Виды искусственных спутников. Интересные факты об искусственных спутниках земли

ИСЗ «Космос»

«Космос» — наименование серии советских искусственных спутников Земли для научных, технических и других исследований в околоземном космическом пространстве. Программа запусков спутников «Космос» включает исследование космических лучей, радиационного пояса Земли и ионосферы, распространение радиоволн и других излучений в атмосфере Земли, солнечной активности и излучения Солнца в различных участках спектра, отработку узлов космических аппаратов и выяснение влияния метеорного вещества на элементы конструкции космического аппарата, изучение влияния невесомости и других космических факторов на биологические объекты и т.д. Такая широкая программа исследований и, следовательно, большое число запусков поставили перед инженерами и конструкторами задачу предельной унификации конструкции обслуживающих систем искусственных спутников «Космос». Решение этой задачи позволило для выполнения некоторых программ запусков использовать единый корпус, стандартный состав служебных систем, общую схему управления бортовой аппаратурой, унифицированную систему энергопитания и ряд других унифицированных систем и устройств. Это сделало возможным серийное изготовление «Космос» и комплектующих систем, упростило подготовку к запуску спутников, значительно удешевило проведение научных исследований.

Спутники «Космос» запускаются на круговые и эллиптические орбиты, область высот которых от 140 («Космос-244») до 60600 км («Космос-159») и широкий диапазон наклонений орбит от 0,1° («Космос-775») до 98° («Космос-1484») позволяет доставлять научную аппаратуру почти во все районы околоземного космического пространства. Периоды обращения спутников «Космос» от 87,3 мин («Космос-244») до 24 ч 2 мин («Космос-775»). Время активного функционирования спутника «Космос» зависит от научных программ их запуска, параметров орбиты и ресурсов работы бортовых систем. Например, «Космос-27» находился на орбите 1 сутки, а «Космос-80» по расчетам будет существовать 10 тыс. лет.

Ориентация искусственных спутников Земли «Космос» зависит от характера проводимых исследований. Для решения таких задач, как метеорологические эксперименты, исследование спектра уходящего от Земли излучения и другое, используются спутники с ориентацией относительно Земли. При изучении процессов, происходящих на Солнце, применяются модификации «Космос» с ориентацией на Солнце. Системы ориентации спутников различны — реактивные (ракетные двигатели), инерциальные (вращающийся внутри спутника маховик) и другие. Наибольшая точность ориентации достигается комбинированными системами. Передача информации осуществляется в основном в диапазонах 20, 30 и 90 МГц. Некоторые спутники оборудованы ТВ связью.

В соответствии с решаемыми задачами ряд спутников серии «Космос» имеют спускаемую капсулу для возвращения научной аппаратуры и объектов экспериментов на Землю («Космос-4, -110, -605, -782″ и другие). Спуск капсулы с орбиты обеспечивается тормозной двигательной установкой с предварительной ориентацией спутника. В дальнейшем капсула тормозится в плотных слоях атмосферы за счет аэродинамической силы, а на определенной высоте включается парашютная система.

На спутниках Космос-4, -7, -137, -208, -230, -669» и других осуществлялась программа исследований первичных космических лучей и радиационного пояса Земли, в т. ч. измерения для обеспечения радиационной безопасности при пилотируемых полетах (например, на «Космос-7» при полете космического корабля «Восток-3, -4»). Полеты «Космос-135» и «Космос-163» окончательно развеяли давнее предположение о существовании пылевого облака вокруг Земли. Искусственные спутники «Космос» широко используются для решения народнохозяйственных задач. Например, «Изучение распространения и образования облачных систем в атмосфере Земли» — один из пунктов программы запусков спутников «Космос». Работы в этом направлении, а также накопленный опыт эксплуатации спутников «Космос-14, -122, -144,-156, -184, -206» и других привели к созданию метеорологических спутников «Метеор», а затем — метеорологической космической системы «Метеор». Используются спутники «Космос» в интересах навигации, геодезии и другого.

Значительное число экспериментов на этих спутниках относятся к исследованию верхней атмосферы, ионосферы, излучения Земли и других геофизических явлений (например, изучение распределения водяных паров в мезосфере — на «Космосе-45, -65», исследование прохождения сверхдлинных радиоволн через ионосферу — на «Космосе-142», наблюдение теплового радиоизлучения поверхности Земли и исследование земной атмосферы по ее собственному радио- и субмиллиметровому излучению — на «Космосе-243, -669»; масс-спектрометрические эксперименты — на «Космосе-274»). На спутниках «Космос-166, -230» осуществлялись исследования рентгеновского излучения Солнца, в т. ч. при солнечных вспышках, на «Космосе-215» изучалось рассеяние Лайман-альфа излучения в геокороне (на спутнике были установлены 8 небольших телескопов), на «Космосе-142» проводилось изучение зависимости интенсивности космического радиоизлучения от ряда факторов. На некоторых спутниках «Космос» проведены эксперименты по изучению метеорных частиц («Космос-135» и другие). На спутниках «Космос-140, -656» и других осуществлены испытания сверхпроводящей магнитной системы с полем напряженностью до 1,6 МА/м, которая может быть использована для анализа заряженных частиц с энергией до нескольких ГэВ. На этих же спутниках проводились исследования жидкого гелия, находившегося в закритическом состоянии. Спутники «Космос-84, -90» имели в составе систем энергопитания изотопные генераторы. На спутнике «Космос-97» был установлен бортовой квантовый молекулярный генератор, эксперименты с которым позволили на несколько порядков повысить точность наземно-космической системы единого времени, чувствительность приемной аппаратуры и стабильность частоты радиоволн передатчиков.

На ряде спутников «Космос» проводились медико-биологические эксперименты, которые позволили выяснить степень влияния факторов космического полета на функциональное состояние биологических объектов — от одноклеточных водорослей, растений и их семян («Космос-92, -44, -109») до собак и других животных («Космос-110, -782, -936»). Изучение результатов этих исследований в совокупности с данными медицинских наблюдений за организмом человека в космосе помогает разрабатывать наиболее благоприятные режимы труда, отдыха, питания космонавтов, создавать для космического корабля нужное оборудование, а для экипажей корабля — одежду и пищу. На «Космосе-690» проводились исследования влияния радиации на живые организмы, причем для имитации мощных солнечных вспышек на борту спутника использовался источник излучения (цезий-137) активностью 1,2-1014 расп./с. На спутнике «Космос-782» была установлена центрифуга диаметром 60 см, с помощью которой изучались возможность создания искусств, тяжести и ее влияния на биологические объекты. На ряде биологических спутников (например, «Космос-605, -690» и другие)

Некоторые спутники Земли «Космос» испытывались в качестве беспилотных космических кораблей. При совместном полете спутников «Космос-186» и «Космос-188» в октябре 1967 года впервые в мире совершили автоматическое сближение и стыковку на орбите; после расстыковки был продолжен их автономный полет и совершена посадка спускаемых аппаратов на территории СССР. В апреле 1968 года автоматическая стыковка на орбите была проведена при полете «Космоса-212» и «Космоса-213» — оба спутника (спускаемые аппараты) также осуществили посадку на территории СССР. В июне 1981 года с целью отработки бортовых систем нового космического корабля с орбитальной станцией «Салют-6» произвел стыковку спутник «Космос-1267». До 29.7.1982 орбитальная станция и искусственный спутник находились в состыкованном состоянии. На спутниках серии «Космос» отрабатывались отдельные системы и испытывалась аппаратура многих других космических аппаратов. Так, на «Космосе-41» отрабатывались некоторые элементы конструкции спутников связи «Молния», которые в комплексе со специально созданными на земных станциях приемно-передающими и антенными устройствами ныне образуют постоянно действующую систему дальней космической связи, «Космос-1000» выполнял навигационные задачи. На спутниках «Космос» отрабатывались отдельные узлы лунохода.

С запусков искусственных спутников Земли «Космос» началось практическое международное сотрудничество социалистических стран в изучении космического пространства. Основной задачей запущенного в декабре 1968 года спутника «Космос-261» явилось проведение комплексного эксперимента, включающего прямые измерения на спутнике, в частности характеристик электронов и протонов, вызывающих полярные сияния, и вариаций плотности верхней атмосферы во время этих сияний, и наземные исследования полярных сиянии. В этой работе принимали участие научные институты и обсерватории НРБ, ВНР, ГДР, ПНР, СРР, СССР и ЧССР. В экспериментах на спутниках этой серии участвовали также специалисты Франции, США и других стран.

Спутники Земли «Космос» запускаются с 1962 года с помощью ракет-носителей «Космос», «Союз», «Протон» и других, способных доставлять на орбиту полезный груз массой до нескольких тонн. До 1964 года спутники «Космос» выводились на орбиту также ракетой-носителем «Восток». На 1.1.1984 запущен 1521 искусственных спутников Земли «Космос».

Впервые искусственный спутник Земли запустили в 1957 году. С этого времени слово «спутник» появилось во всех мировых языках. Сегодня их насчитывается не один десяток, и каждый имеет свое название.

Искусственными спутниками нашей планеты именуют летательные космические аппараты. Они выводятся на орбиту и вращаются по геоцентрической орбите. ИСЗ создаются в прикладных и научных целях.

Первый запуск такого аппарата - 4.10.1957 года. Именно он является первым небесным телом, созданным искусственно людьми. Для его создания использовались достижения советской вычислительной техники, ракетной техники, а также небесной механики. С помощью первого ИСЗ ученые получили возможность измерить плотность всех атмосферных слоев, узнать особенности передачи радиосигналов в иносфере, проверить точность и достоверность технических решений и теоретических расчетов, которые были использованы для вывода ИСЗ.

Какие бывают земные спутники? Виды

Все они подразделяются на:

  • научно-исследовательские аппараты.,
  • прикладные.

Это зависит от того, какие задачи они решают. С помощью научно-исследовательских аппаратов возможно исследовать поведение небесных объектов Вселенной и значительного объема космического пространства. К научно-исследовательским устройствам относят: орбитальные астрономические обсерватории, геодезические, геофизические спутники. К прикладным относят: метеорологические, навигационные и технические, спутники связи и спутники для исследования земельных ресурсов. Существуют также искусственно созданные спутники Земли, предназначенные для полета людей в космос, их называют «пилотируемые».

На каких орбитах летают спутники Земли? На какой высоте?

Те ИСЗ, что находятся на экваториальной орбите называют экваториальными, а те, что на полярной орбите – полярными. Существуют также стационарные модели, которые были запущены на круговую экваториальную орбиту, и их движение совпадает с вращением нашей планеты. Такие стационарные аппараты висят неподвижно над какой-либо конкретной точкой Земли.

Отделяемые ИСЗ детали в процессе вывода на орбиту нередко также называют спутниками Земли. Они относятся к вторичным орбитальным объектам и служат для проведения наблюдений в научных целях.

Первые пять лет после первого запуска ИСЗ (1957-1962) назывались научным образом. Для их названия брали год запуска и одну греческую букву, соответствующую номеру по порядку в каждом конкретном году. С увеличением числа запускаемых искусственных аппаратов с начала 1963 года они стали именоваться годом запуска и всего одной латинской буквой. ИСЗ могут иметь разные конструктивные схемы, разные размеры, отличаться массой, составом бортового оборудования. Энергопитание ИСЗ происходит за счет солнечных батарей, которые стоят на внешней части корпуса.

По достижении спутником высоты 42164 километра от центра нашей планеты (от поверхности земли 35786 км) он начинает входить в зону, где орбита будет соответствовать вращению планеты. Ввиду того, что движение аппарата происходит с такой же скоростью, как движение Земли (этот период равен 24-м часам), кажется, что он стоит на месте только над одной долготой. Такую орбиту называют геосинхронной.

Задачи и программы полетов вокруг Земли

Метеорологическая система «Метеор» была создана еще в 1968 году. В нее входит не один, а несколько спутников, которые одновременно находятся на разных орбитах. Они наблюдают за облачным покровом планеты, фиксируют контуры морей и материков, о чем передают сведения в Гидрометеоцентр.

Данные спутников важны и в процессе проведения космофотосъемки, используемой в геологии. С ее помощью возможно обнаружить крупные геологические структуры, связанные с месторождениями полезных ископаемых. Они помогают четко фиксировать лесные пожары, что актуально для таёжных просторов, где невозможно быстро заметить большой пожар. С помощью космических снимков можно рассмотреть особенности почв и рельефа, ландшафтов, распределении подземных и наземных вод. С помощью спутников можно следить за переменами в растительном покрове, что особенно важно для специалистов сельского хозяйства.

Интересные факты о земных спутниках

  1. Первым ИСЗ, отправившимся на околоземную орбиту был ПС-1. Его запуск осуществлялся с полигона СССР.
  2. Создателем ПС-1 был конструктор Королёв, который мог бы получить нобелевскую премию. Но в СССР не принято было присваивать достижения кому-то одному, все было общее. Поэтому создание ИСЗ было достижением всего народа СССР.
  3. В 1978 году СССР запустил спутник-шпион, но запуск прошел неудачно. Аппарат включал в себя ядерный реактор. Когда он упал, - заразил территорию более 100 000 квадратных километров.
  4. Схема запуска ИЗС напоминает вбрасывание камня. Его нужно «выкинуть» с полигона с такой скоростью, чтобы он сам мог вращаться вокруг планеты. Скорость запуска спутника должна быть равна 8 километров в секунду.
  5. Копию ПС-1 можно было приобрести на аукционе Ebay в начале 21 века.

Человек с раннего детства, когда смотрит на звёздное небо и Луну, задается вопросом, как устроены космос, звезды, планеты, галактика, вселенная. Нас влечет, всё неизвестное и не понятное. Приоткрыть завесу в тайну космоса, удалось советским учёным под руководством гениального инженера-конструктора Королева Сергея Павловича, под руководством которого запустили первый искусственный спутник Земли (сокращенно — ИСЗ).

Первый запуск

Именно СССР 4 октября 1957 года первым запустил в космическое пространство простейший спутник земли или ПС-1 на ракетоносителе Р-7, с космодрома Байконур. Возглавлял творческий коллектив создателей спутника Сергей Королев.

Сергей Королев и Юрий Гагарин

Технические характеристики у первого искусственного спутника земли достаточно примитивные по сравнению со спутниками, которые запускаются в наше время.

ПС-1 представлял из себя шар диаметром примерно 58 см., к которому были присоединены четыре антенны длинной 2,4 и 2,9 метра, они нужны были, для принятия радиоприёма. Масса ПС-1 была 83,6 кг. Внутри спутника находились датчики давления, температуры, вентиляторы, включающиеся от реле, которые начинали работать, если температура поднималась выше +30С, коммутирующие устройство, которое передавало сигнал от спутника на Землю.

ПС-1 отделился от ракетоносителя через 295 секунд после старта, а уже через 315 секунд после старта, он послал на землю первый радиосигнал, который мог принимать любой радиолюбитель, это были повторяющиеся на протяжении примерно около 2 минут сигналы: «Бип, Бип». Эти сигналы потрясли весь мир, началась эра космонавтики и гонки вооружений между СССР и США.

ПС-1 пробыл на эллиптической орбите Земли 92 дня и выполнил 1440 оборотов вокруг планеты, радиосигнал он продолжал передавать на протяжении 20 дней. После чего скорость вращения ПС-1 начала снижаться, и 4 января 1957 года он сгорел в плотных слоях атмосферы из-за высокого трения.

Космические технологии

В наше время просторы вселенной бороздят уже примерно около 13 тысяч искусственных спутников Земли, большая часть из них принадлежит США, России, и Китаю. Технология запусков спутников заключается в том чтобы при запуске дать ему как можно большую скорость. Попав на эллиптическую орбиту земли спутник сможет сам, без включения двигателей, за счёт набранной скорости долгое время вращаться и передавать сигналы.

Для современного мира искусственные спутники – это неотъемлемая часть нашего мира, спутники связи, спутники навигации, метеорологические спутники, разведывательные спутники, биоспутники и многие другие искусственные спутники, помогают нам в обычной жизни.

Мы прогнозируем погоду, прокладываем новые маршруты, пользуемся сотовой связью, спутниковым телевидением, беспроводным интернетом, составляем карты и регистрируем земельные участки в привязке к спутнику, и все это благодаря искусственным спутникам земли.

Изучение космоса

О искусственных спутниках Земли интересных фактов много, но также беспилотные космические аппараты исследуют и другие планеты. Так что помимо спутников, которые облегчают нам нашу повседневную жизнь, человечество не стоит на месте и в настоящее время существуют искусственные спутники Луны, Марса, Солнца, Венеры.

Искусственный спутник Луны, первым запустили учёные СССР, этот спутник передавал фотографии поверхности луны, с помощью которых учёные убедились в ее специфической форме, узнали её строение и особенности тяготения.
Искусственный спутник Марса: одновременно эту планету начали изучать три спутника, два советских и один американский.

У всех этих спутников стояли разные задачи, одни фотографировали поверхность планеты, другие изучали температуру, рельеф, обтекаемость планеты, наличие воды, но стоить заметить, что первым искусственным спутником который совершил мягкую посадку на поверхность этой планеты был советский спутник Марс-3.

Первый искусственный спутник у Солнца, появился тогда когда его совершенно туда не собирались запускать. Спутник НАСА который должен был исследовать лунную поверхность, перелетел орбиту луны и остановился на орбите солнца. У России так же имеется своей искусственный спутник солнца, который изучает соленную активность и передаёт геомагнитные вспышки и колебания.

Исследование Фобоса, спутника Марса

Искусственные спутники Венеры. В Советском Союзе первым отправил в 1975 году искусственные спутники, при помощи которых получили высококачественные изображения поверхности этой планеты.

4 октября 1957 года — памятная дата для всего человечества, в этот день в Российской Федерации отмечают день космических войск РФ, а во всем мире праздник запуска первого спутника земли.

Искусственные спутники Земли

Ведение. Искусственные спутники Земли - это космические аппараты, выведенные на околоземные орбиты. Форма орбит ИСЗ зависит от скорости движения спутника и его расстояния от центра Земли и представляет собой окружность или эллипс. Кроме того, орбиты различаются наклоном по отношению к плоскости экватора, а также направлением вращения. На форму орбит ИСЗ влияет несферичность гравитационного поля Земли, гравитационные поля Луны, Солнца и других небесных тел, а также аэродинамические силы, возникающие при движении ИСЗ в верхних слоях атмосферы, и другие причины.

Выбор формы орбиты ИСЗ во многом зависит от его назначения и особенностей выполняемых им задач.

Назначение ИСЗ. В зависимости от решаемых задач ИСЗ подразделяют на научно-исследовательские, прикладные и военные.

Научно-исследовательские ИСЗслужат для изучения Земли, небесных тел и космического пространства. С их помощью проводятся геофизические, астрономические, геодезические, биологические и др. исследования. Орбиты таких спутников разнообразны: от почти круговых на высоте 200...300 км до вытянутых эллиптических с высотой в апогее до 500 тыс. км. Это ИСЗ «Прогноз», «Электрон», «Протон» и др., выведенные на орбиты для изучения процессов солнечной активности и их влияния на магнитосферу Земли, изучения космических лучей и взаимодействия с веществом частиц сверхзвуковых энергий.

К прикладным ИСЗотносятся связные (телекоммуникационные), метеорологические, геодезические, навигационные, океанографические, геологические, спасательно-поисковые и другие.

Особое значение имеют связные ИСЗ - «Молния» (рис. 2.5), «Радуга», «Экран», «Горизонт», предназначенные для ретрансляции телевизионных программ и обеспечения дальней радиосвязи. Для них используются эллиптические синхронные орбиты с большим эксцентриситетом. Для непрерывной связи с регионом следует иметь три таких спутника. ИСЗ «Радуга», «Экран» и «Горизонт» также имеют круговые экваториальные геостационарные орбиты высотой 35500 - 36800 км, что обеспечивает круглосуточную связь через сеть наземных приемных телевизионных станций «Орбита».

Все эти спутники имеют динамическую стабилизацию относительно Земли и Солнца, что позволяет надежно ретранслировать получаемые сигналы, а также ориентировать панели солнечных батарей (СБ) на Солнце.

Рис. 2.5. Схема связного искусственного спутника Земли «Молния»:

1 - датчики системы ориентации; 2 - панели СБ; 3 - радиоприемники и передатчики;
4 - антенны; 5 - баллоны гидразина; 6 - двигатель коррекции орбиты; 7 - радиаторы

Метеорологические ИСЗ типа «Метеор» выводятся на круговые орбиты высотой 900 км. Они регистрируют состояние атмосферы и облачности, обрабатывают полученную информацию и передают ее на Землю (за один оборот ИСЗ обследует до 20% площади земного шара).

Геодезические ИСЗ предназначены для картографирования местности и привязки объектов на местности с учетом ее рельефа. В состав бортового комплекса таких ИСЗ входит: аппаратура, позволяющая точно фиксировать их положение в пространстве относительно наземных контрольных пунктов и определять расстояние между ними.

Навигационные ИСЗ типа «Цикада» и «Ураган» предназначены для глобальной навигационной спутниковой системы «Глонасс», «Космос-1000» (Россия), «Навстар» (США) - для обеспечения навигации морских судов, самолетов и других движущихся объектов. С помощью навигационно-радиотехнических систем судно или самолет может определить свое положение относительно нескольких ИСЗ (или в нескольких точках орбиты ИСЗ). Для навигационных ИСЗ предпочтительными являются полярные орбиты, т.к. они охватывают всю поверхность Земли.

Военные ИСЗ используются для обеспечения связи, управления войсками, осуществления различных видов разведки (наблюдения за территориями, военными объектами, запусками ракет, перемещениями кораблей и др.), а также для навигации самолетов, ракет, кораблей, подводных лодок и др.

Бортовое оснащение ИСЗ. Состав бортового оснащения ИСЗ определяется назначением ИСЗ.

В состав оснащения могут входить различные приборы и устройства для наблюдения. Эти приборы в соответствии с назначением могут работать на разных физических принципах. Например, на ИСЗ могут быть установлены: оптический телескоп, радиотелескоп, лазерный отражатель, фотоаппаратура с работой в видимом и инфракрасном диапазонах и т.п.

Для обработки результатов наблюдений и их анализа на борту ИСЗ могут устанавливаться сложные информационно-аналитические комплексы, использующие вычислительную технику и другие средства. Полученная и обработанная на борту информация, обычно в виде кодов, передается на Землю с помощью специальных бортовых радиокомплексов, работающих в различных диапазонах радиочастот. В составе радиокомплекса может быть несколько антенн различного типа и назначения (параболические, спиральные, штыревые, рупорные и др.).

Для управления движением ИСЗ и обеспечения функционирования его бортовой аппаратуры на борту ИСЗ устанавливается бортовой комплекс управления, который работает автономно (в соответствии с программами, имеющимися на борту), а также по командам, получаемым от наземного комплекса управления.

Для обеспечения электрической энергией бортового комплекса, а также всех бортовых приборов и устройств на ИСЗ устанавливаются панели солнечных батарей, собранных из полупроводниковых элементов, либо топливные химические элементы, либо ядерные энергетические установки.

Двигательные установки. На некоторых ИСЗ имеются двигательные установки, применяемые для коррекции траектории либо стабилизации вращением. Так, с целью увеличения времени существования низкоорбитных ИСЗ на них периодически включаются двигатели, переводящие спутники на более высокую орбиту.

Система ориентации ИСЗ. На большинстве ИСЗ применяется система ориентации, обеспечивающая фиксированное положение осей по отношению к поверхности Земли или каких-либо небесных объектов (например, для изучения космического пространства с помощью телескопов и других приборов). Ориентация осуществляется с помощью микроракетных двигателей или реактивных сопел, расположенных на поверхности ИСЗ или выступающих конструкциях (панелях, фермах и др.). Для стабилизации ИСЗ на средних и высоких орбитах требуются очень малые тяги (0,01... 1 Н).

Конструктивные особенности. ИСЗ выводятся на орбиты под специальными обтекателями, которые воспринимают все аэродинамические и тепловые нагрузки. Поэтому форма ИСЗ и конструктивные решения определяются функциональной целесообразностью и допустимыми габаритами. Обычно ИСЗ имеют моноблочные, многоблочные или ферменные конструкции. Часть оборудования размещается в термостатированных герметичных отсеках.



Автоматические межпланетные станции

Введение. Автоматические межпланетные станции (АМС) предназначены для полетов к Луне и планетам Солнечной системы. Их особенности определяются большой удаленностью функционирования от Земли (вплоть до выхода за сферу действия ее гравитационного поля) и временем полета (может измеряться годами). Все это предъявляет особые требования к их конструкции, управлению, энергоснабжению и др.

Общий вид и типовая компоновка АМС приведена на примере автоматической межпланетной станции «Вега» (рис. 2.6)

Рис. 2.6. Общий вид автоматической межпланетной станции «Вега»:

1 - спускаемый аппарат; 2 - орбитальный аппарат; 3 - солнечная батарея; 4 - блоки научной аппаратуры; 5 - малонаправленная антенна; 6 - остронаправленная антенна

Полеты АМС начались в январе 1959 года выводом на орбиту советской АМС «Луна-1», совершившей полет к Луне. В сентябре того же года «Луна-2» достигла поверхности Луны, а в октябре «Луна-3» сфотографировала невидимую сторону планеты, передав эти изображения на Землю.

В 1970 - 1976 годах с Луны на Землю были доставлены образцы лунного грунта, а на Луне успешно работали «Луноходы». Эти достижения существенно опередили американские исследования Луны автоматическими аппаратами.

С помощью серии АМС, запущенных в сторону Венеры (начиная с 1961 года) и Марса (с 1962 года), были получены уникальные данные о структуре и параметрах этих планет и их атмосфере. В результате полетов АМС установлено, что давление атмосферы Венеры составляет более 9 МПа (90 атм,), а температура 475°С; получена панорама поверхности планеты. Эти данные передавались на Землю при помощи сложной комбинированной конструкции АМС , одна из частей которой спускалась на поверхность планеты, а вторая, выведенная на орбиту спутника, принимала информацию и транслировала ее на Землю. Аналогичные сложные исследования проводились и на Марсе. В эти же годы богатая научная информация была получена на Земле с АМС «Зонд», на которых отрабатывались многие конструктивные решения для последующих АМС, в том числе по возвращении их на Землю.

Рис. 2.7. Траектория полета АМС «Вега» к планете Венера и комете Галлея

Полеты американских АМС «Рейнджер», «Сервейер», «Маринер», «Викинг» продолжили исследования Луны, Венеры и Марса («Маринер-9» - первый искусственный спутник Марса, вышел на орбиту 13 ноября 1971 г. после успешного выполнения маневра торможения, рис. 2.9), а АМС «Пионер», «Вояджер» и «Галилей» достигли дальних планет солнечной системы: Юпитера, Сатурна, Урана, Нептуна, передав уникальные снимки и данные об этих планетах.

Рис. 2.9 «Маринер-9» - первый искусственный спутник Марса, вышел на орбиту 13 ноября 1971 г. после успешного выполнения маневра торможения:

1 - малонаправленная антенна; 2 - двигатель маневрирования; 3 - топливный бак (2 шт.); 4 - прибор ориентации на звезду Канопус; 5 - баллон в системе наддува двигательной установки; 6 -жалюзи системы терморегулирования; 7 - инфракрасный интерферометр-спектрометр; 8 - телевизионная камера с малым углом обзора;
9 - ультрафиолетовый спектрометр; 10 -телевизионная камера большим углом обзора; 11 - инфракрасный радиометр; 12 - остронаправленная антенна; 13 - датчики захвата Солнца (4 шт.); 14 - датчик слежения за Солнцем; 15 - антенна с умеренным коэффициентом усиления; 16 - панель солнечных элементов (4 шт.).

Орбиты AMС. Для полетов АМС к планетам солнечной системы им должна быть сообщена скорость, близкая ко второй космической скорости или даже превышающая ее, при этом орбита приобретает форму параболы или гиперболы. При приближении к планете назначения АМС попадает в зону ее гравитационного поля (грависферы), которое изменяет форму орбиты. Таким образом, траектория АМС может состоять из нескольких участков, форма которых определяется законами небесной механики.

Бортовое оснащение АМС. На АМС, предназначенных для исследования планет, в зависимости от решаемых задач устанавливаются разнообразнейшие приборы и устройства: телевизионные камеры с малым и большим углом обзора, фотоаппараты и фотополяриметры, ультрафиолетовые спектрометры и инфракрасные интерферометры, магнитометры, детекторы космических лучей и заряженных частиц, приборы для измерения характеристик плазмы, телескопы и др.

Для выполнения запланированных исследований некоторые научные приборы могут располагаться в корпусе АМС, другие выносятся из корпуса с помощью ферм или штанг, устанавливаются на сканирующих платформах, поворачиваются относительно осей.

Для передачи полученной и обработанной информации на Землю на АМС устанавливается специальная приемо-передающая радиоаппаратура с остронаправленной параболической антенной, а также бортовой управляющий комплекс с вычислительным устройством, формирующий команды для работы приборов и систем, находящихся на борту.

Для обеспечения бортового управляющего комплекса и приборов электроэнергией на АМС могут применяться панели солнечных батарей или ядерные радиоизотопные термоэлектрические генераторы (необходимые при длительных полетах к дальним планетам).

Особенности конструкции АМС. Несущая конструкция АМС имеет обычно легкий ферменный каркас (платформу), на котором крепится все оборудование, системы и отсеки. Для электронного и другого оборудования применяются герметичные отсеки с многослойной теплоизоляцией и системой терморегулирования.

АМС должны быть оснащены системой ориентации по трем осям с отслеживанием определенных ориентиров (например, Солнца, звезды Канопус). Пространственная ориентация АМС и маневры коррекции траектории осуществляются с помощью микроракетных двигателей или сопел, работающих на горячих или холодных газах.

АМС могут иметь двигательную установку орбитального маневрирования для корректирования траектории либо для перевода АМС на орбиту планеты или ее спутника. В последнем случае конструкция АМС значительно усложняется, т.к. для посадки станции на поверхность планет требуется ее торможение. Оно осуществляется с помощью тормозной двигательной установки либо за счет атмосферы планеты (если ее плотность достаточна для торможения, как на Венере). При торможении и посадке возникают значительные нагрузки на конструкцию и приборы, поэтому спускаемую часть обычно отделяют от АМС, придавая ей соответствующую прочность и защищая от нагрева и других нагрузок.

Спускаемая часть АМС может иметь на борту различную научно-исследовательскую аппаратуру, средства для ее передвижения по поверхности планеты (например, «Луноход» на АМС «Луна-17») и даже возвращаемый на Землю аппарат с капсулой грунта (АМС «Луна-16»). В последнем случае на возвращаемом аппарате устанавливается дополнительная двигательная установка, обеспечивающая разгон и коррекцию траектории возвращаемого аппарата.

В 1957 году под руководством С.П. Королёва была создана первая в мире межконтинентальная баллистическая ракета Р-7, которая в том же году была использована для запуска первого в мире искусственного спутника Земли.

Искусственный спутник Земли (ИСЗ ) - это космический аппарат, вращающийся вокруг Земли по геоцентрической орбите. - траектория движения небесного тела по эллиптической траектории вокруг Земли. Один из двух фокусов эллипса, по которому движется небесное тело, совпадает с Землёй. Для того, чтобы космический корабль оказался на этой орбите, ему необходимо сообщить скорость, которая меньше второй космической скорости, но не меньше чем первая космическая скорость. Полёты ИСЗ выполняются на высотах до нескольких сотен тысяч километров. Нижнюю границу высоты полёта ИСЗ обуславливает необходимость избегания процесса быстрого торможения в атмосфере. Период обращения спутника по орбите в зависимости от средней высоты полёта может составлять от полутора часов до нескольких суток.

Особое значение имеют спутники на геостационарной орбите, период обращения которых строго равен суткам и поэтому для наземного наблюдателя они неподвижно «висят» на небосклоне, что позволяет избавиться от поворотных устройств в антеннах. Геостациона́рная орби́та (ГСО) - круговая орбита, расположенная над экватором Земли (0° широты), находясь на которой искусственный спутник обращается вокруг планеты с угловой скоростью, равной угловой скорости вращения Земли вокруг оси. Движение искусственного спутника Земли по геостационарной орбите.

Спутник-1 - первый искусственный спутник Земли, первый космический аппарат, запущен на орбиту в СССР 4 октября 1957 года.

Кодовое обозначение спутника - ПС-1 (Простейший Спутник-1). Запуск осуществлялся с 5-го научно-исследовательского полигона министерства обороны СССР «Тюра-Там» (позже это место получило название космодром Байконур) на ракете-носителе «Спутник» (Р-7).

Над созданием искусственного спутника Земли во главе с основоположником практической космонавтики С. П. Королёвым работали ученые М. В. Келдыш, М. К. Тихонравов, Н. С. Лидоренко, В. И. Лапко, Б. С. Чекунов, А. В. Бухтияров и многие другие.

Дата запуска первого искусственного спутника Земли считается началом космической эры человечества, а в России отмечается как памятный день Космических войск.

Корпус спутника состоял из двух полусфер диаметром 58 см из алюминиевого сплава со стыковочными шпангоутами, соединёнными между собой 36 болтами. Герметичность стыка обеспечивала резиновая прокладка. В верхней полуоболочке располагались две антенны, каждая из двух штырей по 2,4 м и по 2,9 м. Так как спутник был неориентирован, то четырёхантенная система давала равномерное излучение во все стороны.

Внутри герметичного корпуса были размещены блок электрохимических источников; радиопередающее устройство; вентилятор; термореле и воздуховод системы терморегулирования; коммутирующее устройство бортовой электроавтоматики; датчики температуры и давления; бортовая кабельная сеть. Масса первого спутника: 83,6 кг.

История создания первого спутника

13 мая 1946 г. Сталин подписал постановление о создании в СССР ракетной отрасли науки и промышленности. В августе С. П. Королёв был назначен главным конструктором баллистических ракет дальнего действия.

Но еще в 1931 году в СССР была создана Группа изучения реактивного движения, которая занималась конструированием ракет. В этой группе работали Цандер, Тихонравов, Победоносцев, Королёв . В 1933 году на базе этой группы был организован Реактивный институт, который продолжил работы по созданию и совершенствованию ракет.

В 1947 году в Германии были собраны и прошли лётные испытания ракеты Фау-2, они и положили начало советским работам по освоению ракетной техники. Однако Фау-2 воплотила в своей конструкции идеи гениев-одиночек Константина Циолковского, Германа Оберта, Роберта Годдарда.

В 1948 г. на полигоне Капустин Яр проводились уже испытания ракеты Р-1, которая являлась копией Фау-2, изготовляемой полностью в СССР. Затем появились Р-2 с дальностью полета до 600 км, эти ракеты были приняты на вооружение с 1951 г. А Создание ракеты Р-5 с дальностью до 1200 км стало первым отрывом от техники Фау-2. Эти ракеты прошли испытания в 1953 г, и сразу же начались исследования использования их как носителя ядерного оружия. 20 мая 1954 г. правительство выдало постановление о разработке двухступенчатой межконтинентальной ракеты Р-7. А уже 27 мая Королёв направил докладную министру оборонной промышленности Д. Ф. Устинову о разработке ИСЗ и возможности его запуска с помощью будущей ракеты Р-7.

Запуск!

В пятницу, 4 октября, в 22 часа 28 минут 34 секунды по московскому времени был совершён успешный запуск . Через 295 секунд после старта ПС-1 и центральный блок ракеты весом 7,5 тонны были выведены на эллиптическую орбиту высотой в апогее 947 км, в перигее 288 км. На 314,5 секунде после старта произошло отделение Спутника и он подал свой голос. «Бип! Бип!» - так звучали его позывные. На полигоне их ловили 2 минуты, потом Спутник ушёл за горизонт. Люди на космодроме выбежали на улицу, кричали «Ура!», качали конструкторов и военных. И ещё на первом витке прозвучало сообщение ТАСС: «…В результате большой напряжённой работы научно-исследовательских институтов и конструкторских бюро создан первый в мире искусственный спутник Земли…»

Только после приёма первых сигналов Спутника поступили результаты обработки телеметрических данных и выяснилось, что лишь доли секунды отделяли от неудачи. Один из двигателей «запаздывал», а время выхода на режим жёстко контролируется и при его превышении старт автоматически отменяется. Блок вышел на режим менее чем за секунду до контрольного времени. На 16-й секунде полёта отказала система управления подачи топлива, и из-за повышенного расхода керосина центральный двигатель отключился на 1 секунду раньше расчётного времени. Но победителей не судят! Спутник летал 92 дня, до 4 января 1958 года, совершив 1440 оборотов вокруг Земли (около 60 млн. км), а его радиопередатчики работали в течение двух недель после старта. Из-за трения о верхние слои атмосферы спутник потерял скорость, вошёл в плотные слои атмосферы и сгорел вследствие трения о воздух.

Официально «Спутник-1» и «Спутник-2», Советский Союз запускал в соответствии с принятыми на себя обязательствами по Международному Геофизическому Году. Спутник излучал радиоволны на двух частотах 20,005 и 40,002 МГц в виде телеграфных посылок длительностью 0,3 с, это позволяло изучать верхние слои ионосферы - до запуска первого спутника можно было наблюдать только за отражением радиоволн от областей ионосферы, лежащих ниже зоны максимальной ионизации ионосферных слоёв.

Цели запуска

  • проверка расчётов и основных технических решений, принятых для запуска;
  • ионосферные исследования прохождения радиоволн, излучаемых передатчиками спутника;
  • экспериментальное определение плотности верхних слоёв атмосферы по торможению спутника;
  • исследование условий работы аппаратуры.

Несмотря на то, что на спутнике полностью отсутствовала какая-либо научная аппаратура, изучение характера радиосигнала и оптические наблюдения за орбитой позволили получить важные научные данные.

Другие спутники

Второй страной, запустившей ИСЗ, стали США: 1 февраля 1958 года был запущен искусственный спутник земли Эксплорер-1 . Он находился на орбите до марта 1970 г., но прекратил радиопередачи еще 28 февраля 1958 г. Первый американский искусственный спутник Земли был запущен командой Брауна.

Вернер Магнус Максимилиан фон Браун - немецкий, а с конца 1940-х годов американский конструктор ракетно-космической техники, один из основоположников современного ракетостроения, создатель первых баллистических ракет. В США он считается «отцом» американской космической программы. Фон Брауну по политическим причинам долго не давали разрешения на запуск первого американского спутника (руководство США хотело, чтобы спутник был запущен военными), поэтому подготовка к запуску «Эксплорера» началась всерьёз лишь после аварии «Авангарда». Для запуска была создана форсированная версия баллистической ракеты Редстоун, названная Юпитер-С. Масса спутника была ровно в 10 раз меньше массы первого советского ИСЗ - 8,3 кг. На нем был установлен счетчик Гейгера и датчик метеорных частиц. Орбита «Эксплорера» была заметно выше орбиты первого ИСЗ .

Следующие страны, запустившие спутники - Великобритания, Канада, Италия - запустили свои первые ИСЗ в 1962, 1962, 1964 гг. на американских ракетах-носителях . А третьей страной, выведшей первый ИСЗ на своей ракете-носителе, стала Франция 26 ноября 1965 г.

Сейчас ИСЗ запускаются более чем 40 странами (а также отдельными компаниями) с помощью как собственных ракет-носителей (РН), так и предоставляемых в качестве пусковых услуг другими странами и межгосударственными и частными организациями.