Постоянные в физике таблица. Фундаментальные физические константы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Фунда ментальные физические константы

Введение

Фундаментальные физические константы - одни из важнейших элементов современной физической картины мира. Эволюция этого понятия тесно связана с эволюцией физики и отражает общие закономерности развития физического знания. В классической физике физические константы появились в связи с установлением специфических свойств материальных объектов (плотности тел, скорость звука, света и т.д.) и не играли в структуре физической теории такой фундаментальной роли, которую они приобрели в XX в. В результате научной революции конца XIX - начала XX вв. физическая теория вышла на качественно новый уровень своего развития, изменилось понятие физической реальности, а такие физические постоянные, как скорость света и постоянная Планка, приобрели фундаментальный статус. Дальнейшее развитие физики также отражает развитие концепции фундаментальных постоянных, особенно в связи с открытием макроскопических квантовых эффектов, что привело к революции в метрологии и ее переходу в квантовую метрологию.

В данной работе ставится задача исследования основных концептуальных моментов эволюции физики, связанных с появлением и «фундаментализацией» физических постоянных, изучение истории опытов и первооткрывателей, которые открыли фундаментальные физические постоянные.

Главы посвящены истории пяти постоянных - скорости света с, гравитационной постоянной G, постоянной Планка h, элементарному заряду e, постоянной Больцмана k.

Если история скорости света и постоянной Планка в целом была достаточно основательно исследована в связи с историей возникновения специальной теории относительности (СТО) и квантовой механики (КМ), то история появления гравитационной постоянной до сих пор была совершенно неизученной. Также в XX в. получило широкое распространение модернизация истории физики со стороны физиков, имеющих свое представление об исторической реальности, что привело к искажению реальной истории, в том числе истории фундаментальных физических постоянных. Поэтому данная работа так же посвящена исследованию новых фундаментальных физических постоянных, возникших на рубеже XX-XXI веков.

В своей работе я основывалась на статьи журнала «Успехи физических наук»: «Фундаментальные физические константы: роль в физике и метрологии и рекомендованные значения» Каршенбойма С.Г. и «Иерархии фундаментальных констант (к пунктам 16,17 и 27 из списка В.Л. Гинзбурга)» Рубакова В.А.

1 . Понятие фундаментальных физических констант

физический константа гравитационный

Фундаментальные физические постоянные - постоянные, входящие в уравнения, описывающие фундаментальные законы природы и свойства материи. Фундаментальные физические постоянные возникают в теоретических моделях наблюдаемых явлений в виде универсальных коэффициентов в соответствующих математических выражениях.

Слово «постоянная» в физике употребляется в двояком смысле:

· численное значение некоторой величины вообще не зависит от каких-либо внешних параметров и не меняется со временем,

· изменение численного значения некоторой величины несущественно для рассматриваемой задачи.

Физические постоянные делятся на две основные группы - размерные и безразмерные постоянные. Численные значения размерных постоянных зависят от выбора единиц измерения. Численные значения безразмерных постоянных не зависят от систем единиц и должны определяться чисто математически в рамках единой теории.

Среди размерных физических постоянных следует выделять константы, которые не образуют между собой безразмерных комбинаций. Их максимальное число равно числу основных единиц измерения - это и есть собственно фундаментальные физические постоянные (скорость света, постоянная Планка и др.). Все остальные размерные физические постоянные сводятся к комбинациям безразмерных постоянных и фундаментальных размерных постоянных.

С точки зрения фундаментальных констант эволюция физической картины мира это переход от физики без фундаментальных констант (классическая физика) к физике с фундаментальными константами (современная физика). Классическая физика при этом сохраняет своё значение как предельный случай современной физики, когда характерные параметры исследуемых явлений далеки от фундаментальных постоянных.

2 . Ха рактеристика основных фундаментальных физических констант

2 . 1 Скорость света в вакууме

Скорость света в вакууме - абсолютная величина скорости распространения электромагнитных волн в вакууме. В физике традиционно обозначается латинской буквой «c ».

Скорость света в вакууме - фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Она относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела или поля, а свойства пространства-времени в целом. По современным представлениям, скорость света в вакууме - предельная скорость движения частиц и распространения взаимодействий.

Наиболее точное измерение скорости света

с=299 792 458 ± 1,2 м/с

на основе эталонного метра было проведено в 1975 году.

На данный момент считают, что скорость света в вакууме - фундаментальная физическая постоянная, по определению, точно равная

с=299 792 458 м/с = 1 079 252 848,8 км/ч.

Точность значения связана с тем, что с 1983 года метр в Международной системе единиц (СИ) определён, как расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 с. Для решения школьных задач и разного рода оценок, не требующих большой точности, обычно используют значение

с=300 000 000 м/с (3Ч10 8 м/с).

В природе со скоростью света в вакууме распространяются:

· собственно, видимый свет и другие виды электромагнитного излучения (радиоволны, рентгеновские лучи, гамма-кванты и др.);

· предположительно - гравитационные волны.

Массивные частицы могут иметь скорость, приближающуюся почти вплотную к скорости света, но всё же не достигающую её точно. Например, околосветовую скорость имеют массивные частицы, полученные на ускорителе или входящие в состав космических лучей.

В современной физике считается хорошо обоснованным утверждение, что причинное воздействие не может переноситься со скоростью, большей скорости света в вакууме (в том числе посредством переноса такого воздействия каким-либо физическим телом). Существует, однако, проблема «запутанных состояний» частиц, которые, судя по всему, «узнают» о состоянии друг друга мгновенно. Однако и в этом случае сверхсветовой передачи информации не происходит, поскольку два запутанных фотона всё равно разлетаются друг от друга со скоростью света.

Хотя в принципе, движение каких-то объектов со скоростью, большей скорости света в вакууме, вполне возможно, однако это могут быть, с современной точки зрения, только такие объекты, которые не могут быть использованы для переноса информации с их движением.

Например, солнечный зайчик в принципе может двигаться по стене со скоростью большей скорости света, но никак не может быть использован для передачи информации с такой скоростью от одной точки стены к другой.

2 .2 Гравитационная постоянная

Гравитационная постоянная, постоянная Ньютона - фундаментальная физическая постоянная, константа гравитационного взаимодействия.

Гравитационная постоянная фигурирует в современной записи закона всемирного тяготения, однако отсутствовала в явном виде у Ньютона и в работах других ученых вплоть до начала XIX века.

Гравитационная постоянная в нынешнем виде впервые была введена в закон всемирного тяготения, по-видимому, только после перехода к единой метрической системе мер. Возможно, впервые это было сделано французским физиком Пуассоном в «Трактате по механике» (1809). По крайней мере никаких более ранних работ, в которых фигурировала бы гравитационная постоянная, историками не выявлено.

В 1798 году Генри Кавендиш поставил эксперимент с целью определения средней плотности Земли с помощью крутильных весов, изобретённых Джоном Митчеллом (Philosophical Transactions 1798). Кавендиш сравнивал маятниковые колебания пробного тела под действием тяготения шаров известной массы и под действием тяготения Земли. Численное значение гравитационной постоянной было вычислено позже на основе значения средней плотности Земли. Точность измеренного значения G со времён Кавендиша увеличилась, но и его результат был уже достаточно близок к современному.

В 2000 г. было получено значение гравитационной постоянной

см 3 г -1 c -2 , с погрешностью 0,0014%.

Последнее значение гравитационной постоянной было получено группой ученых в 2013, работавших под эгидой Международного Бюро Мер и Весов, и оно составляет

см 3 г -1 c -2 .

В будущем, если опытным путём будет установлено более точное значение гравитационной постоянной, то оно может быть пересмотрено.

Значение этой постоянной известно гораздо менее точно, чем у всех других фундаментальных физических постоянных, и результаты экспериментов по его уточнению продолжают различаться. В то же время известно, что проблемы не связаны с изменением самой постоянной от места к месту и во времени, но вызваны экспериментальными трудностями измерения малых сил с учётом большого числа внешних факторов.

По астрономическим данным постоянная G практически не изменялась за последние сотни миллионов лет, ее относительное изменение не превышает 10 ?11 - 10 ?12 в год.

Согласно Ньютоновскому закону всемирного тяготения, сила гравитационного притяжения F между двумя материальными точками с массами m 1 и m 2 , находящимися на расстоянии r , равна:

Коэффициент пропорциональности G в этом уравнении называется гравитационной постоянной. Численно она равна модулю силы тяготения, действующей на точечное тело единичной массы со стороны другого такого же тела, находящегося от него на единичном расстоянии.

В единицах Международной системы единиц (СИ) рекомендованное Комитетом данных для науки и техники (CODATA) на 2008 год значение было

G = 6,67428 (67)·10 ?11 м 3 ·с?2 ·кг?1

в 2010 году значение было исправлено на:

G = 6,67384 (80)·10 ?11 м 3 ·с?2 ·кг?1 , или Н·мІ·кг?2 .

В октябре 2010 в журнале Physical Review Letters появилась статья, предлагающая уточнённое значение 6,67234 (14), что на три стандартных отклонения меньше величины G , рекомендованной в 2008 г. комитетом данных для науки и техники (CODATA), но соответствует более раннему значению CODATA, представленному в 1986 г.

Пересмотр величины G , произошедший в период с 1986 г. по 2008 г., был вызван исследованиями неупругости нитей подвесок в крутильных весах.

Гравитационная постоянная является основой для перевода других физических и астрономических величин, таких, например, как массы планет во Вселенной, включая Землю, а также других космических тел, в традиционные единицы измерения, например, килограммы. При этом из-за слабости гравитационного взаимодействия и результирующей малой точности измерений гравитационной постоянной отношения масс космических тел обычно известны намного точнее, чем индивидуальные массы в килограммах.

2 . 3 Постоянная Планка (элементарный квант действия)

В отличие от многих фундаментальных физических констант постоянная Планка h имеет точную дату своего рождения - 14 декабря 1900 г. В этот день профессор Берлинского университета Макс Карл Эрнст Людвиг Планк сделал доклад, в котором для объяснения излучательной способности чёрного тела была дана формула, в которой фигурировала новая для физики величина h.

Постоянная Планка (квант действия) - основная константа квантовой теории, коэффициент, связывающий величину энергии кванта электромагнитного излучения с его частотой так же, как и вообще величину кванта энергии любой линейной колебательной физической системы с её частотой. Связывает энергию и импульс с частотой и пространственной частотой, действия с фазой. Является квантом момента импульса. Впервые упомянута Планком в работе, посвящённой тепловому излучению, и потому названа в его честь. Обычное обозначение - латинское.

Часто применяется величина

называемая редуцированной (иногда рационализированной или приведённой) постоянной Планка или постоянной Дирака. Применение этого обозначения упрощает многие формулы квантовой механики, так как в эти формулы традиционная постоянная Планка входит в виде деленной на константу.

Формула Планка - выражение для спектральной плотности мощности излучения абсолютно чёрного тела, которое было получено Максом Планком для равновесной плотности излучения. Формула Планка была получена после того, как стало ясно, что формула Рэлея - Джинса удовлетворительно описывает излучение только в области длинных волн.

В 1900 году Планк предложил формулу с постоянной (впоследствии названной постоянной Планка), которая хорошо согласовывалась с экспериментальными данными. При этом Планк полагал, что данная формула является всего лишь удачным математическим трюком, но не имеет физического смысла. То есть Планк не предполагал, что электромагнитное излучение испускается в виде отдельных порций энергии (квантов), величина которых связана с частотой излучения выражением:

Коэффициент пропорциональности впоследствии назвали постоянной Планка,

1.054·10 ?34 Дж·с.

На 24-й Генеральной конференции по мерам и весам 17-21 октября 2011 года была единогласно принята резолюция, в которой, в частности, предложено в будущей ревизии Международной системы единиц (СИ) переопределить единицы измерений СИ таким образом, чтобы постоянная Планка была равной точно

h=6,62606X·10 ?34 Дж·с,

где Х заменяет одну или более значащих цифр, которые будут определены в дальнейшем на основании наиболее точных рекомендаций CODATA.

2 .4 Элементарный заряд

Элементарный электрический заряд - фундаментальная физическая постоянная, минимальная порция (квант) электрического заряда. Равен приблизительно

e=1,602 176 565 (35)·10 ?19 Кл

в Международной системе единиц (СИ). Тесно связан с постоянной тонкой структуры, описывающей электромагнитное взаимодействие.

«Любой наблюдаемый в эксперименте электрический заряд всегда кратен элементарному» - такое предположение было высказано Б. Франклином в 1752 году и в дальнейшем неоднократно проверялось экспериментально. Впервые элементарный заряд был экспериментально измерен Милликеном в 1910 году.

Тот факт, что электрический заряд встречается в природе лишь в виде целого числа элементарных зарядов, можно назвать квантованием электрического заряда. При этом в классической электродинамике вопрос о причинах квантования заряда не обсуждается, поскольку заряд является внешним параметром, а не динамической переменной. Удовлетворительного объяснения, почему заряд обязан квантоваться, пока не найдено, однако уже получен ряд интересных наблюдений.

· Если в природе существует магнитный монополь, то, согласно квантовой механике, его магнитный заряд обязан находиться в определённом соотношении с зарядом любой выбранной элементарной частицы. Отсюда автоматически следует, что одно только существование магнитного монополя влечёт за собой квантование заряда. Однако обнаружить в природе магнитный монополь не удалось.

· В современной физике элементарных частиц разрабатываются и другие модели, в которых все известные фундаментальные частицы оказывались бы простыми комбинациями новых, ещё более фундаментальных частиц. В этом случае квантование заряда наблюдаемых частиц не представляется удивительным, поскольку оно возникает «по построению».

Не исключено также, что все параметры наблюдающихся частиц будут описаны в рамках единой теории поля, подходы к которой разрабатываются в настоящее время. В таких теориях величина электрического заряда частиц должна вычисляться из крайне небольшого числа фундаментальных параметров, возможно, связанных со структурой пространства-времени на сверхмалых расстояниях. Если такая теория будет построена, тогда то, что мы наблюдаем как элементарный электрический заряд, окажется некоторым дискретным инвариантом пространства-времени. Такой подход развивается, например, в модели С. Бильсона-Томпсона, в которой фермионы стандартной модели интерпретируются, как три ленты пространства-времени, заплетённые в косу, а электрический заряд (точнее, треть от него) соответствует перекрученной на 180° ленте. Однако несмотря на изящество таких моделей, конкретных общепринятых результатов в этом направлении пока не получено.

2 .5 Постоянная Больцмана

Среди фундаментальных постоянных постоянная Больцмана k занимает особое место. Ещё в 1899 г. М. Планк предлагал следующие четыре числовых константы в качестве фундаментальных для построения единой физики: скорость света c , квант действия h , гравитационную постоянную G и постоянную Больцмана k . Среди этих констант k занимает особое место. Она не определяет элементарных физических процессов и не входит в основные принципы динамики, но устанавливает связь между микроскопическими динамическими явлениями и макроскопическими характеристиками состояния частиц. Она же входит в фундаментальный закон природы, связывающий энтропию системы S с термодинамической вероятностью её состояния W :

S = klnW (формула Больцмана)

и определяющий направленность физических процессов в природе. Особое внимание следует обратить на то, что появление постоянной Больцмана в той или иной формуле классической физики всякий раз совершенно отчётливо указывает на статистический характер описываемого ею явления. Понимание физической сущности постоянной Больцмана требует вскрытия громадных пластов физики - статистики и термодинамики, теории эволюции и космогонии.

Исследования Л. Больцмана

Начиная с 1866 г. Одна за другой выходят в свет работы австрийского теоретика Л. Больцмана. В них статистическая теория получает столь солидное обоснование, что превращается в подлинную науку о физических свойствах коллективов частиц.

Распределение было получено Максвеллом для простейшего случая одноатомного идеального газа. В 1868 г. Больцман показывает, что и многоатомные газы в состоянии равновесия будут также описываться распределением Максвелла.

Больцман развивает в трудах Клаузиуса представление о том, что газовые молекулы нельзя рассматривать как отдельные материальные точки. У многоатомных молекул имеются ещё вращение молекулы как целого и колебания составляющих её атомов. Он вводит в рассмотрение число степеней свободы молекул как число «переменных, требующихся для определения положения всех составных частей молекулы в пространстве и их положения друг относительно друга» и показывает, что из данных эксперимента по теплоёмкости газов следует равномерное распределение энергии между различными степенями свободы. На каждую степень свободы приходится одна и та же энергия

Больцмана напрямую связал характеристики микромира с характеристиками макромира. Вот ключевая формула, устанавливающая это соотношение:

1/2 mv2 = kT

где m и v - соответственно масса и средняя скорость движения молекул газа, Т - температура газа (по абсолютной шкале Кельвина), а k - постоянная Больцмана. Это уравнение прокладывает мостик между двумя мирами, связывая характеристики атомного уровня (в левой части) с объемными свойствами (в правой части), которые можно измерить при помощи человеческих приборов, в данном случае термометров. Эту связь обеспечивает постоянная Больцмана k, равная 1,38 x 10-23 Дж/К.

Заканчивая разговор о постоянной Больцмана, хочется ещё раз подчеркнуть её фундаментальное значение в науке. Она содержит в себе громадные пласты физики - атомистика и молекулярно-кинетическая теория строения вещества, статистическая теория и сущность тепловых процессов. Изучение необратимости тепловых процессов раскрыло природу физической эволюции, сконцентрировавшейся в формуле Больцмана S = klnW . Следует подчеркнуть, что положение, согласно которому замкнутая система рано или поздно придёт в состояние термодинамического равновесия, справедливо лишь для изолированных систем и систем, находящихся в стационарных внешних условиях. В нашей Вселенной непрерывно происходят процессы, результатом которых является изменение её пространственных свойств. Нестационарность Вселенной неизбежно приводит к отсутствию в ней статистического равновесия.

Заключение

Постоянная скорости света была открыта в конце XVII - начале XVIII вв. как специфическая характеристика света - ее скорость распространения. Статус с существенно вырос после опыта В. Вебера и Р. Кольрауша (1856) и последовавшем затем объединении электричества и магнетизма и создании электромагнитной теории света (Максвелл, 1860-е гг.). Дальнейшее развитие физики (открытие релятивистских преобразований, отрицательные результаты опытов по обнаружению абсолютного движения) закономерно привело к отказу от абсолютности пространства и времени, к установлению фундаментальности скорости света, операциональному определению одновременности, реабилитации принципа относительности с учетом фундаментальности с (принцип релятивистской инвариантности), открытию связи пространства и времени и переформулировке классической механики и других теорий на этой основе (Г. Лоренц, А. Пуанкаре, А. Эйнштейн, Г. Минковский).

Постоянные Планка h и Больцмана к появились в 1900 г. в результате исследования взаимодействия теплового излучения с веществом как размерные коэффициенты в законе теплового излучения. Постоянные, вводившиеся другими учеными в 1890-е годы в связи с предлагавшимися ими законами теплового излучения, являются комбинациями постоянных h, к и с и математических постоянных. В дальнейшем выяснилась эвристическая роль постоянной Планка в объяснении фотоэффекта (Эйнштейн) и теории строения атома (Бор). Дальнейшее развитие физики закономерно привело к пересмотру основ классической механики и созданию в 1925-27 гг. квантовой механики, в которой постоянная Планка играет фундаментальную роль.

Постоянная е (элементарный заряд) появилась в результате открытия законов электролиза с учетом концепции атомарного строения вещества. Роль элементарного заряда выросла в связи теорией атома и атомного ядра (квантование заряда ядра в единицах е) и с развитием физики элементарных частиц (все свободные частицы имеют заряды, кратные е). Квантование заряда в единицах е ставит элементарный заряд в один ряд с постоянными с и Л в связи с их ролью естественных масштабов физических величин. В то же время, появление е, в отличие от постоянных с и /г, не привело к пересмотру оснований физических теорий и их модификации.

Гравитационная постоянная в законе всемирного тяготения появилась не ранее начала XIX века, после реформы системы мер во Франции в конце XVIII века. Возможно, первым ее ввел С.Д. Пуассон в «Трактате по механике» (1811). Опыт Кавендиша был поставлен с целью определения средней плотности Земли, а не гравитационной постоянной, понятия которой в то время еще не существовало. Однако этот опыт открыл возможность определения численного значения гравитационной постоянной в практических единицах. Гравитационная постоянная рассматривается ныне как такая же фундаментальная постоянная, как си И, в связи с ролью планковских величин как границ применимости основных физических теорий.

Появление фундаментальных постоянных явилось закономерным результатом развития физики. Открытие и осознание фундаментального статуса постоянных привело к квантово-релятивистской перестройке всей физики, а классические теории оказались лишь предельным случаем более общих теорий, основанных на фундаментальности тех или иных постоянных.

Список литературы

1. Найдыш В.М. «Концепции современного естествознания» Учебник. - Изд. 2-е, перераб. И доп. - М.:Альфа-М; ИНФРА-М, 2003. - 622 с.

2. Журнал «Успехи физических наук», том 175, №3, Каршенбойм С.Г. «Фундаментальные физические константы: роль в физике и метрологии и рекомендованные значения», Москва, 2005 г. - 298 с.

3. Журнал «Успехи физических наук», том 177, №4, Рубаков В.А. «Иерархии фундаментальных констант (к пунктам 16,17 и 27 из списка В.Л. Гинзбурга)», Москва, 2007 г. - 414 с.

Размещено на Allbest.ru

...

Подобные документы

    История науки свидетельствует, что естествознание, возникшее в ходе научной революции XVI–XVII вв., было связано с развитием физики. Механистическая, электромагнитная картины мира. Становление современной физической картины мира. Материальный мир.

    реферат , добавлен 06.07.2008

    Квантово-полевая (неклассическая) картина мира, суть ее принципов. Особенности принципов соответствия и суперпозиции. Концепция детерминизма, динамические и статистические закономерности. Принципы эволюционно-синергетической (современной) картины мира.

    реферат , добавлен 30.10.2012

    Научные картины мира и научные революции в истории естествознания. Изучение физической картины мира в ее развитии. Явления электричества и магнетизма. Квантово-релятивистская физическая картина мира, законы электродинамики. Общая теория относительности.

    реферат , добавлен 11.02.2011

    Характеристика современной естественно-научной картины мира. Междисциплинарные концепции как важнейшие элементы структуры научной картины мира. Принципы построения и организации современного научного знания. Открытия XX века в области естествознания.

    контрольная работа , добавлен 18.08.2009

    Общие контуры и основные принципы построения современной естественно-научной картины мира. Синтетическая теория эволюции (синтез генетики и дарвинизма). Постулат о способности материи к саморазвитию в философии. Общий смысл комплекса синергетических идей.

    реферат , добавлен 26.07.2010

    Особенности формирования научной картины мира в эпоху становления классического естествознания. Развитие физики как науки. Исследование роли внутренних и внешних факторов в формировании физической картины мира. Новая гелиоцентрическая парадигма Коперника.

    реферат , добавлен 27.12.2016

    Исторические этапы и структура процессов эволюции. Суть теории бифуркации в синергетике. Кризис современной цивилизации и пути выхода. Синергетика как составляющая научной картины мира. Идея самоорганизации системы. Эволюционно-синергетическая концепция.

    презентация , добавлен 22.11.2011

    Античное естествознание как синтез натурфилософских идей и научных прозрений о "природы вещей". Эра механицизма в естествознании как становление системного знания действительной науки. Современная космологическая естественно-научная картина мира.

    реферат , добавлен 05.06.2008

    Научная картина мира в системе теоретического и эмпирического знания: понятие, функции, принципиальные особенности. Принципы универсального эволюционизма: системный, эволюционный, термодинамический подход. Обоснование универсального эволюционизма.

    курсовая работа , добавлен 14.11.2007

    Современная научная картина мира. Фундаментальные воздействия и фундаментальные законы в материальном мире. Геофизическое строение и эволюция Земли. Уникальность планеты Земля в ряду других планет Солнечной системы. Концепция устойчивого развития.

Проведенные исследования показали, что используемые в современной физике фундаментальные физические константы непосредственно происходят от перечисленных ниже констант вакуума .

h u = 7,69558071(63)·10 –37 Дж·с.

G u

R u = 29,9792458 Ом.

t u = 0,939963701(11)·10 –23 с.

l u = 2,817940285(31)·10 –15 м.

Установлено, что современные фундаментальные физические постоянные имеют вторичный статус по отношению к найденным константам и представляют собой различные комбинации констант h u , t u , l u и чисел π и α. Константам, входящим в h u -t u -l u -π-α-базис, определен специальный статус – они определены как универсальные суперконстанты . На основе универсальных суперконстант получено новое значение гравитационной постоянной Ньютона, планковских констант и найдена универсальная формула силы. Новые фундаментальные физические константы дают широкие возможности для установления новых физических законов и поиска констант взаимодействия для различных физических законов.

Введение

Физика входит в 21-й век с большим клубком нерешенных проблем. Если в конце 19-го века в физике было «все благополучно» за исключением отрицательных результатов опыта Майкельсона и непонятной зависимости излучения абсолютно черного тела от температуры, то к концу 20-го века физика накопила невиданное количество нерешенных проблем. Наиболее важные из них можно найти в недавно опубликованном В.Л. Гинзбургом списке 1999 года .

Если только две проблемы конца 19-го века привели к радикальному изменению ситуации в физике, то клубок нерешенных проблем конца 20-го века способен привести к обвальному пересмотру понимания устройства мира, за которым может последовать перекраивание сложившейся научной картины мира. Обилие неудачных попыток в создании новых физических теорий говорит о том, что правильное стратегическое направление исследований до сих пор не выявлено. Среди нерешенных фундаментальных проблем еще не обозначена та важнейшая проблема, решение которой даст ключ к решению других проблем. Усилия ученых направлены как на теоретические, так и на экспериментальные исследования. Поиск новых подходов активно проводится в области исследования новых физических полей на основе концепции физического вакуума. Для описания новых видов полей и новых взаимодействий необходимо проводить поиск констант взаимодействий. Весьма вероятно, что это должны быть новые еще неизвестные физике константы.

В настоящей работе затронута проблема, которая, на мой взгляд, незаслуженно выпала из поля зрения физиков и до сих пор не была обозначена в числе важнейших фундаментальных проблем. Я имею в виду проблему фундаментальных физических констант. Она должна стоять на первом месте, поскольку именно в ней содержится ключ к решению других проблем физики. Как будет показано ниже на некоторых примерах, эта проблема действительно является ключевой, а ее решение открывает большие возможности для поиска новых физических законов и новых физических констант.

1. Проблема фундаментальных физических констант

Проблема фундаментальных физических констант естественным образом возникла на основе большого количества накопленных результатов исследований в области физики элементарных частиц. Благодаря этому направлению исследований появилось большое количество новых фундаментальных физических постоянных, которые уже выделены в отдельный класс – «атомные и ядерные константы» . Следует отметить, что их количество уже намного превышает количество всех других констант вместе взятых . В общей сложности в физике используются уже сотни физических констант. Список фундаментальных физических констант рекомендованный CODATA 1998 насчитывает около 300 фундаментальных физических констант . То, что количество констант достигло уже нескольких сотен, и все они фундаментальные – явно ненормально. Если к ним подходить как к истинно фундаментальным, то их слишком много. Если исходить из того, что в основе мира лежит единая сущность, и что механические, электрические и гравитационные явления должны иметь единую природу, то для описания всех физических явлений и законов не нужно такое большое количество констант. Если же подходить к понятию фундаментальности по полной мере, то истинной фундаментальностью должны обладать совсем минимальное количество констант, а никак не сотни. Таким образом, существует большое противоречие между минимально необходимым количеством фундаментальных констант и их реальным обилием.

Можно предположить, что известные на сегодня константы являются составными константами и статус фундаментальных они носят лишь в силу исторических особенностей их появления. Тогда возникают вопросы: «из каких новых неприводимых констант они могут состоять и как они связаны между собой?». Если такие первичные константы существуют, то они могли бы претендовать на роль фундаментальных физических суперконстант и заменить собой существующие константы. Существуют ли такие суперконстанты, которые в состоянии заменить такое большое количество столь различных фундаментальных физических констант и сколько их? На эти вопросы в рамках современных знаний ответов пока нет.

Наиболее важные современные физические теории оперируют константами G , h , c в их различных комбинациях . Так, например, теорию тяготения Ньютона можно условно назвать G -теорией . Общая теория относительности является классической (G , c )-теорией. Релятивистская квантовая теория поля является квантовой (h , c )-теорией . Каждая из этих теорий оперирует одной или двумя размерными константами. Открытие планковских единиц длины, массы и времени породили надежду на возможность создания новой квантовой теории на основе трех констант. Однако, попытки создать единую теорию электромагнитных полей, частиц и гравитации на основе трех размерных констант – (G , c , h )-теорию, окончились неудачей. Такой теории до сих пор нет, хотя на ее появление возлагали большие надежды . На G -c -h -базис все еще возлагают надежды как на основополагающую тройку констант для будущей теории. И действительно, многое указывает на то, что трех размерных констант должно быть достаточно для создания единой теории. Ведь неспроста только из трех основных единиц – метра, килограмма и секунды можно получить все производные единицы, имеющие механическую природу. Однако до сих пор неясно, какие три константы должны составить основу будущей непротиворечивой теории? Задача эта оказалась очень сложной. Я считаю, что причины сложности кроются в невыясненной сущности многих фундаментальных констант и в невыясненных истоках их происхождения. Проведенные исследования позволяют сказать, что минимальное количество первичных констант, из которых состоят современные фундаментальные физические константы, действительно существует. При этом в минимальный константный базис входят как уже известные физические постоянные, так и новые константы.

2. Константы физического вакуума

При исследовании свойств физического вакуума, из соотношения для плотности энергии получена следующая формула для полной энергии, заключенной в динамическом объекте вакуума :


Это соотношение напоминает по своему виду формулу Планка E = h ·ν. Только роль кванта действия выполняет в ней не постоянная Планка, а новая константа:


Значение константы G u равно :

G u = 2,56696941(21)·10 –45 Н·с 2 .

Константа R u получила название фундаментальный квант сопротивления . Ее значение равно :

R u = 29,9792458 Ом.

Эти три константы h u , G u , R u являются основными константами вакуума. Примечательным является то, что они непосредственно следуют из непрерывного поля Максвелла .

С константой вакуума G u связан новый динамический закон, свойственный физическому вакууму. Этот закон имеет вид :


где: m э – электромагнитная масса, l – метрическая характеристика.

Из динамического закона следует, что электромагнитная масса принимает значения от некоторого минимального значения до некоторой предельной величины:

Это приводит к тому, что метрическая характеристика изменяется от некоторого максимального значения до некоторой предельной величины:

Уравнение (5) представляет собой динамический закон, который отображает динамическую симметрию вакуума. D -инвариантность вакуума является новым видом симметрии и отражает наиболее фундаментальное свойство Природы. С D -инвариантностью вакуума связан важнейший закон сохранения, который не нарушается при всех видах взаимодействий.

D -инвариантность вакуума является симметрией более высокого порядка, чем известные на сегодня симметрии. Нарушения симметрии, которые наблюдаются в Природе, вплоть до несохранения CP -инвариантности, не затрагивают D -инвариантность вакуума. Границей D -инвариантности являются фундаментальные константы m e и l u , что и отражает динамический закон вакуума. Таким образом, динамическая симетрия вакуума не противоречит идее развития, поскольку D -инвариантность сохраняется и тогда, когда нарушаются другие виды симметрии. В вакууме реализуется реальный физический процесс, обязанный своим существованием динамической симметрии, который приводит к появлению дискретных частиц из непрерывного физического объекта, что в математическом описании представлено как достижение физическими величинами своих предельных квантованных значений .

Из соотношений (2) и (4) следует, что:


В системе СГСЭ соотношение для элементарного заряда примет вид:


(8)

Соотношения (7) и (8) представлены квадратным корнем. Из них непосредственно следует бинарность зарядов, т.е. то, что заряды имеют два знака. Поскольку заряды определяются только константами, то из этих соотношений следует также и квантованность зарядов.

Рассмотривая динамику невещественных объектов вакуума, легко видеть, что первым фиксированным значением энергии, которая соответствует устойчивому физическому объекту, является энергия электрона или позитрона E e . Тогда значение частоты, которое соответствует этой величине энергии будет равно:

ν = E e /h u = 1,063870869·10 23 Гц.

Отсюда следует четвертая физическая константа вакуума – фундаментальный квант времени:

t u = 0,939963701(11)·10 –23 с.

Используя константу скорости света c , получим пятую константу вакуума – фундаментальный квант длины:

l u = 2,817940285(31)·10 –15 м.

Отметим, что значение этой константы в точности совпадает с классическим радиусом электрона. Все пять констант вакуума h u , G u , R u , t u , l u получены на основе нового подхода к пониманию физической сущности полевых структур. Проведенные исследования этих констант показали, что используемые в современной физике фундаментальные физические константы непосредственно происходят от констант физического вакуума . Приведенные выше основные константы вакуума позволяют получить ряд вторичных констант, которые являются производными константами и также относятся к физическому вакууму.

Константы фундаментальной метрики t u и l u образуют новую константу b , названную фундаментальным ускорением :

b = l u /t u 2 .

b = 3,189404629(36)·10 31 м/с 2 .

Эта константа позволила получить новый закон силы

F = m ·b .

Этот закон отражает связь силы с дефектом массы.

Исследования констант вакуума привели к выводу, что для динамических объектов вакуума можно определить константу магнитного момента. Такой магнитный момент был найден в . Он получил название фундаментальный магнетон вакуума. Приводим соотношение для фундаментального магнетона вакуума:

μ u = l u (h u c ) 1/2 /2π.

Значение этой константы равно:

μ u = 2,15418485(11)·10 –26 Дж/Тл.

Фундаментальный магнетон μ u и магнетон Бора μ B связаны между собой следующим соотношением:

μ u = μ B α/π.

3. Универсальные суперконстанты

В получены новые результаты, показывающие, что группа констант вакуума h u , t u , l u совместно с числами π и α, обладает уникальной особенностью. Эта особенность состоит в том, что используемые в физике фундаментальные константы представляют собой различные комбинации перечисленных констант. Таким образом, названные константы вакуума имеют первичный статус и могут выполнять роль онтологического базиса физических констант. Константы, входящие в h u -t u -l u -π-α-базис, названы универсальными суперконстантами .

Их значения следующие:

  • фундаментальный квант действия h u = 7,69558071(63)·10 –37 Дж·с;
  • фундаментальный квант длины l u = 2,817940285(31)·10 –15 м;
  • фундаментальный квант времени t u = 0,939963701(11)·10 –23 с;
  • постоянная тонкой структуры α = 7,297352533(27)·10 –3 ;
  • число π = 3,141592653589...

Константы этой группы позволили выявить совершенно неожиданную всеобщую взаимозависимость и глубокую взаимную связь всех фундаментальных физических констант. Ниже, в качестве примера, показано как некоторые фундаментальные постоянные связаны с универсальными суперконстантами. Для основных констант эти функциональные зависимости оказались следующими:

  • элементарный заряд: e = f (h u , l u , t u );
  • масса электрона: m e = f (h u , l u , t u );
  • постоянная Ридберга: R = f (l u , α, π);
  • гравитационная постоянная: G = f (h u , l u , t u , α, π);
  • отношение масс протона-электрона: m p /m e = f (α, π);
  • постоянная Хаббла: H = f (t u , α, π);
  • планковская масса: m pl = f (h u , l u , t u , α, π);
  • планковская длина: l pl = f (l u , α, π);
  • планковское время: t pl = f (t u , α, π);
  • квант магнитного потока: Ф 0 = f (h u , l u , t u , α, π);
  • магнетон Бора: μ B = f (h u , l u , t u , α,).

Как видим, между физическими константами существует глобальная связь на фундаментальном уровне. Из приведенных зависимостей видно, что наименее сложными являются константы h , c , R ∞ , m p /m e . Это указывает на то, что эти постоянные наиболее близки к первичным константам, однако сами таковыми не являются. Как видим, константы, которые традиционно носят статус фундаментальных констант, не являются первичными и независимыми постоянными. К первичным и независимым можно отнести только суперконстанты вакуума. Подтверждением этому явилось то, что использование суперконстантного базиса позволило получить все основные фундаментальные физические константы расчетным путем . То, что известные сегодня фундаментальные физические константы не имеют статуса первичных и независимых постоянных, а на их основе пытались построить физические теории, и явилось причиной многих проблем физики. Фундаментальные теории невозможно построить на вторичных константах.

Размерные суперконстанты h u , l u , t u определяют физические свойства пространства-времени. Суперконстанты πи α определяют геометрические свойства пространства-времени. Таким образом, подтверждается подход А. Пуанкаре, согласно которому утверждается дополнительность физики и геометрии . Согласно этому подходу в реальных экспериментах мы всегда наблюдаем некую «сумму» физики и геометрии . Группа универсальных суперконстант своим составом подтверждает это.

4. Новое значение константы G

Зависимость константы G от первичных суперконстант указывает на то, что эту важнейшую постоянную можно получить посредством математических расчетов. Как известно, сама форма закона всемирного тяготения Ньютона – прямая пропорциональность силы массам и обратная пропорциональность квадрату расстояния, проверена с гораздо большей точностью, чем точность определения гравитационной постоянной G . Поэтому, основное ограничение на точное определение гравитационных сил накладывает константа G . Кроме того, со времен Ньютона остается открытым вопрос о природе гравитации и о сущности самой гравитационной постоянной G . Эта константа определена экспериментально. Науке пока неизвестно существует ли аналитическое соотношение для определения гравитационной константы. Науке также не была известна связь между постоянной G и другими фундаментальными физическими константами. В теоретической физике эту важнейшую постоянную пытаются использовать совместно с постоянной Планка и скоростью света для создания квантовой теории гравитации и для разработки единых теорий. Поэтому, вопросы о первичности и независимости константы G , а также необходимость знать ее точное значение, выходят на первый план.

Численное значение G было определено впервые английским физиком Г. Кавендишем в 1798 г. на крутильных весах путем измерения силы притяжения между двумя шарами.

Современное значение константы G , рекомендуемое CODATA 1998 :

G = 6,673(10)·10 –11 м 3 кг –1 с –2 .

Из всех универсальных физических постоянных точность в определении G является самой низкой. Среднеквадратическая погрешность для G на несколько порядков превышает погрешность других констант.

Совершенно неожиданным оказалось то, что G может быть выражена посредством электромагнитных констант. Это становится важным, так как точность констант электромагнетизма намного больше точности постоянной G .

Открытая группа универсальных суперконстант, имеющих первичный статус, и выявленная глобальная связь фундаментальных констант позволили получить математические формулы для вычисления гравитационной постоянной G . Таких формул оказалось несколько. В качестве подтверждения этому, ниже приведены 9 эквивалентных формул:


Из приведенных формул видно, что константа G выражается с помощью других фундаментальных констант очень компактными и красивыми соотношениями. При этом, все формулы для гравитационной константы сохраняют когерентность. В числе физических постоянных, с помощью которых представлена гравитационная константа, находятся такие константы как фундаментальный квант h u , скорость света c , постоянная тонкой структуры α, постоянная Планка h , число π, фундаментальная метрика пространства-времени (l u , t u ), элементарная масса m e , элементарный заряд e , большое число Дирака D 0 , энергия покоя электрона E e , планковскиеединицы длины l pl , массы m pl , времени t pl , постоянная Хаббла H , константа Ридберга R . Это указывает на единую сущность электромагнетизма и гравитации и на наличие фундаментального единства у всех физических констант. Из приведенных формул видно, что связь между электромагнетизмом и гравитацией действительно существует и проявляется даже на уровне гравитационной константы G .

Теперь, по прошествии 200 лет после первого измерения G , появилась возможность на основе полученных формул вычислить ее точное значение, используя константы электромагнетизма. Поскольку точность в определении констант электромагнетизма высокая, то точность гравитационной постоянной можно приблизить к точности электромагнитных констант. Все приведенные выше формулы дают новое значение G , которое по точности почти на пять порядков (!) выше известного на сегодня значения. Новое значение G вместо четырех цифр содержит 9 цифр :

G = 6,67286742(94)·10 –11 м 3 кг –1 с –2 .

С помощью универсальных суперконстант удалось получить новые формулы для планковских констант :


На основе этих формул получены новые значения планковских констант:

m pl = 2,17666772(25)·10 –8 кг.

l pl = 1,616081388(51)·10 –35 м.

t pl = 5,39066726(17)·10 –44 с.

Эти новые значения планковских констант по точности почти на пять порядков точнее известных на сегодня значений .

Универсальные суперконстанты позволили получить новое точное значение параметра Хаббла:

H = 53,98561(87) (км/с)/Мпс.

5. Фундаментальная константа силы

Особенности констант физического вакуума привели к выводу, что силы взаимодействия также должны выражаться через константы вакуума. Покажем это. Из закона Кулона для взаимодействующих элементарных зарядов следует:

F = e 2 /l 2 .

На основании формулы (8) представим это соотношение следующим образом:

F = h u c /l 2 = h u ν 2 /c .

Значение h u /c с учетом формулы (3) будет равно G u . Исходя из этого, получим соотношение для закона универсального взаимодействия :

F = G u ·ν 2 .

Для предельного значения метрики из закона универсального взаимодействия получим следующее соотношение для константы силы:

F u = h u /l u t u .

Эта новая физическая константа названа фундаментальной константой силы . Ее значение равно:

F u = 29,0535047(31) Н.

Она является универсальной константой силы для всех известных на сегодня видов взаимодействий. Как показано в , эта константа присутствует не только в законе Кулона, но и в законах Ньютона, в законе Галилея, в законе Ампера и в законе всемирного тяготения.

6. Универсальная формула силы

Поиск единого взаимодействия, сводящего воедино четыре фундаментальных взаимодействия, – одна из сложнейших нерешенных задач физики. Современные попытки объединения сильного, слабого, электромагнитного и гравитационного взаимодействий основаны на поиске условий, при которых константы взаимодействий совпадают по своим величинам. Считается, если существует такая единая константа, то объединение взаимодействий возможно. Однако такой подход пока не привел к обнадеживающим результатам. Не раскрыта взаимосвязь четырех фундаментальных взаимодействий, не ясны истоки их появления.

Я считаю, что решение проблемы единого взаимодействия нужно искать на другом направлении.

Вместо поиска условий, при которых константы взаимодействий могут совпадать, целесообразно исследовать генезис фундаментальных взаимодействий и вести поиск новой константы единого взаимодействия . Есть все основания полагать, что такая константа существует. Единство фундаментальных физических констант указывает на существование единства у электромагнитных и гравитационных сил. В частности, к решению этой проблемы может подтолкнуть выяснение следующего вопроса. Почему так схожи по своему виду формулы законов Кулона и всемирного тяготения Ньютона? Столь разные взаимодействия оказались такими похожими в математическом представлении формулы силы. В одном – заряды, в другом – массы, но формулы одинаковы. Что скрывается за этим поразительным сходством? Есть несколько путей решения этой проблемы. Первый путь состоит в том, чтобы выяснить какая существует связь между массой и зарядом. Практически это означает, что необходимо вести поиск ответа на вопрос: существует ли электромагнитная масса и что это такое? Второй путь состоит в выяснении сущности гравитационной константы G . Возможно, что и в ней скрыта связь между электричеством и гравитацией. Третий путь основан на предположении о том, что и закон Кулона, и закон Ньютона являются фрагментами какого-то универсального фундаментального закона силы. Если это сходство не случайно, то должен существовать единый закон силы, который лишь проявляется для электричества как закон Кулона, а для гравитации – как закон Ньютона. Как показано в единый закон силы действительно существует. Закон Кулона и законы Ньютона действительно являются его частными проявлениями. Используя универсальные суперконстанты, у нас представилась возможность не просто выявить сходство в форме записи у этих законов, а установить их связь на фундаментальном уровне. На основе суперконстант удалось получить новую формулу силы, которая названа универсальной формулой силы . Она имеет следующий вид:

F = (h u /l u ·t u )·(N 1 ·N 2 /N 3 2).

В универсальную формулу силы входят суперконстанты h u , l u , t u и безразмерные коэффициенты N 1 , N 2 , N 3 . Коэффициенты N 1 и N 2 единым образом представляют или отношения взаимодействующих масс к элементарной массе, или отношение зарядов к элементарным зарядам, или отношение токов к элементарному току. Коэффициент N 3 представляет собой отношение длины к фундаментальному кванту длины. Универсальная формула силы превращается в формулу F = ma при N 1 = m /m e , N 2 = 1/l u , N 3 = 1/l u :

F = (h u /l u t u ) (N 1 ·N 2 /N 3 2) = ma .

Универсальная формула силы превращается в формулу закона Кулона при N 1 = q 1 /e , N 2 = q 2 /e , N 3 = 1/l u :

F = (h u /l u ·t u ) (N 1 ·N 2 /N 3 2) = q 1 q 2 /l 2 .

В универсальной формуле силы первый сомножитель представляет собой новую физическую константу, имеющую размерность силы. Это есть фундаментальная константа силы F u , полученная выше.

Соотношение для этой константы определяется исключительно размерными суперконстантами вакуума.

При N 1 = m 1 /me , N 2 = m 2 /m e , N 3 = 1/l u и при замене фундаментального кванта действия h u на гравитационный квант действия h g = h u /D 0 универсальная формула силы превращается в следующую формулу:

F = (h g /l u ·t u )(N 1 ·N 2 /N 3 2) = (h u ·l u /t u ·m e 2 D 0)·(m 1 ·m 2 /l 2).

Комбинация констант в первом сомножителе в правой части соотношения в точности совпадает с формулой для вычисления гравитационной константы G :

h u ·l u /t u ·m e 2 D 0 = G .

Таким образом, универсальная формула силы превращается в формулу закона всемирного тяготения:

F = (h g /l u ·t u )·(N 1 ·N 2 /N 3 2) = G ·m 1 ·m 2 /l 2 .

В этой формуле физическая константа, имеющая размерность силы, определяется аналогично фундаментальной константе силы. Соотношение для этой константы имеет вид:

F ug = h g /l u ·t u .

Ее значение равно 6,9731134·10 –42 ·Н.

Тот факт, что и законы механики, и закон гравитации, и закон электростатики выражаются единой формулой – универсальной формулой силы, указывает на единую природу всех взаимодействий. На рис. 1 схематически показана связь универсальной формулы силы с физическими законами. Такая связь выявлена с законом Ньютона, законом Галилея, законом Кулона и даже с законом Ампера для взаимодействующих проводников с током.

Рис.1. Связь универсальной формулы силы с физическими законами.

Исследования показали, что из универсальной формулы силы следуют два новых закона :

F = mb и F = G u ν 2 .

Формула F = mb определяет связь силы с дефектом массы. Константой в этой формуле является фундаментальное ускорение b = 3,189404629(36)·10 31 м/с 2 . Формула F = G u ν 2 представляет новое универсальное взаимодействие . Константой в этой формуле является новая физическая постояннаявакуума G u = 2,56696941(21)·10 –45 Н·с 2 . В показано, что из закона универсального взаимодействия непосредственно следуют и закон Кулона и закон всемирного тяготения Ньютона и закон Ампера.

По генетической связи все взаимодействия можно расположить в такой последовательности: универсальное, электромагнитное, сильное, слабое, гравитационное. Как видим, корни всех взаимодействий следует искать в универсальном взаимодействии. Это пятое взаимодействие характерно для физического вакуума и не связано с взаимодействием каких бы то ни было частиц, в том числе частиц вещества. В то же время, из него проистекают законы относящиеся к взаимодействиям частиц.

Универсальная формула силы показывает, что значения электрических, магнитных, механических и гравитационных сил зависят не столько от абсолютных значений масс, зарядов, токов и расстояний, сколько от их соотношения с фундаментальными константами – массой электрона, элементарным зарядом, элементарным током и фундаментальным квантом длины. Это указывает на необходимость нового подхода к пониманию сущности фундаментальных взаимодействий.

Таким образом, причина поразительного сходства формул в законах Кулона и всемирного тяготения Ньютона проистекает от фундаментального единства сил инерции, гравитации и электромагнетизма. Это единство сил удалось установить на основе выявленного фундаментального единства физических констант и найденных новых физических постоянных.

7. Выводы

Получены новые фундаментальные физические константы h u , G u , R u , t u , l u , относящиеся к физическому вакууму. Выявлена группа констант, которым определен специальный статус универсальных суперконстант. С помощью универсальных суперконстант, которые являются константами вакуума, можно представить все законы и формулы классической и квантовой физики, а также все фундаментальные константы, в том числе постоянную Планка h и гравитационную постоянную G . Группа, состоящая из пяти универсальных суперконстант h u , t u , l u , π, α, позволяет описывать физические законы, относящиеся как к полю, так и к веществу. Известные на сегодня фундаментальные физические постоянные имеют вторичный статус по отношению к найденным универсальным суперконстантам вакуума. Открытие группы из пяти независимых универсальных суперконстант, которых совершенно достаточно для получения других физических констант, указывает на глубокую взаимосвязь констант различной природы. Найденные новые фундаментальные константы открывают перспективное направление для выявления новых физических законов и для поиска новых констант взаимодействий.

Литература

  1. Peter J. Mohr and Barry N. Taylor. «CODATA Recommended Values of the Fundamental Physical Constants: 1998»; NIST Physics Laboratory . Constants in the category «All constants»; Reviews of Modern Physics, (2000), v. 72, No. 2.
  2. D.C. Cole and H.E. Puthoff, «Extracting Energy and Heat from the Vacuum», Phys. Rev. E, v. 48, No. 2, 1993.
  3. Ю.И. Манин. Математика и физика. М.: «Знание», 1979.
  4. В.Л. Гинзбург. «Какие области физики и астрофизики представляются важными и интересными». УФН, №4, т. 169, 1999.
  5. Н.В. Косинов. «Электродинамика физического вакуума». Физический вакуум и природа, №1, 1999.
  6. Н.В. Косинов. «Физический вакуум и гравитация». Физический вакуум и природа, №4, 2000.
  7. Н.В. Косинов. «Законы унитронной теории физического вакуума и новые фундаментальные физические константы». Физический вакуум и природа, №3, 2000.
  8. N. Kosinov. «Five Fundamental Constants of Vacuum, Lying in the Base of all Physical Laws, Constants and Formulas». Physical Vacuum and Nature, №4, 2000.
  9. Н.В. Косинов. «Пять универсальных физических констант, лежащих в основе всех фундаментальных rонстант, законов и формул физики». Шестая Международная конференция «Современные проблемы естествознания». Программа и тезисы. С-Петербург, август, 2000 г.
  10. Н.В. Косинов. «Разгадка причин поразительного сходства формул законов Кулона и всемирного тяготения Ньютона». Шестая Международная конференция «Современные проблемы естествознания». Программа и тезисы. С-Петербург, август, 2000 г.
  11. Н.В. Косинов. «Эманация вещества вакуумом и проблема структурогенеза». Идея, №2, 1994.
  12. Н.В. Косинов. «Энергия вакуума». Энергия будущего века, №1, 1998.
  13. Н.В. Косинов. «Универсальные физические суперконстанты».
  14. Н.В. Косинов. «Новая фундаментальная физическая константа, лежащая в основе постоянной Планка».
  15. N.V. Kosinov, Z.N. Kosinova. «Tie of Gravitational Constant G and Planck Constant h ». 51 st International Astronautical Congress 2...6 Oct. 2000 / Rio de Janeiro, Brazil.
  16. A. Пуанкаре. Наука и гипотеза. A. Пуанкаре. О науке. М., 1983.
  17. В.А. Фирсов. «Философско-методологический анализ проблемы единства физики в концепции калибровочных полей». Философия науки, №1(3), 1997.