Возможно ли создание новых стабильных элементов. Результаты поиска по \"стабильные элементы\"

Атомное ядро это система нуклонов, состоящая из Z протонов и N нейтронов, связанных ядерным взаимодействием. Энергия связи атомного ядра в жидко-капельной модели описывается формулой Бете-Вайцзеккера [3, 4 ]. В зависимости от времени жизни и соотношения между Z и N атомные ядра делятся на стабильные и радиоактивные. Явление радиоактивности было открыто А.А. Бекерелем в 1896 г., который обнаружил неизвестное ранее излучение, которое испускали соли урана .
В 1898 г. Пьер и Мария Кюри выделили новые элементы, радий Ra (Z = 88) и полоний Po (Z = 84) , также обладающие свойством радиоактивности. Э. Резерфорд в 1898 г. показал, что излучение урана имеет две компоненты: положительно заряженные α-частицы (ядра 4 He) и отрицательно заряженные β-частицы (электроны) [6, 9 ]. В 1900 году П. Виллардом было открыто γ-излучение урана .
Стабильные ядра расположены в так называемой долине стабильности (рис. 1). Отношение N к Z вдоль линии стабильности зависит от масового числа А = N + Z:

N/Z = 0.98 + 0.015А 2/3 . (1)

Рис. 1. NZ диаграмма атомных ядер

В настоящее время известно около 3500 атомных ядер, число стабильных ядер около 300. Слева от долины стабильности располагаются радиоактивные ядра, распадающиеся в результате β + -распада и е-захвата. При удалении от долины стабильности в сторону ядер, перегруженных протонами, уменьшается их период полураспада. Граница В р (N,Z) = 0 (В р (N,Z) энергия отделения протона в ядре (N,Z)) ограничивает область существования ядер слева.
При продвижении от долины стабильности в сторону ядер, перегруженных ней­тронами, также происходит уменьшение периода полураспада ядер. Справа область существования ядер ограничена соотношением В n (N,Z) = 0 (В n (N,Z) энергия отделения нейтрона в ядре (N,2)). Вне границ
В р (N,Z) = 0 и (В n (N,Z) = 0 атомные ядра существовать не могут, так как их распад происходит за характерное ядерное время τ яд = 10 -22 с.
Область ядер с протонным избытком экспериментально изучена практически пол­ностью вплоть до границы В р (N,Z) = 0. Что касается ядер с избытком нейтронов, то (за исключением легких ядер) область экспериментально обнаруженных ядер лежит довольно далеко от границы В n (N,Z) = 0. В этой области может располагаться еще около 2500 − 3000 неизвестных нам ядер.

Академик Г.Н. Флеров:
Ценность информации, полученной из исследования изотопа, находящегося далеко от области стабильности, значительно больше того, что мы узнаем, изучая изотопы, находящеся вблизи этой области. Это общий методологический подход, который используется и физиками, и химиками,
изучать свойства вещества в экстремальных условиях его существования. Изотопы, далекие от области (β-стабильности, являются предельными в том отношении, что в одном случае, когда протонов мало и число нейтронов относительно велико, основную роль играют ядерные силы; в другом случае, когда имеется избыток протонов, весьма существенную роль играют кулоновские силы отталкивания, вплоть до того, что становится возможным радиоактивный распад ядер с испусканием протонов.
В связи с этим становится понятным наш особый интерес к изучению ядер трансурановых элементов, где кулоновские силы настолько велики, что преодолевают ядерные силы притяжения. Почти исчезает потенциальный барьер, удерживающий в равновесии ядро как целое, и оно делится на осколки. В то же время специфические ядерные эффекты, связанные с внутренней структурой ядра, могут быть выражены чрезвычайно сильно. Именно в этой области элементов открыт новый вид ядерной изомерии изомерия формы. Здесь же возможен ряд других интересных явлений, связанных, например, с наличием второго минимума в энергии деформации ядра.

Доклад в Оргкомитет конференции ЮНЕСКО,
посвященный 100-летию создания таблицы Менделеева .

Ограничения на существование атомных ядер есть и со стороны сверхтяжелых элементов. Элементы с Z > 92 в естественных условиях не обнаружены. Расчеты по жидкокапельной модели ядра предсказывают исчезновение барьера деления для ядер с Z 2 /А ≈ 41 (примерно 104 элемент) . В проблеме существования сверхтяжелых ядер следует выделить два круга вопросов.

  • Какими свойствами должны обладать сверхтяжелые ядра? Будут ли существовать магические числа в этой области Z и N? Каковы основные каналы распада и периоды полураспада сверхтяжелых ядер?
  • Какие реакции следует использовать для синтеза сверхтяжелых ядер, типы бомбардирующих ядер, ожидаемые величины сечений, ожидаемые энергии возбуждения составного ядра и каналы снятия возбуждения образующихся ядер?

Проблема синтеза сверхтяжелых элементов тесно связана с тем фактом, что ядра с Z, N = 2, 8, 20, 28, 50, 82, N = 126 (магические числа) обладают повышенной стабильностью по отношению к различным типам радиоактивного распада. Это явление объясняется в рамках модели ядерных оболочек − магические числа соответствуют заполненным ядерным оболочкам [12, 13 ]. Естественно возникает вопрос о существовании следующих магических чисел по Z и N. В случае, если они существуют в области NZ- диаграммы атомных ядер N > 150, Z > 101, должны наблюдаться сверхтяжелые ядра, имеющие повышенные периоды полураспада, т.е. должен существовать Остров Стабильности. Применение метода

ЕСТЬ ЛИ ПРЕДЕЛ
ПЕРИОДИЧЕСКОЙ ТАБЛИЦЫ
Д.И.МЕНДЕЛЕЕВА?

ОТКРЫТИЕ НОВЫХ ЭЛЕМЕНТОВ

П роблема систематизации химических элементов привлекла к себе пристальное внимание в середине XIX в., когда стало ясно, что многообразие окружающих нас веществ является результатом разных сочетаний сравнительно малого числа химических элементов.

В хаосе элементов и их соединений великий русский химик Д.И.Менделеев первым навел порядок, создав свою периодическую таблицу элементов.

1 марта 1869 г. считается днем открытия периодического закона, когда Менделеев сообщил о нем научному сообществу. Известные в то время 63 элемента ученый разместил в своей таблице таким образом, что главные свойства этих элементов и их соединений менялись периодически по мере увеличения их атомной массы. Наблюдаемые изменения свойств элементов в горизонтальном и вертикальном направлениях таблицы следовали строгим правилам. Например, ярко выраженный у элементов Iа группы металлический (основный) характер с увеличением атомной массы убывал по горизонтали таблицы и возрастал по вертикали.

Опираясь на открытый закон, Менделеев предсказал свойства нескольких еще не открытых элементов и их место в периодической таблице. Уже в 1875 г. был открыт «экаалюминий» (галлий), еще через четыре года – «экабор» (скандий), а в 1886 г. – «экасилиций» (германий). В последующие годы таблица Менделеева служила и до сих пор служит ориентиром в поисках новых элементов и предвидении их свойств.

Однако ни сам Менделеев, ни его современники не могли ответить на вопрос, в чем причины периодичности свойств элементов, существует ли и где проходит граница периодической системы. Менделеев предчувствовал, что причина представленной им взаимосвязи между свойствами и атомной массой элементов кроется в сложности самих атомов.

Лишь спустя много лет после создания периодической системы химических элементов в работах Э.Резерфорда, Н.Бора и других ученых было доказано сложное строение атома. Последующие достижения атомной физики позволили решить многие неясные проблемы периодической системы химических элементов. Прежде всего оказалось, что место элемента в периодической таблице определяется не атомной массой, а зарядом ядра. Стала понятной природа периодичности химических свойств элементов и их соединений.

Атом стали рассматривать как систему, в центре которой находится положительно заряженное ядро, а вокруг него вращаются отрицательно заряженные электроны. При этом электроны группируются в околоядерном пространстве и движутся по определенным орбитам, входящим в электронные оболочки.

Все электроны атома принято обозначать с помощью чисел и букв. Согласно этому обозначению главные квантовые числа 1, 2, 3, 4, 5, 6, 7 относятся к электронным оболочкам, а буквы s , p , d , f , g – к подоболочкам (орбитам) каждой оболочки. Первая оболочка (считая от ядра) имеет только s -электроны, вторая может иметь s - и p - электроны, третья – s -, p - и d -электроны, четвертая – s -,
p -, d - и f - электроны и т.д.

Каждая оболочка может вместить вполне определенное число электронов: первая – 2, вторая – 8, третья – 18, четвертая и пятая – по 32. Этим определяется число элементов в периодах таблицы Менделеева. Химические свойства элементов обусловлены строением внешней и предвнешней электронных оболочек атомов, т.е. тем, сколько электронов они содержат.

Ядро атома состоит из положительно заряженных частиц – протонов и электрически нейтральных частиц – нейтронов, часто называемых одним словом – нуклоны. Порядковый номер элемента (его место в периодической таблице) определяется числом протонов в ядре атома данного элемента. Массовое число А атома элемента равно сумме чисел протонов Z и нейтронов N в ядре: A = Z + N . Атомы одного и того же элемента с разным числом нейтронов в ядре являются его изотопами.

Химические свойства разных изотопов одного и того же элемента не отличаются друг от друга, а ядерные – изменяются в широких пределах. Это проявляется прежде всего в стабильности (или нестабильности) изотопов, которая существенно зависит от соотношения числа протонов и нейтронов в ядре. Легкие стабильные изотопы элементов обычно характеризуются равным числом протонов и нейтронов. С ростом заряда ядра, т. е. порядкового номера элемента в таблице, это соотношение меняется. У стабильных тяжелых ядер нейтронов почти в полтора раза больше, чем протонов.

Как и атомные электроны, нуклоны также образуют оболочки. С увеличением числа частиц в ядре последовательно заполняются протонные и нейтронные оболочки. Ядра с полностью заполненными оболочками являются самыми стабильными. Например, очень устойчивой ядерной структурой характеризуется изотоп свинца Pb-208, который имеет заполненные оболочки протонов (Z = 82) и нейтронов (N = 126).

Подобные заполненные ядерные оболочки аналогичны заполненным электронным оболочкам атомов инертных газов, представляющих отдельную группу в периодической таблице. Стабильные ядра атомов с полностью заполненными протонными или нейтронными оболочками содержат определенные «магические» числа протонов или нейтронов: 2, 8, 20, 28, 50, 82, 114, 126, 184. Таким образом, атомам элементов в целом, как и по химическим свойствам, присуща также периодичность и ядерных свойств. Среди разных сочетаний числа протонов и нейтронов в ядрах изотопов (четно-четных; четно-нечетных; нечетно-четных; нечетно-нечетных) именно ядра, содержащие четное число протонов и четное число нейтронов, отличаются наибольшей устойчивостью.

Природа сил, удерживающих в ядре протоны и нейтроны, пока недостаточно ясна. Полагают, что между нуклонами действуют очень большие гравитационные силы притяжения, которые способствуют увеличению стабильности ядер.

К середине тридцатых годов прошлого столетия периодическая таблица была разработана настолько, что показывала положение уже 92 элементов. Под порядковым номером 92 был уран – последний из найденных на Земле еще в 1789 г. естественных тяжелых элементов. Из 92 элементов таблицы только элементы с порядковыми номерами 43, 61, 85 и 87 в тридцатые годы не были точно установлены. Они были открыты и изучены позже. Редкоземельный элемент с атомным номером 61 – прометий – был обнаружен в малых количествах в рудах как продукт самопроизвольного распада урана. Анализ атомных ядер недостающих элементов показал, что все они радиоактивны, причем из-за коротких периодов их полураспада они не могут существовать на Земле в заметных концентрациях.

В связи с тем, что последним тяжелым элементом, найденным на Земле, был элемент с атомным номером 92, можно было бы предположить, что он и является естественным пределом периодической таблицы Менделеева. Однако достижения атомной физики указали путь, по которому оказалось возможным перешагнуть через поставленную природой границу периодической таблицы.

Элементы с бо льшими атомными номерами, чем у урана, называют трансурановыми. По своему происхождению эти элементы являются искусственными (синтетическими). Их получают путем ядерных реакций трансформации элементов, встречающихся в природе.

Первую попытку, хотя не совсем удачную, открыть трансурановую область периодической системы предпринял итальянский физик Энрико Ферми в Риме вскоре после того, как было доказано существование нейтронов. Но лишь в 1940–1941 гг. успеха в открытии первых двух трансурановых элементов, а именно нептуния (атомный номер 93) и плутония (атомный номер 94), добились американские ученые из Калифорнийского университета в Беркли.

В основе методов получения трансурановых элементов лежит несколько видов ядерных реакций.

Первый вид – нейтронный синтез. В этом методе в ядрах тяжелых атомов, облученных нейтронами, происходит превращение одного из нейтронов в протон. Реакция сопровождается так называемым электронным распадом ( – -распадом) – образованием и выбросом из ядра с огромной кинетической энергией отрицательно заряженной – -частицы (электрона). Реакция возможна при избытке в ядре нейтронов.

Противоположной реакцией является превращение протона в нейтрон с испусканием положительно заряженной + -частицы (позитрона). Подобный позитронный распад ( + -распад) наблюдается при недостатке в ядрах нейтронов и ведет к уменьшению заряда ядра, т.е. к уменьшению атомного номера элемента на единицу. Аналогичный эффект достигается, когда протон превращается в нейтрон за счет захвата ближайшего орбитального электрона.

Новые трансурановые элементы вначале были получены из урана по методу нейтронного синтеза в ядерных реакторах (как продукты взрыва ядерных бомб), а позже синтезированы с помощью ускорителей частиц – циклотронов.

Второй вид – реакции между ядрами атомов исходного элемента («мишени») и ядрами атомов легких элементов (изотопов водорода, гелия, азота, кислорода и других), используемых в качестве бомбардирующих частиц. Протоны в ядрах «мишени» и «снаряда» имеют положительный электрический заряд и испытывают сильное отталкивание при приближении друг к другу. Чтобы преодолеть силы отталкивания, образовать составное ядро, необходимо обеспечить атомы «снаряда» очень большой кинетической энергией. Такой огромной энергией бомбардирующие частицы запасаются в циклотронах. Образовавшееся промежуточное составное ядро обладает довольно большой избыточной энергией, которая должна быть высвобождена для стабилизации нового ядра. В случае тяжелых трансурановых элементов эта избыточная энергия, когда не происходит деления ядер, рассеивается путем испускания -лучей (высокоэнергетического электромагнитного излучения) и «испарения» нейтронов из возбужденных ядер. Ядра атомов нового элемента являются радиоактивными. Они стремятся достигнуть более высокой устойчивости путем изменения внутреннего строения через радиоактивный электронный – -распад либо -распад и самопроизвольное деление. Такие ядерные реакции присущи наиболее тяжелым атомам элементов с порядковыми номерами выше 98.

Реакция спонтанного, самопроизвольного деления ядер атомов радиоактивных элементов была открыта нашим соотечественником Г.Н.Флеровым и чехом К.А.Петржаком в Объединенном институте ядерных исследований (ОИЯИ, г. Дубна) в опытах с ураном-238. Увеличение порядкового номера приводит к быстрому уменьшению времени полураспада ядер атомов радиоактивных элементов.

В связи с этим фактом выдающийся американский ученый Г.Т.Сиборг, лауреат Нобелевской премии, участвовавший в открытии девяти трансурановых элементов, полагал, что открытие новых элементов, вероятно, закончится приблизительно на элементе с порядковым номером 110 (по свойствам аналогичном платине). Эта мысль о границе периодической таблицы была высказана в 60-е годы прошлого столетия с оговоркой: если не будут открыты новые методы синтеза элементов и существование пока неизвестных областей устойчивости самых тяжелых элементов. Некоторые из таких возможностей были выявлены.

Третий вид ядерных реакций синтеза новых элементов – реакции между высокоэнергетическими ионами со средней атомной массой (кальция, титана, хрома, никеля) в качестве бомбардирующих частиц и атомами стабильных элементов (свинца, висмута) в качестве «мишени» вместо тяжелых радиоактивных изотопов. Этот путь получения более тяжелых элементов был предложен в 1973 г. нашим ученым Ю.Ц.Оганесяном из ОИЯИ и успешно использован в других странах. Главное достоинство предложенного метода синтеза заключалось в образовании менее «горячих» составных ядер при слиянии ядер «снаряда» и «мишени». Высвобождение избыточной энергии составных ядер в этом случае происходило в результате «испарения» существенно меньшего числа нейтронов (одного или двух вместо четырех или пяти).

Необычная ядерная реакция между ионами редкого изотопа Са-48, ускоренными в циклотроне
У-400, и атомами актиноидного элемента кюрия Cm-248 с образованием элемента-114 («экасвинца») была открыта в Дубне в 1979 г. Было установлено, что в этой реакции образуется «холодное» ядро, не «испаряющее» ни одного нейтрона, а всю избыточную энергию уносит одна -частица. Это означает, что для синтеза новых элементов может быть реализован также четвертый вид ядерных реакций между ускоренными ионами атомов со средними массовыми числами и атомами тяжелых трансурановых элементов.

В развитии теории периодической системы химических элементов большую роль сыграло сопоставление химических свойств и строения электронных оболочек лантаноидов с порядковыми номерами 58–71 и актиноидов с порядковыми номерами 90–103. Было показано, что сходство химических свойств лантаноидов и актиноидов обусловлено подобием их электронных структур. Обе группы элементов являются примером внутреннего переходного ряда с последовательным заполнением 4f - или 5f -электронных оболочек соответственно после заполнения внешних s - и р -электронных орбиталей.

Элементы с порядковыми номерами в периодической таблице 110 и выше были названы сверхтяжелыми. Продвижение к открытию этих элементов становится все более трудным и долгим, т.к. недостаточно провести синтез нового элемента, нужно его идентифицировать и доказать, что новый элемент обладает лишь ему одному присущими свойствами. Трудности вызваны тем, что для изучения свойств новых элементов доступным оказывается небольшое число атомов. Время же, в течение которого можно изучать новый элемент до того, как произойдет радиоактивный распад, обычно очень невелико. В этих случаях, даже когда получен всего один атом нового элемента, для его обнаружения и предварительного изучения некоторых характеристик используют метод радиоактивных индикаторов.

Элемент-109 – мейтнерий – это последний элемент в периодической таблице, представленной в большинстве учебников по химии. Элемент-110, принадлежащий к той же группе периодической таблицы, что и платина, был впервые синтезирован в г. Дармштадт (Германия) в 1994 г. с помощью мощного ускорителя тяжелых ионов по реакции:

Время полураспада полученного изотопа крайне мало. В августе 2003 г. 42-я Генеральная ассамблея ИЮПАК и Совет ИЮПАК (Международный союз по чистой и прикладной химии) официально утвердили название и символ элемента-110: дармштадтий, Ds.

Там же, в Дармштадте, в 1994 г. впервые был получен элемент-111 путем воздействия пучка ионов изотопа 64 28 Ni на атомы 209 83 Bi в качестве «мишени». Своим решением в 2004 г. ИЮПАК признал открытие и одобрил предложение назвать элемент-111 рентгением, Rg, в честь выдающегося немецкого физика В.К.Рентгена, открывшего Х -лучи, которым он дал такое название из-за неопределенности их природы.

По информации, полученной из ОИЯИ, в Лаборатории ядерных реакций им. Г.Н.Флерова осуществлен синтез элементов с порядковыми номерами 110–118 (за исключением элемента-117).

В результате синтеза по реакции:

в Дармштадте в 1996 г. получено несколько атомов нового элемента-112, распадающегося с выделением -частиц. Период полураспада этого изотопа составлял всего 240 микросекунд. Немного позже в ОИЯИ поиск новых изотопов элемента-112 провели, облучая атомы U-235 ионами Са-48.

В феврале 2004 г. в престижных научных журналах появились сообщения об открытии в ОИЯИ нашими учеными совместно с американскими исследователями из Национальной лаборатории имени Лоуренса в Беркли (США) двух новых элементов с номерами 115 и 113. Этой группой ученых в экспериментах, проведенных в июле–августе 2003 г. на циклотроне У-400 с газонаполненным сепаратором, в реакции между атомами Am-243 и ионами изотопа Ca-48 были синтезированы 1 атом изотопа элемента-115 с массовым числом 287 и 3 атома с массовым числом 288. Все четыре атома элемента-115 быстро распадались с выделением -частиц и образованием изотопов элемента-113 с массовыми числами 282 и 284. Наиболее стабильный изотоп 284 113 имел период полураспада около 0,48 с. Он разрушался с эмиссией -частиц и превращался в изотоп рентгения 280 Rg.

В сентябре 2004 г. группа японских ученых из Физико-химического исследовательского института под руководством Косуки Морита (Kosuke Morita) заявила, что ими синтезирован элемент-113 по реакции:

При его распаде с выделением -частиц получен изотоп рентгения 274 Rg. Поскольку это первый искусственный элемент, полученный японскими учеными, они посчитали, что вправе сделать предложение назвать его «японием».

Выше уже отмечался необычный синтез изотопа элемента-114 с массовым числом 288 из кюрия. В 1999 г. появилось сообщение о получении в ОИЯИ этого же изотопа элемента-114 путем бомбардировки ионами Са-48 атомов плутония с массовым числом 244.

Было также заявлено об открытии элементов с порядковыми номерами 118 и 116 в результате длительных совместных исследований ядерных реакций изотопов калифорния Cf-249 и кюрия Сm-245 c пучком тяжелых ионов Са-48, проведенных российскими и американскими учеными в период 2002–2005 гг. в ОИЯИ. Элемент-118 замыкает 7-й период таблицы Менделеева, по своим свойствам является аналогом благородного газа радона. Элемент-116 должен обладать некоторыми свойствами, общими с полонием.

По сложившейся традиции открытие новых химических элементов и их идентификация должны быть подтверждены решением ИЮПАК, но право предложить названия элементам предоставляется первооткрывателям. Подобно карте Земли, периодическая таблица отразила названия территорий, стран, городов и научных центров, где были открыты и изучены элементы и их соединения, увековечила имена знаменитых ученых, внесших большой вклад в развитие периодической системы химических элементов. И не случайно элемент-101 назван именем Д.И.Менделеева.

Для ответа на вопрос, где может проходить граница периодической таблицы, в свое время была проведена оценка электростатических сил притяжения внутренних электронов атомов к положительно заряженному ядру. Чем больше порядковый номер элемента, тем сильнее сжимается электронная «шуба» вокруг ядра, тем сильнее притягиваются внутренние электроны к ядру. Должен наступить такой момент, когда электроны начнут захватываться ядром. В результате такого захвата и уменьшения заряда ядра существование очень тяжелых элементов становится невозможным. Подобная катастрофическая ситуация должна возникнуть при порядковом номере элемента, равном 170–180.

Эта гипотеза была опровергнута и показано, что нет ограничений для существования очень тяжелых элементов с точки зрения представлений о строении электронных оболочек. Ограничения возникают в результате неустойчивости самих ядер.

Однако надо сказать, что время жизни элементов уменьшается нерегулярно с ростом атомного номера. Следующая ожидаемая область устойчивости сверхтяжелых элементов, обусловленная появлением замкнутых нейтронных или протонных оболочек ядра, должна лежать в окрестности дважды магического ядра с 164 протонами и 308 нейтронами. Возможности открытия таких элементов пока не ясны.

Таким образом, вопрос о границе периодической таблицы элементов по-прежнему сохраняется. Исходя из правил заполнения электронных оболочек с увеличением атомного номера элемента, прогнозируемый 8-й период таблицы Менделеева должен содержать суперактиноидные элементы. Отводимое им место в периодической таблице Д.И.Менделеева соответствует III группе элементов, подобно уже известным редкоземельным и актиноидным трансурановым элементам.

Полтора века назад, когда Дмитрий Иванович Менделеев открыл Периодический закон, было известно только 63 элемента. Упорядоченные в таблицу, они легко раскладывались по периодам, каждый из которых открывается активными щелочными металлами и заканчивается (как выяснилось позже) инертными благородными газами. С тех пор таблица Менделеева увеличилась почти вдвое, и с каждым расширением Периодический закон подтверждался снова и снова. Рубидий так же напоминает калий и натрий, как ксенон — криптон и аргон, ниже углерода располагается во многом похожий на него кремний… Сегодня известно, что эти свойства определяются числом электронов, вращающихся вокруг атомного ядра.

Они заполняют «энергетические оболочки» атома одну за другой, как зрители, по порядку занимающие сиденья на своих рядах в театре: тот, кто оказался последним, определит химические свойства всего элемента. Атом с полностью заполненной последней оболочкой (как гелий с его двумя электронами) будет инертным; элемент с одним «лишним» электроном на ней (как натрий) станет активно образовывать химические связи. Число отрицательно заряженных электронов на орбитах связано с количеством положительных протонов в ядре атома, и именно числом протонов отличаются разные элементы.


Зато нейтронов в ядре одного и того же элемента может быть разное количество, заряда у них нет, и на химические свойства они не влияют. Но в зависимости от числа нейтронов водород может оказаться тяжелее гелия, а масса лития — достигать семи вместо «классических» шести атомных единиц. И если список известных элементов сегодня приближается к отметке в 120, то число ядер (нуклидов) перевалило за 3000. Большинство из них нестабильны и спустя некоторое время распадаются, выбрасывая «лишние» частицы в ходе радиоактивного распада. Еще больше нуклидов неспособны существовать в принципе, моментально разваливаясь на куски. Так материк стабильных ядер окружает целое море неустойчивых сочетаний нейтронов и протонов.

Море Неустойчивости

Судьба ядра зависит от числа нейтронов и протонов в нем. Согласно оболочечной теории строения ядра, выдвинутой еще в 1950-х, частицы в нем распределяются по своим энергетическим уровням так же, как электроны, которые вращаются вокруг ядра. Некоторые количества протонов и нейтронов дают особо устойчивые конфигурации с полностью заполненными протонными или нейтронными оболочками — по 2, 8, 20, 28, 50, 82, а для нейтронов еще и 126 частиц. Эти числа называются «магическими», а самые стабильные ядра содержат «дважды магические» количества частиц — например, 82 протона и 126 нейтронов у свинца или по два — в обычном атоме гелия, второго по распространенности элемента во Вселенной.

Последовательный «Химический материк» элементов, которые можно найти на Земле, заканчивается свинцом. За ним следует череда ядер, которые существуют намного меньше возраста нашей планеты. В ее недрах они могут сохраниться разве что в малых количествах, как уран и торий, или вовсе — в следовых, как плутоний. Из породы извлечь его невозможно, и плутоний нарабатывают искусственно, в реакторах, бомбардируя нейтронами урановую мишень. Вообще современные физики обращаются с ядрами атомов, как с деталями конструктора, заставляя их присоединять отдельные нейтроны, протоны или целые ядра. Это и позволяет получать все более и более тяжелые нуклиды, пересекая пролив «моря Неустойчивости».


Цель путешествия подсказана той же оболочечной теорией строения ядра. Это — область сверхтяжелых элементов с подходящим (и очень большим) числом нейтронов и протонов, легендарный «остров Стабильности». Расчеты говорят, что некоторые из местных «жителей» могут существовать уже не доли микросекунд, а на много порядков дольше. «В определенном приближении их можно рассматривать как капельки воды, — объяснил нам академик РАН Юрий Оганесян. — Вплоть до свинца следуют ядра сферические и устойчивые. За ними следует полуостров умеренно стабильных ядер — таких как торий или уран, — который вытягивается отмелью сильно деформированных ядер и обрывается в нестабильное море… Но еще дальше, за проливом, может находиться новая область сферических ядер, сверхтяжелых и устойчивых элементов с номерами 114, 116 и далее». Время жизни некоторых элементов на «острове Стабильности» может длиться уже годы, и то и миллионы лет.


Остров Стабильности

Трансурановые элементы с их деформированными ядрами удается создать, бомбардируя нейтронами мишени из урана, тория или плутония. Обстреливая их разогнанными в ускорителе легкими ионами, можно последовательно получить ряд элементов еще тяжелее — но в какой-то момент наступит предел. «Если рассматривать разные реакции — присоединение нейтронов, присоединение ионов — как разные «корабли», то все они не помогут нам доплыть до «острова Стабильности», — продолжает Юрий Оганесян. — Для этого потребуется «судно» и побольше, и другой конструкции. В качестве мишени придется использовать нейтроноизбыточные тяжелые ядра искусственных элементов тяжелее урана, а бомбардировать их потребуется большими, тяжелыми изотопами, содержащими много нейтронов, такими как кальций-48».

Работа над таким «кораблем» оказалась по силам лишь большой международной команде ученых. Инженеры и физики комбината «Электрохимприбор» выделили из природного кальция исключительно редкий 48-й изотоп, содержащийся здесь в количестве менее 0,2%. Мишени из урана, плутония, америция, кюрия, калифорния приготовили в Димитроградском НИИ Атомных реакторов, в Ливерморской национальной лаборатории и в Национальной лаборатории в Оук-Ридже в США. Ну а ключевые эксперименты по синтезу новых элементов были проведены академиком Оганесяном в Объединенном институте ядерной физики (ОИЯИ), в Лаборатории ядерных реакций имени Флёрова. «Наш ускоритель в Дубне работал по 6−7 тысяч часов в год, разгоняя ионы кальция-48 примерно до 0,1 скорости света, — объясняет ученый. — Эта энергия необходима, чтобы некоторые из них, ударяясь в мишень, преодолели силы кулоновского отталкивания и слились с ядрами ее атомов. Например, 92-й элемент, уран, даст ядро нового элемента с номером 112, плутоний — 114, а калифорний — 118».



«Поиск новых сверхтяжёлых элементов позволяет ответить на один из важнейших вопросов науки: где лежит граница нашего материального мира?»

«Такие ядра должны быть уже достаточно стабильны и распадаться будут не сразу, а станут последовательно выбрасывать альфа-частицы, ядра гелия. А уж их мы прекрасно умеем регистрировать», — продолжает Оганесян. Сверхтяжелое ядро выбросит альфа-частицу, превратившись в элемент на два атомных номера легче. В свой черед и дочернее ядро потеряет альфа-частицу и превратится во «внучатое» — еще на четыре легче, и так далее, пока процесс последовательного альфа-распада не закончится случайным появлением и моментальным спонтанным делением, гибелью неустойчивого ядра в «море Нестабильности». По этой «генеалогии» альфа-частиц Оганесян и его коллеги проследили всю историю превращения полученных в ускорителе нуклидов и очертили ближний берег «острова Стабильности». После полувекового плавания на него высадились первые люди.

Новая земля

Уже за первое десятилетие XXI века в реакциях слияния актинидов с ускоренными ионами кальция-48 были синтезированы атомы элементов с номерами от 113 и вплоть до 118-го, лежащего на дальнем от «материка» берегу «острова Стабильности». Время их существования уже на порядки больше, чем у соседей: например, элемент 114 сохраняется не миллисекунды, как 110-й, а десятки и даже сотни секунд. «Такие вещества уже доступны для химии, — говорит академик Оганесян. — А значит, мы возвращаемся к самому началу путешествия и теперь можем проверить, соблюдается ли для них Периодический закон Менделеева. Будет ли 112-й элемент аналогом ртути и кадмия, а 114-й — аналогом олова и свинца»? Первые же химические эксперименты с изотопом 112-го элемента (коперниция) показали: видимо, будут. Ядра коперниция, вылетающие из мишени при бомбардировке, ученые направляли в длинную трубку, включающую 36 парных детекторов, частично покрытых золотом. Ртуть легко образует устойчивые интерметаллические соединения с золотом (это свойство используется в древней технике позолоты). Поэтому ртуть и близкие к ней атомы должны оседать на золотой поверхности первых же детекторов, а радон и атомы, близкие к благородным газам, могут добираться до конца трубки. Послушно следуя Периодическому закону, коперниций проявил себя родственником ртути. Но если ртуть стала первым известным жидким металлом, то коперниций, возможно, окажется первым газообразным: температура его кипения ниже комнатной. По словам Юрия Оганесяна, это только блеклое начало, и сверхтяжелые элементы с «острова Стабильности» откроют нам новую, яркую и необычную область химии.


Но пока мы задержались у подножия острова стабильных элементов. Ожидается, что 120-й и следующие за ним ядра могут оказаться по‑настоящему устойчивыми и будут существовать уже долгие годы, а то и миллионы лет, образуя стабильные соединения. Однако получить их с помощью того же кальция-48 уже невозможно: не существует достаточно долгоживущих элементов, которые могли бы, соединившись с этими ионами, дать ядра нужной массы. Попытки заменить ионы кальция-48 чем-нибудь более тяжелым пока тоже не принесли результата. Поэтому для новых поисков ученые-мореплаватели подняли голову и присмотрелись к небесам.

Космос и фабрика

Первоначальный состав нашего мира разнообразием не отличался: в Большом взрыве появился лишь водород с небольшими примесями гелия — легчайшие из атомов. Все прочие уважаемые участники таблицы Менделеева появились в реакциях слияния ядер, в недрах звезд и при взрывах сверхновых. Неустойчивые нуклиды быстро распадались, устойчивые, как кислород-16 или железо-54, накапливались. Неудивительно, что тяжелых нестабильных элементов, таких как америций или коперниций, в природе обнаружить не удается.


Но если где-то в самом деле есть «остров Стабильности», то хотя бы в небольших количествах сверхтяжелые элементы должны встречаться на просторах Вселенной, и некоторые ученые ведут их поиски среди частиц космических лучей. По словам академика Оганесяна, этот подход все же не так надежен, как старая добрая бомбардировка. «По-настоящему долгоживущие ядра на «вершине» острова Стабильности содержат необычно большие количества нейтронов, — рассказывает ученый. — Поэтому нейтроноизбыточный кальций-48 оказался таким удачным ядром для бомбардировки нейтроноизбыточных элементов мишени. Однако изотопы тяжелее кальция-48 нестабильны, и чрезвычайно малы шансы на то, что они в естественных условиях смогут слиться с образованием сверхстабильных ядер».

Поэтому лаборатория в подмосковной Дубне обратилась к использованию более тяжелых ядер, пусть и не столь удачных, как кальций, для обстреливания искусственных элементов мишеней. «Мы сейчас заняты созданием так называемой Фабрики сверхтяжелых элементов, — говорит академик Оганесян. — В ней те же мишени будут бомбардироваться ядрами титана или хрома. Они содержат на два и четыре протона больше, чем кальций, а значит — могут дать нам элементы с массами 120 и больше. Интересно будет посмотреть, окажутся ли они еще на «острове» или же откроют новый пролив за ним».

You can comment here or .

ЧИКАГО, 17 февраля. Впервые удалось измерить массу элемента тяжелее урана – новый метод открывает путь к давно предсказанному «острову стабильности» устойчивых сверхтяжелых элементов, лежащему за пределами привычной Таблицы Менделеева.

Ядро урана включает 92 протона, это – самый тяжелый из известных нам элементов, встречающихся в природе. В искусственных условиях, конечно, синтезированы и более тяжелые, вплоть до 118-ти протонов. Все эти «тяжеловесы» крайне короткоживущи, они распадаются за считанные миллисекунды.

Но еще в середине ХХ века была теоретически предсказана возможность существования сверхтяжелых элементов, содержащих определенное соотношение протонов и нейтронов и имеющих срок жизни куда более долгий – десятилетия, а то и больше. С тех пор путь к этому «острову стабильности» стал одним из важнейших направлений ядерной физики. И вовсе не из чисто академического интереса. Сверхтяжелые стабильные элементы могли бы послужить отличным топливом для ядерных двигателей будущих космических миссий. Они должны, по расчетам, проявлять также необычные и полезные химические и физические свойства.

Однако до сих пор никто в точности не знает, где же мы должны наткнуться на этот остров. Одни расчеты показывают, что где-то в области с центром в 114 протонов на ядро, другие – между 120-ю и 126-ю протонами. Вычисления затрудняются тем, что ученые не имеют точного представления о том, как действуют сильные и слабые силы в «перенаселенных» ядрах таких элементов, удерживая их протоны и нейтроны вместе. Краткость существования полученных в лаборатории сверхтяжелых элементов не позволяет собрать достаточно экспериментальных данных.

Новый прорыв в этой области обещает недавняя работа команды немецких ученых во главе с Майклом Блоком, которым удалось найти способ прямого измерения массы частиц тяжелее урана. А поскольку масса и энергия связаны знаменитой эйнштейновской формулой E = mc2, определение массы атома позволяет (учтя дополнительные факторы) вычислить и силы, с которыми частицы в его ядре связаны друг с другом.

Для измерения массы атома ученые воспользовались устройством, которое называется ловушкой Пеннинга, где, упрощенно говоря, ионы удерживаются электромагнитным полем. Объектом измерений послужил нобелий, ядро которого включает 102 протона – на 10 больше, чем у урана. Как и прочие «искусственные» элементы, он получается столкновением несколько более легких элементов и является крайне короткоживущим (максимум 58 минут). Главной задачей, которую удалось решить немецким физикам, было найти способ замедлить атомы перед тем, как они попадут в ловушку, для чего ученые решили пропускать их предварительно через камеру, заполненную гелием.

Теперь, обладая методом, позволяющим «взвешивать» сверхтяжелые короткоживущие атомы, экспериментаторы могут точнее установить их параметры. А теоретики на базе этих данных – выбрать между конкурирующими моделями, предсказывающими положение «острова стабильности».

Метод позволяет двинуться существенно дальше по Периодической таблице, хотя на практике воспользоваться им для наиболее тяжелых из полученных элементов может быть не очень просто. Хотя бы потому, что синтез подобных великанов – уже сам по себе крайне непростой процесс. Если тот же нобелий можно с помощью подготовленного эксперимента получать с частотой, в среднем, 1 атом в секунду, то с более тяжелыми элементами, ядра которых содержат более 104 протонов, все гораздо дольше. Получение 1 атома может занять, к примеру, неделю.

Но если все пойдет хорошо, рано или поздно этот метод позволит заметить и обитателей «острова стабильности». Поскольку такие сверхтяжелые элементы обычно обнаруживаются по продуктам распада, а стабильные имеют слишком долгий период жизни, традиционные методы работы с атомами-тяжеловесами для этого не годятся

А. Левин

На пути к острову стабильности

Ученые занимаются новейшей версией алхимического промысла уже семь десятков лет и немало в ней преуспели: список официально признанных искусственных элементов, имена которых формально утверждены Международным союзом теоретической и прикладной химии (ИЮПАК), включает 19 позиций.

Он открывается известным с 1940 года 93-м элементом Периодической системы - нептунием и заканчивается 111-м - рентгением, впервые изготовленным в 1994 году. В 1996 и 1998 годах были получены элементы с номерами 112 и 114. Окончательных имен они еще не обрели, а временные, закрепленные за ними до решения бюро ИЮПАК, звучат ужасно - унунбий и унунквадий. В 2004 году появились сообщения о синтезе 113-го и 115-го элементов, пока что наделенных столь же труднопроизносимыми названиями. Впрочем, в них есть своя логика, это просто порядковые номера элементов, закодированные с помощью латинских названий однозначных чисел. Например, унунбий (ununbium) расшифровывается как «один-один-два».

Прошлой осенью мировую прессу облетели сообщения об абсолютно достоверном получении еще одного сверхтяжелого элемента, 118-го. Надежность этих результатов подчеркивалась отнюдь не случайно. Дело в том, что впервые такие анонсы появились гораздо раньше - в июне 1999 года. Однако позднее сотрудники американской Ливерморской лаборатории имени Лоуренса, выступившие с заявкой на это открытие, были вынуждены от нее отказаться. Выяснилось, что данные, на которых она базировалась, были сфабрикованы одним из экспериментаторов, болгарином Виктором Ниновым. В 2002 году это вызвало немалый скандал. В том же году ученые из Ливермора во главе с Кентоном Муди вместе с российскими коллегами из Объединенного института ядерных исследований в Дубне, возглавляемыми Юрием Оганесяном, возобновили эти попытки, используя другую цепочку ядерных реакций. Эксперименты были завершены лишь через три года, и вот они-то привели уже к гарантированному синтезу 118-го элемента - правда, в количестве всего лишь трех ядер. Эти результаты представлены в статье с двадцатью российскими и десятью американскими подписями, которая 9 октября 2006 года появилась в журнале Physical Review С.

О методах получения сверхтяжелых искусственных элементов и о совместной работе групп Оганесяна и Муди поговорим позже. А пока что попробуем ответить на не столь уж наивный вопрос: почему ядерные физики и химики с таким упорством ведут синтез все новых и новых элементов с трехзначными номерами в Периодической системе? Эти работы требуют сложного и дорогого оборудования и многих лет интенсивных исследований - а что в итоге? Совершенно бесполезные нестабильные экзотические ядра, которые к тому же можно пересчитать по пальцам. Конечно, специалистам интересно заниматься каждым таким ядром просто в силу его уникальности и новизны для науки - скажем, изучать его радиоактивные распады, энергетические уровни и геометрическую форму. За такие открытия подчас дают Нобелевские премии, но все же - стоит ли игра свеч? Что обещают эти исследования если не технологии, то хотя бы фундаментальной науке?

НЕМНОГО ЭЛЕМЕНТАРНОЙ ФИЗИКИ
Прежде всего напомним, что ядра всех без исключения элементов, кроме водорода, сложены из частиц двух видов - положительно заряженных протонов и не несущих электрического заряда нейтронов (ядро водорода - это единичный протон). Так что все ядра заряжены положительно, причем заряд ядра определяется числом его протонов. Это же число задает и номер элемента в Периодической системе. С первого взгляда это обстоятельство может показаться странным. Создатель этой системы Д. И. Менделеев упорядочивал элементы на основе их атомных весов и химических свойств, а об атомных ядрах наука тогда вообще не подозревала (к слову, в 1869 году, когда он открыл свой периодический закон, было известно всего лишь 63 элемента). Сейчас мы знаем (а Дмитрий Иванович узнать не успел), что химические свойства зависят от структуры электронного облака, окружающего атомное ядро. Как известно, заряды протона и электрона равны по абсолютной величине и обратны по знаку. Поскольку атом в целом электронейтрален, число электронов в точности равно числу протонов - вот искомая связь и обнаружена. Периодичность химических свойств объясняется тем, что электронное облако состоит из отдельных «слоев» - оболочек. Химические взаимодействия между атомами в первую очередь обеспечиваются электронами внешних оболочек. По мере заполнения каждой новой оболочки химические свойства получающихся элементов образуют плавный ряд, а затем емкость оболочки кончается, и начинает заполняться следующая - отсюда и периодичность. Но тут уж мы вступаем в дебри атомной физики, а она нас сегодня не интересует, нам бы успеть поговорить о ядрах.

Атомные ядра принято называть «нуклидами», от латинского nucleus - ядро. Отсюда же общее название для протонов и нейтронов - «нуклоны». Ядра с одинаковым числом протонов, но разным - нейтронов отличаются по массе, однако их электронные «одежды» совершенно Мария Кюри одинаковы. Это означает, что атомы, отличающиеся друг от друга только числом нейтронов, химически неразличимы, и их надо считать разновидностями одного и того же элемента. Такие элементы называют изотопами (это название в 1910 году предложил английский радиохимик Фредерик Содди, который произвел его от греческих слов isos - равный, одинаковый и topos - место). Изотопы принято обозначать названием или химическим символом элемента, сопровождающимся обозначением общего количества ядерных нуклонов (этот показатель называют «массовым числом»).

Все встречающиеся в природе элементы имеют по несколько изотопов. Скажем, у водорода помимо основной однопротонной версии имеется тяжелая - дейтерий и сверхтяжелая - тритий (исторически сложилось так, что изотопы водорода имеют собственные названия). Ядро дейтерия состоит из протона и нейтрона, трития - из протона и двух нейтронов. Второй по счету элемент Периодической системы, гелий, имеет два природных изотопа: весьма редкий гелий-3 (два протона, один нейтрон) и куда более распространенный гелий-4 (два протона и два нейтрона). Элементы чисто лабораторного происхождения тоже, как правило, синтезируют в разных изотопных вариантах.

Отнюдь не все атомные ядра стабильны. Некоторые из них могут самопроизвольно испускать частицы и превращаться в другие нуклиды. Это явление в 1896 году открыл французский физик Антуан Анри Беккерель, который обнаружил, что уран испускает неизвестное науке проникающее излучение. Два года спустя Фредерик Кюри и его жена Мария выявили аналогичное излучение у тория, а затем открыли два нестабильных элемента, еще не вошедших в Периодическую систему - радий и полоний. Мария Кюри назвала загадочный с точки зрения тогдашней науки феномен радиоактивностью. В 1899 году англичанин Эрнест Резерфорд обнаружил, что уран испускает два вида радиации, которые он наименовал альфа- и бета-лучами. Еще через год француз Поль Виллар заметил у урана излучение третьего типа, которое тот же Резерфорд обозначил третьей буквой греческой алфавита - гамма. Позднее ученые открыли и другие виды радиоактивности.

Как альфа-, так и гамма-излучение возникает в результате внутренних перестроек ядра. Альфа-лучи - это просто потоки ядер основного изотопа гелия, гелия-4. Когда радиоактивный нуклид испускает альфа-частицу, его массовое число уменьшается на четыре единицы, а заряд - на две. В результате элемент сдвигается в таблице Менделеева на две клетки влево. Альфа-распад фактически является частным случаем целого семейства распадов, в результате которых ядро перестраивается и теряет нуклоны или группы нуклонов. Существуют распады, при которых ядро испускает единичный протон, или единичный нейтрон, или даже более массивную группу нуклонов, нежели альфа-частица (такие группы называют «тяжелыми кластерами»). А вот гамма-лучи невещественны - это электромагнитные кванты очень высокой энергии. Так что чистый гамма-распад - это, строго говоря, вообще не радиоактивность, поскольку и после него остается ядро с тем же количеством протонов и нейтронов, только находящееся в состоянии со сниженной энергией.

Бета-радиоактивность вызвана ядерными превращениями совершенно иного рода. Частицы, которые Резерфорд назвал бета-лучами, были попросту электронами, что выяснилось очень быстро, Это обстоятельство долго озадачивало ученых, поскольку все попытки найти электроны внутри ядер ни к чему не приводили. Лишь в 1934 году Энрико Ферми догадался, что бета-электроны - результат не внутриядерных перестроек, а взаимных превращений нуклонов. Бета-радиоактивность уранового ядра объясняется тем, что один из его нейтронов превращается в протон и электрон. Бывает бета-радиоактивность иного рода: протон превращается в позитрон и нейтрон (читатель заметит, что при обоих превращениях суммарный электрический заряд сохраняется). При бета-распаде также испускаются сверхлегкие и сверхпроникающие нейтральные частицы - нейтрино (точнее, позитронный бета-распад приводит к рождению собственно нейтрино, а электронный - антинейтрино). При электронном бета-распаде заряд ядра увеличивается на единицу, при позитронном, естественно, на столько же уменьшается.

Для более полного понимания бета-распада приходится копнуть еще глубже. Протоны и нейтроны считались истинно элементарными частицами лишь до середины 60-х годов прошлого века. Сейчас мы точно знаем, что те и другие состоят из троек кварков - куда менее массивных частиц, несущих положительные или отрицательные заряды. Заряд отрицательного кварка равен одной трети заряда электрона, а положительного - двум третям заряда протона. Кварки тесно спаяны друг с другом благодаря обмену особыми безмассовыми частицами - глюонами - ив свободном состоянии попросту не существуют. Так что бета-распады - это на самом деле превращения кварков.

Нуклоны внутри ядра связаны опять-таки обменными силами, переносчиками которых служат другие частицы, пионы (раньше их называли пи-мезонами). Эти связи далеко не так прочны, как глюонное склеивание кварков, именно поэтому ядра и могут распадаться. Внутриядерные силы не зависят от наличия или отсутствия заряда (следовательно, все нуклоyы реагируют друг с другом одинаково) и обладают очень коротким радиусом действия, примерно 1,4x10-15 метра. Размеры атомных ядер зависят от числа нуклонов, но в общем такого же порядка. Скажем, радиус самого тяжелого из встречающихся в природе нуклидов, урана-238, равен 7,4x10-15 метра, у более легких ядер он меньше.

ФИЗИКА ПОСЕРЬЕЗНЕЙ
С ядерным ликбезом мы покончили, перейдем к более интересным вещам. Вот для начала несколько фактов, объяснение которых открывает путь к пониманию различных механизмов нуклидного синтеза.

Факт 1.
На Земле обнаружены первые 92 элемента Периодической системы - от водорода до урана (правда, гелий был сначала открыт по спектральным линиям на Солнце, а технеций, астат, прометий и франций - получены искусственно, но позднее все они были обнаружены в земном веществе). Все элементы с большими номерами были получены искусственно, Их принято называть трансурановыми, стоящими в Периодической системе справа от урана.

Факт 3.
Соотношение между числами внутриядерных протонов и нейтронов отнюдь не произвольно. В стабильных легких ядрах их числа одинаковы или почти одинаковы - скажем, у лития 3:3, у углерода 6:6, у кальция 20:20. Но с ростом атомного номера число нейтронов растет быстрее и в самых тяжелых ядрах превышает число протонов примерно в 1,5 раза. Например, ядро стабильного изотопа висмута сложено из 83 протонов и 126 нейтронов (есть еще 13 нестабильных, у которых количество нейтронов варьирует от 119 до 132). У урана и транс-уранов отношение между нейтронами и протонами приближается к 1,6.

Факт 2.
Все элементы имеют нестабильные изотопы, встречающиеся в природе или искусственные. Например, дейтерий стабилен, а вот тритий претерпевает бета-распад, (К слову, сейчас известно около двух тысяч радиоактивных нуклидов, многие из которых применяются в различных технологиях и потому выпускаются в промышленных масштабах.) А вот стабильные изотопы есть только у первых 83 элементов таблицы Менделеева - от водорода до висмута. Девять самых тяжелых природных элементов: полоний, астат, радон, франций, радий, актиний, торий, протактиний и уран - радиоактивны во всех своих изотопных вариантах. Все без исключения трансураны также нестабильны.

Как объяснить эту закономерность? Почему не бывает ядер углерода, скажем, с 16 нейтронами (этот элемент имеет 13 изотопов с числом нейтронов от 2 до 14, однако, помимо основного изотопа, уг-лерода-12, стабилен только углерод-13)? Почему нестабильны все нуклиды с числом протонов свыше 83?

Карта стабильности атомных ядер

Атомная масса возрастает от верхней части карты к нижней. Число протонов увеличивается к нижнему правому углу, число нейтронов – к нижнему левому. Самый нижний красный блок – 112-й элемент.

В учебниках ядерной физики можно найти очень наглядную диаграмму, которую называют картой изотопов или долиной ядерной стабильности. По ее горизонтальной оси отложено число нейтронов, по вертикальной - протонов. Каждому изотопу соответствует определенная точка, скажем, основному изотопу гелия - точка с координатами (2,2). На этой диаграмме хорошо видно, что все реально существующие изотопы сосредоточены на довольно узкой полосе. Сначала ее наклон к оси абсцисс составляет примерно 45 градусов, затем он несколько уменьшается. В центре полосы концентрируются стабильные изотопы, а по бокам - склонные к тем или иным распадам.

Тут-то и возникает неясность. Понятно, что ядра не могут состоять из одних протонов - их разрывали бы силы электрического отталкивания. Но нейтроны вроде бы должны увеличивать межпротонные дистанции и тем самым это отталкивание ослаблять. А ядерные силы, которые объединяют нуклоны в ядре, как уже говорилось, действуют одинаково и на протоны, и на нейтроны. Казалось бы, чем больше в ядре нейтронов, тем оно стабильней. И если это не так, то почему?

Вот объяснение «на пальцах». Ядерная материя подчиняется законам квантовой механики. Нуклоны обоих видов имеют полуцелый спин, а потому, как и все прочие такие частицы (фермионы), подчиняются принципу Паули, который запрещает одинаковым фермионам занимать одно и то же квантовое состояние. Это означает, что количество фермионов данного вида в определенном состоянии может выражаться лишь двумя числами - 0 (состояние не занято) и 1 (состояние заполнено).

В квантовой механике, в отличие от классической, все состояния дискретны. Ядро не разваливается потому, что нуклоны в нем стянуты воедино ядерными силами. Это можно наглядно представить такой картинкой - частицы сидят в колодце и просто так оттуда выскочить не могут. Физики тоже пользуются этой моделью, называя колодец потенциальной ямой. Протоны и нейтроны не одинаковы, поэтому рассаживаются в двух ямах, а не в одной. И в протонной, и в нейтронной яме имеется набор уровней энергии, которые могут занимать провалившиеся в нее частицы. Глубина каждой ямы зависит от усредненного силового взаимодействия между ее пленниками.

Теперь вспомним, что протоны взаимно отталкиваются, а нейтроны - нет. Следовательно, протоны спаяны слабее, нежели нейтроны, поэтому их потенциальная яма не так глубока. Для легких ядер это различие невелико, однако оно нарастает по мере увеличения заряда ядра. А вот энергии самых верхних непустых уровней в обеих ямах должны совпадать. Если бы верхний заполненный нейтронный уровень был выше верхнего протонного, ядро могло бы снизить свою суммарную энергию, «вынудив» занимающий его нейтрон претерпеть бета-распад и превратиться в протон. А коль скоро такое превращение было бы энергетически выгодным, оно бы со временем случилось, ядро оказалось бы нестабильным. Тот же самый финал имел бы место, если бы какой-то протон посмел превысить свой энергетический масштаб.

Вот мы и нашли объяснение. Если протонная и нейтронная ямы обладают почти равной глубиной, что характерно для легких ядер, то числа протонов и нейтронов тоже оказываются примерно одинаковыми. По мере движения вдоль таблицы Менделеева число протонов нарастает, и глубина их потенциальной ямы все более отстает от глубины нейтронного колодца. Поэтому тяжелые ядра должны иметь в своем составе больше нейтронов, нежели протонов. А вот если искусственно сделать эту разницу слишком большой (скажем, бомбардируя ядро медленными нейтронами, которые не разбивают его на осколки, а просто «приклеиваются), нейтронный уровень сильно поднимется над протонным, и ядро распадется. Эта схема, конечно, предельно упрощена, но в принципе правильна.

Пойдем дальше. Коль скоро по мере увеличения атомного номера наблюдается прогрессирующее превышение числа нейтронов над протонами, которое снижает стабильность ядер, все тяжелые нуклиды обязаны быть радиоактивными. Это и в самом деле так, не будем повторять наш Факт 2. Более того, вроде бы мы вправе предположить, что тяжелеющие нуклиды будут становиться все менее стабильными, иначе говоря, продолжительность их жизни будет постоянно снижаться. Этот вывод выглядит абсолютно логичным, но он неверен.

ЗАВЕТНЫЙ ОСТРОВ
Начнем с того, что описанная выше схема многого не учитывает. Например, имеется так называемый эффект нуклонного спаривания. Он состоит в том, что два протона или два нейтрона могут вступить в тесный союз, образовав внутри ядра полуавтотомное состояние с нулевым угловым моментом. Члены таких пар сильнее притягиваются друг к другу, что повышает устойчивость всего ядра. Именно поэтому при прочих равных условиях наибольшую стабильность проявляют ядра с четными числами протонов и нейтронов, а наименьшую - с нечетными. Стабильность ядер зависит и от ряда других обстоятельств, слишком специальных, чтобы их здесь обсуждать.

Но главное даже не в этом. Ядро - это не просто гомогенное скопление нуклонов, хотя бы и спаренных. Многочисленные эксперименты уже давно убедили физиков, что ядро, скорее всего, обладает слоистой структурой. Согласно этой модели, внутри ядер существуют протонные и нейтронные оболочки, которые в чем-то похожи на электронные оболочки атомов. Ядра с полностью заполненными оболочками особенно устойчивы по отношению к спонтанным превращениям. Числа нейтронов и протонов, соответствующих полностью заполненным оболочкам, называются магическими. Некоторые из таких чисел надежно определены в экспериментах - это, например, 2, 8 и 20.

И вот здесь-то начинается самое интересное. Оболочечные модели позволяют вычислять магические числа сверхтяжелых ядер - правда, без полной гарантии. Во всяком случае есть все основания ожидать, что нейтронное число 184 окажется магическим. Ему могут соответствовать протонные числа 114, 120 и 126, причем последнее опять-таки должно быть магическим. Следовательно, можно предполагать, что изотопы 114-го, 120-го и 126-го элементов, содержащие по 184 нейтрона, будут жить куда дольше своих соседей. Особые надежды возлагаются на последний изотоп, поскольку он оказывается дважды магическим. Согласно наимено-вочной конвенции, о которой говорилось в первом разделе, его надо называть унбигексий-310.

Итак, можно надеяться, что существуют еще не открытые сверхтяжелые нуклиды, которые живут очень долго, во всяком случае, по меркам своего ближайшего окружения. Физики называют это гипотетическое семейство «островом стабильности». Гипотезу о его существовании впервые высказал замечательный американский физик-ядерщик (или, если угодно, химик-ядерщик) Гленн Сиборг, Нобелевский лауреат 1951 года. Он был руководителем или ключевым членом команд, создавших все девять элементов от 94-го (плутоний) до 102-го (нобелий), а также 106-й элемент, названный в его честь сиборгием.
Теперь можно ответить и на вопрос, которым заканчивается первый раздел. Синтез сверхтяжелых элементов, помимо всего прочего, шаг за шагом приближает физиков-ядерщиков к их святому Граалю - острову ядерной стабильности. Никто не может с уверенностью сказать, достижима ли эта цель, однако открытие заветного острова стало бы великим успехом науки.

114 элемент уже создан – это унунквадий. Сейчас он синтезирован в пяти изотопных версиях с числом нейтронов от 171 до 175. Как видим, до 184 нейтронов еще далеко. Однако самые стабильные изотопы унунквадия имеют период полураспада чуть меньше 3 секунд. Для 113-го элемента этот показатель составляет около половины секунды, для 115-го – менее одной десятой. Это обнадеживает.

Ускоритель У-400 в Объединенном институте ядерных исследований (Дубна),

на котором был получен 118-й элемент

СИНТЕЗ 118-ГО
Все искусственные элементы с 93-го до сотого были | впервые получены [ при облучении ядер | нейтронами или ядрами дейтерия ] (дейтонами). Это не 1 всегда происходило в лаборатории. Элементы 99 и 100 - эйнштейний и фермий - были впервые идентифицированы при радиохимическом анализе проб вещества, собранных в районе тихоокеанского атолла Эниветок, где 1 ноября 1952 года американцы взорвали десятимегатонный термоядерный заряд «Майк». Его оболочка была изготовлена из урана-238. Во время взрыва урановые ядра успевали поглотить до пятнадцати нейтронов, а затем претерпевали цепочки бета-распадов, которые в конечном счете и приводили к образованию изотопов этих двух элементов. Кстати, некоторые из них живут довольно долго - так, период полураспада эйнштейния-254 составляет 480 суток.

Трансфермиевые элементы с номерами более 100 синтезируются посредством бомбардировки массивных, но не слишком быстро распадающихся нуклидов тяжелыми ионами, разогнанными в специальных ускорителях. Среди лучших в мире машин этого рода - циклотроны У-400 и У-400М, принадлежащие Лаборатории ядерных реакций имени Г. М. Флерова Объединенного института ядерных исследований. На ускорителе У-400 и был синтезирован 118-й элемент, унуноктий. В таблице Менделеева он расположен в точности под радоном и, значит, должен быть благородным газом.
Впрочем, об исследовании химических свойств унуноктия говорить еще рано. В 2002 году было получено лишь одно ядро его изотопа с атомным весом 294 (118 протонов, 176 нейтронов), в 2005-м - еще два. Жили они недолго - около миллисекунды. Их изготовили посредством бомбардировки мишени из калифор-ния-249 ускоренными ионами кальция-48. Общее число кальциевых «пулек» составило 2x1019! Так что производительность унуноктиевого генератора крайне мала. Впрочем, это типичная ситуация. Зато объявленные результаты считаются вполне надежными, вероятность ошибки не превышает тысячной доли процента.

Ядра унуноктия претерпевали серию альфа-распадов, последовательно превращаясь в изотопы 116-го, 114-го и 112-го элементов. Последний, уже упоминавшийся унунбий, живет очень недолго и делится на тяжелые осколки примерно одинаковой массы.

Вот пока что и вся история. В 2007 году те же экспериментаторы надеются изготовить ядра 120-го элемента, бомбардируя плутониевую мишень ионами железа. Штурм острова стабильности продолжается.

Что нового в науке и технике, № 1, 2007