным свойством, определяемым как Природа, создало материальную Вселенную со всеми действующими в ней физическими законами, Солнечную систему, нашу планету, которая стала первым объектом, участвующим в дальнейшей эволюции. Можно считать, что Природа, как один из аспектов субъективной реальности, устанавливает созидающие силы, определяющие образование, развитие и длительное существование физической материи. Завершение интеграции на уровне производных четвертого порядка определило существование корпускулярной материи, которая продолжила дальнейший путь интеграции на уровне третьих производных.

Третьи частные производные были определены как основные антиэнтропийные функции F1 - F7, где к седьмой функции F7 как раз и относится образование физического тела планеты.
Интеграция с субъектными свойствами F6, F5, определяемых третьими производными субъективной реальности по U-признаку, дала возможность существованию всех живых существ. Это в свою очередь наделило эволюционирующий объект – планету двумя оболочками, представляющими растительный и животный мир, объединяемых термином биосфера. Биосфера, являясь мощной антиэнтропийной созидающей силой, преобразующей облик планеты, обозначила следующий очередной этап в эволюции планеты.
Этот следующий этап эволюции связан с интеграцией объекта - биосферы с субъектным свойством, определяемым по S-признаку, который в настоящий момент происходит на основе человека разумного (интеграция с F4).

Окончательная интеграция с последним аспектом субъективной реальности, происходящим также на уровне третьих частных производных (интеграция с F3, F2, F1), определит самую мощную и активную силу во Вселенной - силу сознания. Человек, обладающей подобной силой, по своим возможностям станет практически всемогущим.

Каждый из семи уровней творения, благодаря 8 и 9 принципу делятся еще на 7 подуровней, которые мы теперь будем называть ступенями. В результате этого, в процессе эволюции можно выделить 49 ступеней. Эволюционирующие системы, последовательно проходя все эти ступени, осваивают определенный набор функций, который присущ каждой из них. Поэтому, рассматривая ход эволюции Земли, мы будем последовательно разбирать процессы, происходящие на каждой из них.