Причины кембрийского взрыва. Одна из возможных причин кембрийского взрыва

Для удобства изучения, история нашей планеты и жизни на ней была разделена на промежутки времени, границами которых являются геологические изменения в земной коре – процессы горообразования, поднятие и опускание суши, изменения очертаний материков, глобальные изменения климата.

Самые продолжительные хронологические периоды истории Земли называются эрами (они длились сотни миллионов лет). Эры в свою очередь подразделяются на периоды.

Всю информацию о прошлом Земли ученые получают, исследуя геологические свидетельства мировой летописи. Недра планеты состоят из различных пластов скальных и осадочных пород, которые формировались под непрерывным воздействием внешних условий, определявших облик Земли в далеком прошлом. Геологические образования сохранили и пронесли через миллионы лет информацию о живых организмах, которые населяли океаны и сушу в разные геологические периоды. Благодаря этому, мы сегодня имеем возможность представить облик Земли далекого прошлого и проследить эволюцию жизни за 3,5 миллиарда лет от момента ее появления.

Исследуя древние породы и окаменелости, ученые обнаружили два необъяснимых феномена в геологическом и биологическом прошлом Земли. Первый феномен носит название Всемирное несогласие, и представляет собой соприкосновение горных пород из разных геологических периодов, не следующих один за другим. Такое соприкосновение нарушает логическую последовательность расположения пластов, согласно хронологической периодике различных исторических ступеней в геологии. Следует заметить, что нелогичный контакт горных пород встречается повсеместно. Это объясняется перемешиванием структур земной коры в результате тектонической активности и процессами эрозии. Однако Всемирное несогласие этим объяснить нельзя, так как оно носит повсеместный характер и отражает несогласованный контакт горных пород, возрастом приблизительно 2,9 миллиарда лет, и молодых кембрийских отложений, которые сформировались примерно 500 миллионов лет назад.

Второй феномен, касающийся биологического прошлого Земли, назван «Кембрийский взрыв». Ученые-палеонтологи окрестили таким термином внезапный быстрый рост видового разнообразия живых организмов в Кембрийском периоде (самом начале Палеозойской эры). Это произошло за хронологический период в 30 миллионов лет (примерно 542–510 миллионов лет назад). За столь незначительный по палеонтологическим меркам промежуток времени, число биологических видов выросло в сотни раз. Внезапно появилось великое множество разновидностей раковинных организмов, возникли первые хордовые и проторакообразные (так называемые трилобиты).

Самое известное и изученное доказательство существования этих двух научных феноменов находится на территории США. Это Большой каньон, пролегающий на плато Колорадо, штат Аризона. Излюбленное место туристов со всего мира. Именно там, палеонтологи нашли самое большое число окаменелых форм жизни, так сильно непохожих на мягкотелые организмы, обитавшие в предшествовавшем Кембрийскому Эдиакарском периоде.

Долгое время ученые со всего света искали разгадку феноменов Кембрийского периода. Недавно в научных кругах возникла теория, которая объяснила природу возникновения Всемирного несогласия и «Кембрийского взрыва» и установила взаимосвязь между этими двумя уникальными фактами планетарной истории.

Примерно 600 миллионов лет назад в недрах Земли начали происходить большие перемены, вызвавшие колоссальные сдвиги на поверхности планеты. Произошло движение литосферных плит, которое разорвало некогда единый континент — Гондвана, множество вулканов одновременно извергали волны лавы. Повсеместные землетрясения порождали громадные цунами. Поверхность суши несколько раз подвергалась затапливанию водами мирового океана, что и явилось основной причиной формирования Всемирного несогласия.

Более молодые и расположенные поверхностно осадочные пласты подвергаются разрушению водой и сопутствующими факторами в несколько раз медленнее, чем более древние и глубокие скальные породы. Именно в периоды затопления материков произошло размывание и деградация осадочных пород, оголение древних скальных пород, которые подверглись быстрой эрозии. Продукты разрушения скальных пород миллиардами тон растворились в водах доисторических океанов. Внезапно возросла концентрация ионов калия, кальция, магния, железа, фосфатов, сульфатов. Кислотно-щелочное равновесие воды мирового океана резко сдвинулось в щелочную сторону.

Главный принцип жизни гласит – чтобы существовать, живой организм должен постоянно поддерживать постоянство внутренней среды. Примитивным мягкотелым потомкам современных организмов пришлось быстро эволюционировать, чтобы противостоять резкому изменению условий обитания. Мгновенный рывок в эволюции древней жизни был вынужденным ответом на внезапное повышение концентрации различных солей в морской воде. Результатом этого эволюционного скачка явились механизмы минерализации, которые направили эволюцию древних животных иным путем.

Эта теория подтверждается одновременным появлением минерального скелета у неродственных организмов во время Кембрийского периода. Основные три разновидности минеральных солей определили направление дальнейшей эволюции жизни – это фосфат кальция, минеральная основа скелета хордовых, карбонат кальция и оксид кремния, являющиеся материалом раковин первых раковинных созданий. Кальций, кремний и фосфаты являются основными составными частями Кембрийских пластов, сформировавших участки Всемирного несогласия.

Вновь появившиеся молодые формы жизни имели преимущество над примитивными мягкотелыми, лишенными твердых органов. Новые организмы имели зубы для нападения и обороны, раковины для защиты, хорды и твердые скелеты, позволившие им передвигаться в воде целенаправленно и с более высокой скоростью. Внезапно приобретенные механизмы минерализации позволили молодым созданиям размножиться в небывалых количествах и вытеснить старые формы жизни. Масса самых первых созданий с минеральными органами явилась основой для формирования геологических пластов Кембрийского периода, которые легли на древние пласты скальных пород.

Формы жизни с минеральными скелетами начали формироваться еще в докембрии, но именно геологические аномалии, сформировавшие Всемирное несогласие многократно ускорили этот процесс и придали ему взрывной характер. Спусковым крючком процессов, создавших облик основной массы современных видов животных, явилась быстрая минерализация воды мирового океана. Геологические процессы определили биологическую эволюцию на миллионы лет вперед.

Добровольный читательский взнос на поддержание проекта

Ястребов С.А.

(«ХиЖ», 2016, №10)

Вендская прелюдия


Эпоха «Земли-снежка» закончилась 635 миллионов лет назад. Начался последний период протерозоя — эдиакарий (635-542 миллионов лет назад). Теперь нам будет удобнее вести счет времени не на миллиарды лет, а на миллионы - это наглядно показывает, насколько события ускоряются. Хотя, возможно, дело просто в том, что они к нам ближе и от них сохранилось больше следов. Раньше эдиакарий называли вендом, в честь древних славянских племен - венедов (от них же произошло название города Венеция). К сожалению, сейчас это красивое название сохранилось лишь как нестрогий синоним.

Главным событием эдиакария (нельзя не добавить: с нашей антропоцентричной точки зрения) следует назвать появление многоклеточных животных. Датировать это событие нелегко. В палеонтологической летописи эдиакария хватает свидетельств перехода к многоклеточности животного типа - правда, чем они более ранние, тем более спорные («Nature», 2014, 516, 7530, 238-241, см. также статью Александра Маркова, http://elementy.ru/novosti_nauki/431720). Во второй половине эдиакария в изобилии появляются вендобионты - крупные, до метра длиной загадочные существа с плоским дисковидным или листовидным телом, состоящим из множества однотипных повторяющихся «сегментов». «Сегменты» здесь поставлены в кавычки, потому что сегментация вендобионтов почти наверняка не имеет ничего общего с сегментацией настоящих многоклеточных животных. Сам термин «вендобионты» придумал немецкий палеонтолог Адольф Зейлахер, который считал этих существ совершенно особой формой жизни - гигантскими многоядерными клетками («Planetary Systems and the Origins of Life», Cambridge University Press, 2007, 193-209). Действительно, есть основания считать, что вендобионты были во многих отношениях ближе не к многоклеточным животным, а к амебам или грибам (между прочим, и у тех и у других большие многоядерные клетки не редкость). Они совершили попытку выхода в крупный размер, которая сначала привела к успеху, но завершилась неудачей: в конце эдиакария вендобионты вымерли.



С другой стороны, надо учитывать, что вендобионты были очень разнообразны. Не факт, что их вообще можно хоть в каком-то приближении считать единой группой. Это скорее эволюционный уровень. И несмотря на то, что большинство вендобионтов никаких потомков не оставило, от некоторых из них вполне могли напрямую произойти современные животные - например, пластинчатые и гребневики («Evolution and Development», 2011, 13, 5, 408-414). В эдиакарских корнях этих эволюционных ветвей нет ничего невероятного.

Самое древнее абсолютно бесспорное ископаемое многоклеточное животное называется Kimberella quadrata . Это двусторонне-симметричное существо длиной до 15 сантиметров, ползавшее по морскому дну. Характер изменений формы тела найденных кимберелл (а найдено их много, в разных частях света) вместе с отпечатками следов не оставляет сомнений, что они активно ползали, растягиваясь, сжимаясь и изгибаясь с помощью мышц. Характерные признаки кимбереллы - вытянутое, но компактное тело с ногой (мускулистой нижней поверхностью) и мантией (складкой, окаймляющей туловище). По этим признакам она очень похожа не на кого-нибудь, а на моллюсков («Paleontological Journal», 2009, 43, 601, doi:10.1134/S003103010906001X). Есть мнение, что у кимбереллы была даже радула - свойственный моллюскам «язык» с хитиновыми зубцами, приспособленный для соскребания водорослей (PALAIOS, 2010, 25, 565-575, doi: 10.2110/ palo.2009.p09-079r). Так или иначе, это уже по всем статьям настоящее многоклеточное животное.


Кимберелла жила 555 миллионов лет назад («Science», 2000, 288, 5467, 841-845). И примерно в это же время впервые появляются многочисленные ископаемые следы животных, явно активно ползавших по дну («Philosophical Transactions of the Royal Society B», 2008, 363, 1496, doi: 10.1098/rstb.2007.2232). Надо заметить, что «настоящие многоклеточные животные» - не очень строгий термин; здесь достаточно договориться, что мы называем так животных с мышцами, ртом и кишкой. У вендобионтов, насколько можно судить, ничего этого не было. Они питались в лучшем случае микроскопическими водорослями, а скорее всего - просто веществами, растворенными в морской воде («Trends in Ecology & Evolution», 2009, 24, 1, 31-40). Только в конце эдиакария появились многоклеточные существа, способные активно отыскивать добычу и захватывать ее крупными кусками, чтобы переварить внутри. Вендобионты были перед такими чудовищами беззащитны - неудивительно, что их «золотой век» на этом закончился. В истории донных сообществ началась совершенно другая эпоха.


«Большой взрыв жизни»


Конец эдиакарского периода является в то же время рубежом двух эонов - протерозоя и фанерозоя; и вот тут нужно небольшое пояснение. «Фанерозой» буквально значит «явная жизнь». Это эпоха, к которой относится подавляющее большинство изучаемых палеонтологами ископаемых остатков. Все предыдущие времена, включая протерозой, архей и катархей, собирательно называют криптозоем - «скрытой жизнью». Фанерозой же, в свою очередь, делится на три эры, названия которых большинству из нас скорее всего знакомы: палеозой, мезозой и кайнозой. «Палеозой» значит «древняя жизнь», «мезозой» - «средняя жизнь», «кайнозой» - «новая жизнь». Каждая из этих эр делится на периоды. Период, с которого начинается палеозой (и тем самым весь фанерозой), называется кембрием. Как и многие другие геологические периоды, кембрий получил свое имя из географии: Кембрия - это римское название Уэльса, кельтской страны на западе Британии. Соответственно очень распространенный синоним криптозоя - докембрий.

Чтобы правильно видеть перспективу, будем помнить следующее: весь фанерозой составляет (округленно) всего лишь примерно 1/9 как от времени существования Земли, так и от истории жизни на ней. Остальные 8/9 - это докембрий. Иное дело, что в фанерозое события очень сгущаются.

В 1845 году великий шотландский геолог Родерик Мурчисон предложил назвать все времена до начала кембрия азойской эрой, то есть - буквально - безжизненной. Долго это название не продержалось: уже палеонтологи XIX века показали, что в толще докембрийских пород есть следы жизни («The Journal of Geology», 1927, 35, 8, 734-742). А сейчас мы точно знаем, что жизнь была на Земле в течение большей части докембрия, и можем датировать многие докембрийские ключевые события - например, кислородную революцию или появление многоклеточности.

Главное отличие фанерозойской жизни от докембрийской - колоссальное обилие многоклеточных животных, подавляющее большинство которых относится уже к современным типам. В кембрии появляются губки, гребневики, стрекающие кишечнополостные, всевозможные черви, членистоногие, моллюски, брахиоподы, иглокожие, полухордовые и хордовые. Внезапное появление этих животных в палеонтологической летописи принято называть кембрийским взрывом. В более древних слоях их остатков нет (по крайней мере, определяемых однозначно и бесспорно). Кембрий - это время рождения фауны, близкой к современной. Кембрийский взрыв дал такой эффект и произошел так быстро, что его часто называют «эволюционным Большим взрывом» - по аналогии с тем самым Большим взрывом, в котором родилась Вселенная.

Еще кембрийский взрыв иногда называют «скелетной революцией». Действительно, многие появившиеся в этот момент группы животных приобрели твердые скелеты, причем совершенно разные и на разной основе: например, между спикулами губок, раковинами моллюсков и хитиновыми панцирями членистоногих нет буквально ничего общего. Такая одновременность никак не может быть случайной. Тем не менее «кембрийский взрыв» и «скелетная революция» не синонимы. Во-первых, твердые скелеты были далеко не у всех кембрийских животных (например, у первых хордовых их не было). Во-вторых, и в докембрии иногда попадаются явные скелетные структуры - например, непонятно кому принадлежавшие жилые трубки («Природа», 2006, 2, 37-40). В целом понятие «кембрийский взрыв» - куда более определенное, и неудивительно, что современные авторы чаще говорят именно о нем.


А был ли взрыв ?


Но вот вопрос: был ли кембрийский взрыв на самом деле? Существует мнение, что многие современные группы животных появились еще в глубоком докембрии, однако долгое время почти не оставляли ископаемых остатков, а потому были палеонтологически «невидимы» («Science», 2011, 334, 6059, 1091-1097, doi: 10.1126/science.1206375). Причины этого могли быть разными: маленький размер животных, отсутствие у них твердых скелетов или просто неподходящие для захоронения физические условия. Гипотеза «долгой скрытой докембрийской эволюции» неплохо поддерживается молекулярной систематикой, то есть сравнением аминокислотных и нуклеотидных последовательностей белков и генов разных животных (конечно, современных - со времен кембрия ни белков, ни ДНК не осталось). Реконструкции, сделанные исключительно по молекулярным данным, зачастую уводят корни современных типов животных даже не в эдиакарий, а в предыдущий период - криогений («Systematic Biology», 2013, 62, 1, 93-109). Тогда выходит, что кембрийский взрыв - не столько эволюционное событие, сколько артефакт сохранности. На рубеже кембрия эволюционные ветви животных просто «проявились», обретя твердые скелеты и начав захораниваться в осадочных толщах; а возникли они гораздо раньше.

Однако тщательной проверки, когда молекулярно-биологические данные шаг за шагом объективно сопоставляются с палеонтологическими, гипотеза «долгой скрытой докембрийской эволюции» не выдерживает («Current Biology», 2013, 23, 19, 1889-1895). И получается, что кембрийский взрыв - никакой не артефакт. Большинство крупных эволюционных ветвей животных действительно возникло в ближайшей временной окрестности границы кембрия (плюс-минус несколько миллионов лет). Есть и математические модели, подтверждающие, что погруженные в докембрий «стволы» эволюционных деревьев современных типов животных должны быть короткими («Philosophical Transactions of the Royal Society B», 2016, 371, 1685, doi: 10.1098/rstb.2015.0287). Время их существования - считанные миллионы лет, может быть, первые десятки миллионов, но уж никак не сотни. В общем, на данный момент у нас хватает оснований, чтобы считать гипотезу «долгой скрытой докембрийской эволюции» скорее неверной, а кембрийский взрыв - реальностью, как это, собственно говоря, и следует напрямую из палеонтологических данных.

Чтобы ослабить категоричность, добавим: вывод, который мы только что сделали, безусловно, обладает свойством фальсифицируемости. Это означает, что можно сформулировать четкие условия, при которых он будет опровергнут. Например, для этого вполне достаточно найти хотя бы одного достоверно определимого скорпиона (или сороконожку, или улитку) криогениевого возраста. Но пока такого не было, и вероятность, что это когда-нибудь случится, с каждым годом уменьшается.


Причины взрыва


Итак, в начале кембрия уникально быстро возникло множество новых крупных эволюционных ветвей животных. Такого не случалось больше никогда, ни раньше, ни позже. Даже после катастрофических массовых вымираний (о которых речь впереди) животный мир восстанавливался за счет нарастания разнообразия уже существовавших больших групп, а не за счет появления новых. Вот почему кембрийский взрыв обязательно требует объяснения.

Правда, «быстро» все же не значит «моментально». Новые группы животных отнюдь не появляются все разом в полном составе, как актеры после поднятия занавеса. Кембрийский взрыв был хоть и сильно сжатым во времени, но все же постепенным; скорость эволюционных процессов в нем вполне можно измерить, и такие исследования есть. Кембрий длился примерно 57 миллионов лет (542-485 млн лет назад), при этом в самом его начале (первые шесть миллионов лет) морская фауна еще довольно бедна. Новые группы животных появляются там действительно быстро по меркам истории Земли, но не мгновенно.

С чем это все-таки было связано? За полтора века, прошедших с тех пор, как ученые (и в том числе Чарльз Дарвин) осознали загадку кембрийского взрыва, предлагались разнообразнейшие объяснения этого события, от генетических до космических. Одна современная обзорная статья на эту тему так и называется - «По ту сторону кембрийского взрыва: от галактики до генома» («Gondwana Research», 2014, 25, 3, 881-883, doi: 10.1016/j.gr.2014.01.001). Например, тенденция к массовому образованию минеральных скелетов - знаменитая «скелетная революция», она же «биоминерализация» - в начале кембрия охватила не только самых разных многоклеточных животных, но и одноклеточных эукариот, и некоторые водоросли. Напрашивается предположение, что это связано с глобальным изменением химического состава внешней среды, то есть в данном случае морской воды. И в самом деле, показано, что в начале кембрия по каким-то чисто геологическим причинам примерно в три раза выросла концентрация в морской воде кальция (Ca2+) - иона, который нужен для создания твердых скелетов как никакой другой («Geology», 2004, 32, 6, 473-476). Минеральная основа скелетов животных - чаще всего карбонат кальция (раковины моллюсков, иглы и чашечки коралловых полипов, спикулы губок), а иногда фосфат кальция (кости позвоночных).

Проблема в том, что объяснить скелетную революцию - не значит объяснить сам кембрийский взрыв. Скелетная революция всего лишь снабдила твердыми минерализованными тканями ряд животных, уже существовавших к моменту ее начала. Причем это даже не всех их коснулось. В тех кембрийских местонахождениях, тип сохранности которых допускает захоронение бесскелетных существ, сразу же обнаруживается, что немалая часть кембрийской фауны была вполне «мягкотелой». Так что дело не в скелетах. Явление, которое надо объяснить в первую очередь, - это уникальное ускорение эволюции многоклеточных животных, очень быстро (в конце эдиакария - начале кембрия) создавшее много новых крупных групп, не важно, скелетных или нет.

В дальнейшем рассказе мы будем исходить из сценария, который кратко изложил еще в начале 1970-х годов американский палеонтолог Стивен Стэнли. Конечно, палеонтология - очень быстро развивающаяся наука; работы сорокалетней давности в ней всегда требуют поправок, и мы эти поправки по ходу разговора внесем. Правда, на самом деле это будут скорее дополнения. Главная идея Стэнли исключительно хорошо выдержала проверку временем. Сумма фактов, известных на данный момент, прекрасно в нее вписывается.

Начнем с начала. В скобках заметим: решить, что именно стоит принять за «начало», при разборе любого исторического процесса - задача непростая, ведь причинно-следственные цепочки могут тянуться в прошлое едва ли не до бесконечности, сбивая неосторожного исследователя с толку. В нашем случае «началом» будет эдиакарская биота. Что она собой представляла?

В экологии принято выделять организмы-средообразователи, активность которых определяет собой структуру целых сообществ. Такие организмы называются эдификаторами.

Например, в современной дубраве эдификатором является дуб, в маленьком тихом пруду им вполне может быть ряска и т. д. Так вот, в эдиакарских морях эдификаторами были покрывавшие дно «ковры» нитчатых водорослей - так называемые водорослевые маты (PALAIOS, 1999, 14, 1, 86-93, doi: 10.2307/3515363). На этих «коврах» жили уже знакомые нам вендобионты. Большинство из них вело прикрепленный образ жизни; как они питались - не совсем понятно, но скорее всего - осмотрофно, всасывая из воды растворенные вещества всей поверхностью тела. Таким способом до сих пор питаются некоторые морские простейшие, например крупные - до 20 сантиметров! - многоядерные ксенофиофоры, похожие на гигантских амеб. Вендобионты вполне могли быть близки к ним по образу жизни.

Есть и другие версии. В 1986 году палеонтолог Марк Мак- Менамин предположил, что вендобионты были экологическими аналогами современных погонофор - глубоководных кольчатых червей, лишенных рта и кишечника. Погонофоры живут в океане на такой глубине, куда солнечный свет не проникает. Зато там встречаются горячие источники, выделяющие в воду сероводород (H 2 S). Тело погонофоры набито симбиотическими бактериями, которые окисляют сероводород до серы и полученную при этом энергию используют для фиксации углекислоты, как при фотосинтезе. За счет этого процесса питаются и бактерии, и червь, в котором они живут. Вендобионтам было проще: они часто жили на мелководье, где солнечного света для фотосинтеза хватало, и вполне могли питаться за счет наполнявших их тело симбиотических одноклеточных водорослей. Это тоже вполне реально, есть современные черви и моллюски, которые так и делают, - правда, для них этот источник питания дополнительный. Но почему бы ему не быть и основным? Мир вендобионтов, где никто никого не ел, Мак-Менамин назвал «садом Эдиакары», с явной шуточной аллюзией на сад Эдема (PALAIOS, 1986, 1, 2, 178-182, doi: 10.2307/3514512). Большой недостаток этой гипотезы в том, что ее пока трудно проверить; к тому же она заведомо не может распространяться на всех вендобионтов без исключения - некоторые из них жили в море глубже уровня, куда проникает достаточно света для фотосинтеза («Proceedings of the National Academy of Sciences USA», 2009, 106, 34, 14438-14443). Но, в конце концов, в разных условиях они могли питаться и по-разному.


Парадокс в том, что концепция «сада Эдиакары» представляется близкой к истине при любом сколько-нибудь реалистичном предположении о способе питания вендобионтов. Тут уж и не имеет особого значения, жили в них водоросли или нет. В эдиакарском мире действительно никто никого не ел (не считая одноклеточных объектов, но одноклеточные эукариоты могут и сами пожирать друг друга). Принципиально важно, что в эдиакарских сообществах до некоторого момента не было не только хищников (которые питались бы другими животными), но и «травоядных» (которые соскребали бы водоросли или еще как-то активно их выедали). Таким образом, водорослевым матам никто не мешал расти.

Все изменилось, когда повышение концентрации кислорода в морской воде (судя по геологическим данным, оно шло постепенно в течение всего эдиакария) позволило некоторым многоклеточным существам ускорить обмен веществ настолько, чтобы начать вести по-настоящему активный образ жизни. Появились «сборщики урожая» - крупные животные с двигательной системой и ртом, которые перемещались по водорослевым матам и выедали их значительные участки. Одним из таких «сборщиков» была знакомая нам кимберелла. По образу жизни и по скорости передвижения первые эдиакарские животные-водорослееды, скорее всего, напоминали современных улиток; для нас это выглядит безобидно, но «с точки зрения» эдиакарских жителей появление таких существ было настоящей катастрофой. Водорослевые маты немедленно перестали быть сплошными; животные не только соскребали их сверху, но и объедали снизу, освоив для этого проникновение в грунт (у зоологов принято называть такие действия «минированием»). Тут досталось и вендобионтам, которые в конце эдиакария просто исчезли.

С этого момента начала работать общая закономерность, установленная экологами уже давно и проверенная разными способами, вплоть до прямых экспериментов: в условиях давления хищника разнообразие его жертв повышается по сравнению с сообществом, где хищников нет вовсе («Proceedings of the National Academy of Sciences USA», 1973, 70, 5, 1486- 1489). Если раньше донные сообщества насыщались очень немногочисленными доминирующими видами водорослей, то теперь равновесие рухнуло и началась бурная эволюция. А между тем набор экологических ниш, доступных животным, тоже расширялся. Появились активные грунтоеды, приспособленные к тому, чтобы постоянно жить в норах, пропуская донный грунт сквозь кишечник и извлекая из него питательные вещества; так до сих пор живут многие морские черви - пескожил, например. Черви-грунтоеды впервые стали рыть в морском дне не только горизонтальные, но и вертикальные ходы, вызывая обогащение грунта кислородом и тем самым дополнительно облегчая его заселение другими животными. Эти события получили название «субстратной революции» («GSA Today», 2000, 10, 9, 1-7, ftp://rock.geosociety.org/pub/ GSAToday/gt0009.pdf). Таким образом, эволюционирующие животные не только занимали готовые экологические ниши, но и активно создавали новые, превращая процесс в автокаталитический (самоускоряющийся).

Некоторые жители поверхности дна стали расширять свои экологические ниши не в сторону грунта, а наоборот, в сторону водной толщи. В результате возник зоопланктон - сообщество мелких животных, пребывающих взвешенными в воде и дрейфующих вместе с ней. Как правило, представители зоопланктона питаются, фильтруя воду и отцеживая из нее фитопланктон, то есть находящиеся в той же водной толще одноклеточные водоросли (таких к моменту кембрийского взрыва было уже сколько угодно). И действительно, в раннем кембрии в палеонтологической летописи появляются первые планктонные фильтраторы - жаброногие рачки («Paleobiology», 1997, 23, 2, 247-262). Жаброноги, как и все ракообразные, - обладатели членистых конечностей, исходно предназначенных для хождения по грунту, то есть по дну. Поэтому нет никаких сомнений, что ранние этапы своей эволюции они провели на дне, а к планктонному образу жизни обратились только потом.

Последствия появления зоопланктона оказались глобальными. Дело в том, что животные-планктеры отфильтровывают из воды не только водоросли, но и любую взвесь, в которой могут быть хоть какие-то питательные вещества. В основном это распыленные остатки мертвых организмов. Отфильтровав взвесь и всосав из нее полезные молекулы, планктеры (в первую очередь этим отличаются ракообразные) аккуратно «упаковывают» в своем кишечнике остальное в плотные комки - фекальные пеллеты, которые быстро тонут и отправляются на дно. Пеллетная транспортировка взвеси - важнейший фактор, понижающий мутность воды в океане. Таким образом, после появления планктонных фильтраторов вода стала прозрачной, свет проникал в нее на бо́льшую глубину, и в ней повысилась концентрация кислорода (часть его раньше расходовалась на окисление той же мертвой взвеси). Первый фактор увеличил глубину зоны, в которой возможен фотосинтез, второй - улучшил условия для придонной фауны. По всем данным, прозрачный насыщенный кислородом фанерозойский океан резко отличается от мутного докембрийского океана («Geobiology», 2009, 7, 1, 1-7). Заодно повысилась концентрация кислорода и в атмосфере. Естественно, что в новых условиях разнообразие как растений, так и животных дополнительно выросло. Замкнулась еще одна автокаталитическая петля.


Пришествие хищника


Все животные, о которых мы до сих пор говорили, были в самом наиширочайшем смысле «травоядными». Они питались или фотосинтезирующими организмами, или на худой конец чьими-то мертвыми остатками. При этом собственная биомасса «травоядных» представляла собой ценный (и до какого-то момента совершенно невостребованный) ресурс для животных, питающихся другими животными, то есть для хищников. Поначалу никаких хищников просто не существовало. Но при наличии таких атрибутов активной жизни, как нервная система, мускулатура и ротовой аппарат, их появление было всего лишь вопросом времени. Первые крупные хищники, уже совершенно определенно специализированные на питании другими многоклеточными животными, появляются примерно 520 миллионов лет назад; это динокариды - хорошо плавающие существа, родственные членистоногим («Gondwana Research», 2014, 25, 896-909, doi, 10.1016/j.gr.2013.06.001). Самый известный представитель динокарид - аномалокарис, стройное сегментированное создание длиной около метра со сложными фасеточными глазами и мощными членистыми околоротовыми конечностями, явно служившими для захвата подвижной добычи. В самом начале кембрия подобных хищников нет. «Скелетная революция», несомненно, в какой-то степени стала ответом на их появление; изменение химического состава морской воды только облегчило ее. А появление скелетов, в свою очередь, запустило освоение новых экологических ниш. Стивен Стэнли совершенно правильно писал, что для объяснения кембрийского взрыва вполне хватает чисто биологических причин; факторы, действующие на биосферу извне, могли повлиять на скорость того или иного процесса, но все главные события можно объяснить и без них. Вспышка разнообразия многоклеточных животных была естественным результатом серии автокаталитических процессов, запущенных появлением первых «травоядных» (вроде кимбереллы) и происходивших на уровне сообществ, иначе говоря, экосистем. Вне экологии объяснить кембрийский взрыв действительно невозможно.



С появлением хищников процесс образования новых жизненных форм стал понемногу тормозиться. Репертуар экологических ниш сложился, почти все они уже были распределены и заняты. Разумеется, расширение сообществ продолжалось и дальше - просто медленнее. Например, только после окончания кембрийского периода появились лопатоногие моллюски, занявшие довольно-таки экзотическую нишу роющих хищников («Advances in Marine Biology», 2002, 42, 137-236). Но такого размаха, как на рубеже эдиакария и кембрия, крупномасштабная эволюция животных больше никогда не достигала.

С точки зрения событийной истории началом кембрийского взрыва можно считать появление первых эффективных водорослеедов (кимберелла), а концом - появление первых эффективных хищников (аномалокарис). Кимберелла появилась 555 миллионов лет назад, аномалокарис - 520 миллионов лет назад, интервал между ними - 35 миллионов лет. Не так уж и быстро.

02.12.2016

Всем снова привет! В этом посте я постараюсь рассказать об уникальном событии в истории жизни на Земле. Речь пойдет о кембрийском взрыве, или как его еще называют, кембрийской радиации. Кембрийский взрыв - это ярчайшее событие в палеонтологической летописи планеты, когда за относительно небольшой срок (несколько десятков миллионов лет) происходит резкое увеличение количества ископаемых останков живых существ и, на первый взгляд как бы из ниоткуда, появляются почти все современные типы животных (хордовые, членистоногие, моллюски, иглокожие и тд).

У него были предшественники, но Облако удалось захватить идею взрыва кембрия с величайшим красноречием и геологическим утонченность. Помимо его великого руководства и наставничества поколения палеонтологов, он разработал интегративный подход к палеонтологии, добавив навыки в палеогеографию, карбонатную стратиграфию и карбонатную седиментологию. Его более поздняя карьера в Калифорнийском университете, Санта-Барбаре, расширила его интересы до астробиологии и происхождения жизни. Его наблюдения как палеонтолога привели его к тому, чтобы охарактеризовать фанерозойскую летопись окаменелостей как ряд эволюционных извержений, причем кембрий является самым большим из всех.

Рождение сложности [Эволюционная биология сегодня: неожиданные открытия и новые вопросы] Марков Александр Владимирович

Кембрийский взрыв

Кембрийский взрыв

В самом начале кембрийского периода, примерно 542 млн лет назад, многие группы животных почти одновременно стали обзаводиться твердым минерализованным скелетом. Поскольку в ископаемом состоянии обычно сохраняются именно такие скелеты, а мягкие части бесследно исчезают, это событие в палеонтологической летописи выглядит как внезапное, «взрывное» появление многих групп животных (моллюсков, членистоногих, губок, археоциат, брахиопод, к которым несколько позже присоединяются иглокожие, кораллы, мшанки и другие). Отсюда и общепринятое название этого события - «кембрийский взрыв».

Вся та палеонтология, о которой мы говорили до сих пор, - палеонтология докембрия, то есть изучающая архейский и протерозойский эоны со всеми биомаркерами, окремненными цианобактериями, акритархами, городискиями и мягкотелыми животными венда, - стала интенсивно развиваться лишь сравнительно недавно. До этого момента докембрийские толщи казались ученым практически мертвыми, не содержащими почти никаких следов жизни. «Кембрийский взрыв» выглядел внезапным появлением множества разнообразных организмов словно бы из ниоткуда. Поэтому докембрий назвали криптозоем - временем «скрытой жизни», а последний этап развития биосферы, начавшийся с кембрия и включающий палеозойскую, мезозойскую и кайнозойскую эры, носит название фанерозоя (время «явной жизни»).

Дарвин считал кембрийский взрыв одним из фактов, не укладывающихся в его теорию постепенных эволюционных изменений. Впоследствии выяснилось, что «взрыв» на самом деле был не таким уж взрывообразным. Как мы теперь знаем, предки многих кембрийских групп жили и раньше, но они были по большей части бесскелетными, мягкотелыми. Именно поэтому палеонтологи долго не могли обнаружить их остатков в докембрийских породах.

Загадка кембрийского взрыва, тем не менее, осталась, только теперь речь идет не о внезапном возникновении как бы «из ничего» многих типов животных, а о более или менее одновременном появлении у них минерального скелета. Это могло быть связано с изменениями условий среды. Например, к такому эффекту могло бы привести резкое уменьшение кислотности воды, в результате чего карбонат кальция (CaCO 3) - самый распространенный у животных скелетообразующий материал - стал хуже растворяться в морской воде и легче выпадать в осадок. Предложен и целый ряд других объяснений. Хорошие популярные рассказы о кембрийском взрыве и теориях, предложенных для его объяснения, можно найти в книгах А. Ю. Розанова «Что произошло 600 миллионов лет назад» (1986) . Это настоящее «живое ископаемое»: род Astrosclera существует больше 200 млн лет (с конца триасового периода), а по строению своего карбонатного скелета эта губка очень близка к формам, процветавшим еще в палеозое (так называемым строматопоратам).

Скелет астросклеры состоит из мелких сферических элементов, которые постепенно растут и сливаются друг с другом. Ученые выделили из скелета губки органическую фракцию, а из нее - все белки. Три преобладающих белка оказались карбоангидразами. Исследователи определили их аминокислотную последовательность, а затем по этой последовательности «выудили» из генома и три соответствующих гена. Это позволило, сравнивая между собой нуклеотидные последовательности генов карбоангидраз примитивной губки и высших животных, чьи геномы уже прочтены, реконструировать эволюцию этих белков у животных.

Ученые пришли к выводу, что все многочисленные и разнообразные карбоангидразы животных происходят от одного предкового белка, который имелся у последнего общего предка всех животных. В разных эволюционных линиях ген этой исходной карбоангидразы неоднократно подвергался независимым дупликациям (удвоениям). Так возникали различные новые варианты карбоангидраз. «Последний общий предок всех животных», вне всяких сомнений, жил задолго до кембрийской скелетной революции. Получается, что животные изначально были хорошо подготовлены (преадаптированы) к развитию минерального скелета - у них с самого начала были ферменты, способные резко ускорить образование карбоната кальция. Эти ферменты, очевидно, использовались докембрийскими мягкотелыми животными для других целей - как уже говорилось, у карбоангидраз в животном организме хватает работы и без скелетообразования. Когда условия среды стали благоприятствовать биоминерализации, разные группы животных не сговариваясь «привлекли» часть своих карбоангидраз к выполнению новой функции.

Оказалось, что у этих примитивных многоклеточных уже есть значительная часть комплекса так называемых постсинаптических белков, которые у более высокоорганизованных животных функционируют в нервных клетках и участвуют в «приеме сигнала». У губок, однако, нет нервных клеток. Зачем же им эти белки? По всей видимости, они участвуют в обмене сигналами между клетками губки. Животное может не иметь нервной системы, но если его клетки совсем не будут «общаться» друг с другом, это будет уже не животное, а скопление одноклеточных организмов. Позже, когда у животных развилась нервная система, эти «коммуникационные» белки пригодились для формирования системы обмена сигналами между нервными клетками. Этот пример, как и множество других, показывает, что большинство эволюционных новшеств возникает не на пустом месте, а собирается из «подручного материала», причем часто для радикального изменения функции какого-нибудь белка или белкового комплекса достаточно совсем небольших генетических изменений.

Из книги Непослушное дитя биосферы [Беседы о поведении человека в компании птиц, зверей и детей] автора Дольник Виктор Рафаэльевич

Взрыв - кризис - коллапс - стабилизация Популяция любых видов - бактерий, растений, животных,- попав в благоприятные условия, увеличивает свою численность по экспоненте взрывным образом, так, как это показано на рисунке. Рост численности с разгону переходит значение,

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Путешествие в прошлое автора Голосницкий Лев Петрович

Кембрийский период Во многих местах выступают на поверхность земли толщи осадочных кембрийских пород, образовавшихся свыше 400 миллионов лет назад. Это главным образом песчаники, известняки и глинистые сланцы - твёрдая горная порода тёмно-серого или чёрного цвета,

Из книги Язык как инстинкт автора Пинкер Стивен

Глава 11 БОЛЬШОЙ ВЗРЫВ Эволюция языка Слоновий хобот имеет шесть футов в длину и один фут в толщину и содержит шестьдесят тысяч мускулов. С помощью хобота слоны могут с корнем выдирать деревья, складывать бревна в штабеля или аккуратно помещать их в требуемую позицию при

Из книги До и после динозавров автора Журавлёв Андрей Юрьевич

Глава IV Мир, которого не может быть (кембрийский период: 550–490 млн лет назад) Если идея приходит в голову, то из какого же места она вышла? Приписывается автору Что написано в «Кембрийской газете». Запуск пеллетного конвейера. Галлюцигения и прочие «ошибки природы». Почему

Из книги Фармацевтическая и продовольственная мафия автора Броуэр Луи

Феминизация: финальный взрыв Процент феминизации - количество женщин на 100 врачей - увеличивается каждый год. В июле 1984 г. женщины-медики составляли 26,3 %, в январе 1985 г. - 26,8 %, в январе 1986 г. - 27,9 %, в январе 1987 г. - 28,4 %.На конец 1993 г. среди трех французских врачей была

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Что такое Большой взрыв и как долго он продолжался? Согласно самой признанной на сегодня космологической модели, Вселенная возникла в результате так называемого Большого взрыва. До Большого взрыва не было пространства и времени. Лишь после Большого взрыва Вселенная

Из книги Генетическая одиссея человека автора Уэллс Спенсер

Взрыв Все континенты (кроме Антарктиды) были заселены людьми 10 000 лет назад. Всего за 40 000 лет наш вид проделал путешествие из Восточной Африки к Огненной Земле, бросая вызов пустыням, высоким горам и мерзлым пустошам Крайнего Севера. Их изобретательность сослужила им

Из книги Энергия и жизнь автора Печуркин Николай Савельевич

Второй «большой взрыв» Неолит стал поворотным пунктом для человеческого вида. Именно тогда мы перестали быть полностью зависимыми от климата, как это было во время наших странствий в эпоху палеолита, и взяли под контроль нашу собственную судьбу. Освоив сельское

Из книги Рождение сложности [Эволюционная биология сегодня: неожиданные открытия и новые вопросы] автора

9 Последний «большой взрыв» Если ты знаешь свою историю, тебе известны твои корни. Боб Марли, «Солдат Буффало» Пару лет назад меня попросили провести генетический анализ в одной из телевизионных программ. Его целью было показать с помощью генетических данных то, что

Из книги Эволюция человека. Книга 2. Обезьяны, нейроны и душа автора Марков Александр Владимирович

9 Последний «большой взрыв» О национализме и о возникновении одноязычия кратко повествуется в книге Тимоти Бейкрофта «Национализм в Европе» (Timothy Baycroft. Nationalism in Europe, 1789–1945. - Cambridge University Press, 1998). Исчезновение мировых языков обсуждается в книге Дэвида Неттла и Сюзанн Ромейн

Из книги Хозяева Земли автора Уилсон Эдвард

5.2. Биологический взрыв и нехватка вещества Одной из важных черт жизни является способность к рождению себе подобных, которые также могут размножаться, давая новые единицы, способные к размножению, и т. д. Это и есть известное явление автокатализа в физике, химии, при

Из книги автора

Происхождение членистоногих - «артроподизация» (вендский и кембрийский периоды) В «домолекулярную эру» в распоряжении ученых было три научных дисциплины, при помощи которых можно было реконструировать эволюционную историю организмов: 1. сравнительная анатомия, 2.

Из книги автора

Когнитивный взрыв Гипотеза макиавеллиевского интеллекта появилась в конце 1980-х и с тех пор неуклонно укрепляет свои позиции. В 2006 году Сергей Гаврилец и Аарон Воуз из Университета штата Теннесси в Ноксвилле разработали математическую модель, наглядно демонстрирующую

Из книги автора

10. Культурный взрыв После того как увеличение размеров мозга открыло Homo sapiens возможности завоевания мира, человеческая волна выплеснулась из Африки и поколение за поколением покатилась по Старому Свету, сметая все на своем пути. Культура, поначалу незаметная, то тут, то


5. Возможные причины «взрыва»

Несмотря на то, что довольно сложные трехслойные животные существовали до Кембрия, эволюционное развитие в раннем Кембрии представляется исключительно быстрым. Предпринималось множество попыток объяснить причины подобного «взрывного» развития.

Изменения окружающей среды

Рост концентрации кислорода

Самая ранняя атмосфера Земли вообще не содержала свободного кислорода. Тот кислород, которым дышат современные животные — как содержащийся в воздухе, так и растворенный в воде — является продуктом миллиардов лет фотосинтеза, главным образом — микроорганизмов. Примерно 2,5 миллиарда лет назад концентрация кислорода в атмосфере резко возросла. До этого времени весь вырабатываемый микроорганизмами кислород полностью тратился на окисление элементов с высоким сродством к кислороду, таких как железо. Пока не произошло их полное связывание на суше и в верхних слоях океана, в атмосфере существовали лишь локальные «кислородные оазисы».

Нехватка кислорода могла длительное время препятствовать развитию крупных сложных организмов. Проблема состоит в том, что количество кислорода, которое животное может абсорбировать из окружающей среды, ограничено площадью поверхности. Количество же кислорода, требуемое для жизнедеятельности, определяется массой и объёмом организма, которые по мере увеличения размеров растут быстрее, чем площадь. Рост концентрации кислорода в воздухе и в воде мог ослаблять или вовсе устранять это ограничение.

Нужно отметить, что достаточное количество кислорода для существования крупных вендобионтов присутствовало уже в эдиакарский период. Однако дальнейший рост концентрации кислорода мог предоставить организмам дополнительную энергию для производства веществ, необходимых для развития принципиально более сложных структур тела, в том числе — используемых для хищничества и защиты от него.

Земля-снежок

Существуют многочисленные доказательства того, что в позднем неопротерозое Земля подвергалась глобальному оледенению, в ходе которого большая часть её была покрыта льдом, а температура поверхности была близка к точке замерзания даже на экваторе. Некоторые исследователи указывают, что это обстоятельство может быть тесно связано с кембрийским взрывом, поскольку самые ранние из известных ископаемых относятся к периоду вскоре после конца последнего полного оледенения.

Однако довольно трудно указать причинно-следственную связь таких катастроф с последующим ростом размеров и сложности организмов. Возможно, низкие температуры увеличивали концентрацию кислорода в океане — его растворимость в морской воде растет почти вдвое при падении температуры с 30 °C до 0 °C.

Флуктуации изотопного состава углерода

В отложениях на границе эдиакарского и кембрийского периодов наблюдается очень резкое снижение, а вслед за ним — необычно сильные колебания соотношения изотопов углерода C/C в течение всего раннего кембрия.

Многие ученые предполагали, что исходное падение связано с массовым вымиранием непосредственно перед началом кембрия.. Можно также предположить, что вымирание само стало следствием предшествовавшего распада клатратов метана. Широко известно, что эмиссия метана и последующее насыщение атмосферы диоксидом углерода вызывает глобальный парниковый эффект, сопровождающийся различными экологическими катастрофами. Подобная картина наблюдалась в Триасе, когда жизнь восстанавливалась после массового Пермского вымирания.

Однако довольно трудно объяснить, как массовое вымирание могло вызвать резкий рост таксономического и морфологического разнообразия. Хотя массовые вымирания, такие как пермское и мел-палеогеновое, приводили к последующему росту численности отдельных видов от несущественной до «доминирующей», однако в обоих случаях экологические ниши замещались хотя и другими, но столь же сложными организмами. При этом скачкоообразного роста таксономического или морфологического разнообразия в новой экосистеме не наблюдалось.

Ряд исследователей предполагал, что каждое кратковременное снижение доли C/C в раннем кембрии представляет высвобождение метана которое, благодаря вызванному им небольшому парниковому эффекту и повышению температуры, приводил к росту морфологического разнообразия. Но и эта гипотеза не объясняет резкого увеличения таксономического разнообразия в начале Кембрия.

Объяснения на основе развития организмов

В основе ряда теорий лежит та идея, что относительно малые изменения в способе, которым животные развиваются из эмбриона во взрослый организм, могут привести к резким изменениям формы тела.

Возникновение системы билатерального развития

Регуляторные Hox-гены включают и выключают «рабочие» гены в различных частях тела, и, тем самым, управляют формированием анатомической структуры организма. Очень схожие Hox-гены обнаруживаются в геноме всех животных — от стрекающих до людей. При этом млекопитающие имеют 4 набора Hox-генов, в то время как стрекающие обходятся единственным набором.

Hox-гены у различных групп животных столь схожи, что, к примеру, можно трансплантировать человеческий ген «формирования глаз» в эмбрион дрозофилы, что приведет к формированию глаза — но это будет глаз дрозофилы, благодаря активации соответствующих «рабочих» генов. Отсюда видно, что наличие сходного набора Hox-генов вовсе не означает анатомического сходства организмов. Поэтому возникновение подобной системы могло повлечь резкий рост разнообразия — как морфологического, так и таксономического.

Поскольку одни и те же Hox-гены управляют дифференциацией всех известных билатеральных организмов, эволюционные линии последних должны были разойтись до того, как у них начали образовываться какие-либо специализированные органы. Таким образом, «последний общий предок» всех билатеральных организмов должен был быть небольшим, анатомически простым и, вероятнее всего, подверженным полному разложению без сохранения в окаменелостях. Это обстоятельство делает его обнаружение крайне маловероятным. Однако целый ряд вендобионтов, возможно, имел билатеральное строение тела. Таким образом, подобная система развития могла возникнуть, по меньшей мере, за несколько десятков миллионов лет до Кембрийского взрыва. В этом случае для его объяснения необходимы какие-то дополнительные причины.

Небольшой рост сложности генома может иметь большие последствия

У большинства организмов, имеющих половое размножение, потомок получает примерно по 50 % своих генов от каждого родителя. Это означает, что даже небольшой рост сложности генома способен породить множество вариаций строения и формы тела. Большая часть биологической сложности, вероятно, возникает благодаря действию относительно простых правил на большом числе клеток, функционирующих как клеточные автоматы.

Колея развития

Некоторые ученые предполагают, что по мере усложнения организмов, на эволюционные изменения общего строения тела накладываются вторичные изменения в сторону лучшей специализации его сложившихся частей. Это снижает вероятность прохождения естественного отбора новыми классами организмов — из-за конкуренции с «усовершенствованными» предками. В итоге, по мере складывания общего строения, формируется «колея развития», а пространственная структура тела «замораживается». Соответственно, формирование новых классов происходит «легче» на ранних стадиях эволюции основных клад, а их дальнейшая эволюция идет на более низких таксономических уровнях. Впоследствии автор этой идеи указывал, что такое «замораживание» не является основным объяснением кембрийского взрыва.

Окаменелости, которые могли бы подтвердить эту идею, неоднозначны. Отмечено, что вариации организмов одного класса зачастую наиболее велики на самых первых стадиях развития клады. Например, некоторые кембрийские трилобиты сильно варьировали по количеству грудных сегментов, причём впоследствии подобное разнообразие существенно снизилось. Однако обнаружено, что образцы силурийских трилобитов обладают столь же высокой вариативностью строения, что и раннекембрийские. Исследователи предположили, что общее снижение разнообразия связано с экологическими или функциональными ограничениями. Например, можно ожидать меньшей вариативности числа сегментов после того, как у трилобитов сформировалось выпуклое строение тела, являющееся эффективным способом его защиты.

Экологические объяснения

Такие объяснения сосредоточены на взаимодействии между различными видами организмов. Некоторые из подобных гипотез имеют дело с изменениями пищевых цепей; другие рассматривают гонку вооружений между хищниками и жертвами, которая могла вызвать эволюцию жестких частей тела в раннем Кембрии; ещё какое-то число гипотез сосредоточено на более общих механизмах коэволюции.

«Гонка вооружений» между хищниками и жертвами

Хищничество по определению предполагает гибель жертвы, в силу чего оно становится сильнейшим фактором и ускорителем естественного отбора. Давление на жертвы в направлении лучшей адаптации должно быть более сильным, чем на хищников — поскольку, в отличие от жертвы, они имеют шанс сделать новую попытку.

Однако имеются свидетельства того, что хищничество присутствовало задолго до начала Кембрия. Поэтому маловероятно, что оно само по себе стало причиной Кембрийского взрыва, хотя и имело сильное влияние на анатомические формы возникших при этом организмов.

Появление фитофагов

Стэнли предположил, что появление 700 млн.лет назад простейших, «обгладывающих» микробные маты, крайне расширило пищевые цепи и должно было привести к росту разнообразия организмов. Однако, сегодня известно, что «обгладывание» возникло более 1 млрд лет назад, а угасание строматолитов началось около 1,25 млрд лет назад — задолго до «взрыва».

Рост размеров и разнообразия планктона

Геохимические наблюдения четко показывают, что общая масса планктона стала сравнима с нынешней уже в раннем Протерозое. Однако, до Кембрия планктон не вносил существенного вклада в питание глубоководных организмов, поскольку их тела были слишком малы для быстрого погружения на морское дно. Микроскопический планктон поедался другим планктоном или разрушался химическими процессами в верхних слоях моря задолго до проникновения в глубоководные слои, где мог бы стать пищей для нектона и бентоса.

В составе же ранних кембрийских ископаемых был обнаружен мезозоопланктон, который мог отфильтровывать микроскопический планктон. Новый мезозоопланктон мог служить источником останков, а также выделять экскременты в форме капсул, достаточно крупных для быстрого погружения — они могли быть пищей для нектона и бентоса, вызывая рост их размеров и разнообразия. Если же частицы органики достигали морского дна, в результате последующего захоронения они должны были повышать концентрацию кислорода в воде при одновременном снижении концентрации свободного углерода. Другими словами, появление мезозоопланктона обогатило глубокие участки океана как пищей, так и кислородом, и, тем самым, сделало возможным появление и эволюцию более крупных и разнообразных обитателей морских глубин.

Наконец, возникновение среди мезозоопланктона фитофагов могло сформировать дополнительную экологическую нишу для более крупных мезозоопланктонных хищников, чьи тела, погружаясь в море, вели к дальнейшему его обогащению пищей и кислородом. Возможно, первыми хищниками среди мезозоопланктона были личинки донных животных, чья дальнейшая эволюция стала результатом общего роста хищничества в морях эдиакарского периода.

Множество пустых ниш

Джеймс Валентайн в нескольких работах сделал следующие предположения: резкие изменения в строении тела являются «затруднительными»; изменения имеют гораздо больше шансов на существование, если они встречают слабую конкуренцию за ту экологическую нишу, на которую они нацелены. Последнее необходимо, чтобы новый тип организмов имел достаточно времени для адаптации к своей новой роли.

Это обстоятельство должно приводить к тому, что реализация основных эволюционных изменений гораздо более вероятна на начальных стадиях формирования экосистемы — из-за того, что последующая диверсификация заполняет почти все экологические ниши. В дальнейшем, несмотря на то, что новые типы организмов продолжают возникать, нехватка пустых ниш препятствует их распространению в экосистеме.

Модель Валентайна хорошо объясняет факт уникальности Кембрийского взрыва — почему он случился только один раз и почему его длительность была ограничена.