Наука цитология получила свое развитие. История открытия клетки

) или многих (многоклеточные).

Определение 1

Наука, изучающая строение, химический состав, процессы жизнедеятельности и размножения клеток, называется цитология (от греч. сytos – клетка, logos – наука).

Предметом цитологии является клетка многоклеточных грибов, растений и животных, а также одноклеточные организмы (бактерии, одноклеточные грибы и водоросли, простейшие).

Цитология занимается изучением строения, химического состава и функций клеток, функций внутриклеточных структур, размножения и развития клеток, приспособление клеток к условиям внешней среды.

Современная цитология – комплексная наука. Она очень тесно связаны с другими биологическими науками: физиологией, ботаникой, зоологией, физиологией, эволюционным учением.

Существует общая и частная цитология.

Предметом исследования общей цитологии являются общие для большинства клеток элементы: их структура, функции, процессы метаболизма, реакция на повреждения и патологические изменения, приспособление к окружающим условиям.

В частной цитологии исследует особенности каждого типа клеток в зависимости от их специализации (многоклеточные организмы) или эволюционной адаптации к внешней среде (бактерии).

Чёткие грани между цитологией, биохимией, биологией развития, молекулярной биологией и молекулярной биофизикой стёрлись благодаря новым методам изучения компонентов клетки, развитию и усовершенствованию исследований цитохимии, особенно ферментов, использованию при изучении процессов синтеза макромолекул клетки радиоактивных изотопов, внедрению методов электронной цитохимии, применению для изучения локализации индивидуальных белков клетки с помощью люминесцентного анализа меченых флюорохромами антител, методам препаративного и аналитического цинтрифугирования.

Современная цитология из суто морфологической науки смогла развиться в экспериментальную дисциплину, изучающую основные принципы деятельности клетки и, соответственно, основы жизни организмов.

При диагностике заболеваний человека и животных существенное значение имеют именно цитологические исследования.

Благодаря разработке Б.Гердоном методов пересадки ядер в клетки, соматической гибридизации клеток Х. Харрисом, Дж.Барски и Б. Эфрусси стало возможным изучение закономерностей реактивации генов, определение локализации многих генов в хромосомах человека. Стало также возможным приблизиться к решению ряда практических заданий медицины и народного хозяйства (создание новых сельскохозяйственных культур). Методом гибридизации клеток создано технологию получения стационарных антител гибридных клеток, вырабатывающих специфические антитела (моноклональные антитела). Они используются с целью определения ряда теоретических вопросов микробиологии, иммунологии, и вирусологии.

Замечание 1

Сейчас стали примененять эти клоны для усовершенствования диагностики и лечения заболеваний человека. Цитологический анализ клеток больных (часто после их культивирования вне организма) важен при диагностировании некоторых наследственных болезней (пигментная ксеродерма, гликогенозы) и изучения их природы. В перспективе предвидится так же использование цитологических достижений при лечении генетических заболеваний человека, профилактике наследственной патологии, созданияи новых высокопродуктивных штаммов бактерий, повышении урожайности растений.

Благодаря многогранности проблем исследования клетки, специфике и разнообразию методов её изучения, в цитологии сформировались шесть основных направлений:

  • Цитоморфологии , которая изучает особенности структурной организации клетки, основными методами исследования которой являются различные способы микроскопии, как фиксированной (светооптическая, электронная, поляризационная), так и живой клетки (темнопольний конденсор, фазово-контрастная и люминесцентная микроскопия);
  • Цитофизиологии , которая изучает жизнедеятельность клетки как единой живой системы, а также функционирование и взаимодействие её внутренних структур; для решения этих заданий используют различные экспериментальные приёмы вместе с методами культуры клеток и тканей, микрокиносъёмки;*
  • Цитохимии , которая исследует молекулярную организацию клетки и химические изменения во время процессов обмена веществ и функционирования клетк. Проводят цитохимические исследования светомикроскопическим и электронно-микроскопическим методами, методами ультрафиолетовой и интерференционной микроскопии, цитофотометрии, фракционного центрифугирования.
  • Цитогенетики , которая изучает функциональную и структурную и организацию хромосом эукариотов;
  • Цитоэкологии , которая исследует реакции клетки на влияние факторов окружающей среды и механизмы адаптации к ним;
  • Цитопатологии , которая изучает патологические процессы в клетке.*

Наряду с традиционными направлениями цитологии развиваются и новые, такие как цитопатология вирусов, ультраструктурная патология клеток, цитофармакология, онкологическая цитология и др.

Цитология преподаётся как самостоятельный раздел в курсе гистологии и биологии в медицинских и других высших учебных заведениях.

История развития учения о клетке

Цитология относится к молодым биологическим наукам, её возраст – около 100 лет. А возраст термина «клетка» - более 300 лет.

История изучения клетки связана с именами таких учёных, как Роберт Гук (впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые назвал клетками), Антони ван Левенгук (впервые увидел клетки при увеличении в 270 раз и открыл одноклеточные организмы), Матиас Шлейден и Теодор Шванн (они стали творцами клеточной теории).

Клеточная теория получила дальнейшее развитие в работах учёных второй половины ХІХ столетия. Было открыто деление клетки и сформулировано положение о том, что каждая новая клетка образуется от такой же начальной клетки в результате её деления (Рудольф Вирхов, 1858). Академик Российской Академии наук Карл Бер открыл яйцеклетку млекопитающих и установил, что все многочисленные организмы начинают своё развитие из одной клетки и этой клеткой является зигота. Открытие К. Бера показало, что клетка – не только единица строения, но и единица развития всех живых организмов.

После работ Роберта Гука микроскоп начали широко использовать для научных исследований в биологии.

Исторически развитие цитологии тесно связано с созданием микроскопа и его усовершенствованием, развитием гистологических методов исследования.

В ХVII ст. наблюдения Р. Гука подтвердились и были развиты М. Мальпиги, Н. Грю, А. Левенгуком.

В процессе научно-технической революции середины ХХ ст. цитология бурно развивалась и ряд её представлений были пересмотрены.

Электронная микроскопия дала возможность изучить строение и много в чём раскрыть функции уже известных ранеее органоидов клетки. Связаны эти открытия с именами К. Портера, Дж. Пелейда, Х. Риса, В. Бернхарда, К. де Дюва и других известных учёных.

В результате изучения ультраструктуры клетки весь живой органический мир был разделён на прокариот и эукариот. Исследования молекулярной биологии показали единство для всех организмов (включая вирусы) механизмов синтеза белка и генетического кода.

Замечание 2

Изучение химической организации клетки привело к заключению, что в основе её жизни лежат именно химические процессы, что клетки всех организмов подобны по химическому составу, у них однотипно происходят основные процессы обмена веществ. Единство всего органического мира подтвердили данные о подобности химического состава клеток.

ВАРИАНТ 7 ГИА 2014

Часть 1 (А)

При выполнении заданий с выбором ответа (это задания А1-А24) обведите кружком номер правильного ответа в экзаменационной работе.

4) многоклеточным

А4. Укажите семейство, к которому принадлежит растение, и тип плода, изображенные

на рисунке.

1) Розоцветные, костянка

2) Крестоцветные, стручок

3) Бобовые, боб

4) Пасленовые, ягода

А5.Одним из способов вегетативного размножения растений является

1) прививка

2) перекрестное опыление

3) самоопыление

4) партеногенез

А6. Для какого класса животных характерно строение мозга, изображенного на

1) земноводных

2) пресмыкающихся

3) млекопитающих

А7. Для какого из перечисленных отрядов насеко­мых характерен цикл развития,

показанный на рисунке?

1) прямокрылых

2) жесткокрылых

3) чешуекрылых

4) перепончатокрылых

А8. Сложное поведение человека и других

млекопитающих обусловлено наличием

1)мозжечка

2) промежуточного мозга

3) коры мозга

4) среднего мозга

А9. Гаметы у человека вырабатываются в

1) семенниках и яичниках

2) сперматозоидах

3) яйцеклетках

А10. Двигательный нейрон рефлекторной дуги обо­значен цифрой 1 1 2

A11. На рисунке показан сустав

1) плечевой

2) коленный

3) тазобедренный

12. Основную функцию в свертывании крови играют

1) тромбоциты

2) эритроциты

3) миоциты

4) лимфоциты

А13. Функцию возврата белков и липидов в систему кровообращения в организме человека выпол­няет

1) тканевая жидкость

4) гемоглобин

А14. Что происходит в отделе дыхательной системы, изображенном на рисунке?

1) согревание воздуха

2) очистка воздуха от пыли

3) образование углекислого газа

4) газообмен

А15. Бескислородный этап обмена веществ осущест­вляется в организме человека

1) в пищеварительной системе

2) в цитоплазме клеток

3) в митохондриях


16. Потовая железа обозначена на рисунке цифрой

17. Одной из характеристик безусловных рефлек­сов человека является то, что они

1) индивидуальны у каждой особи

2) не наследуются

3) характерны для всех особей вида

4) временные

6) минеральные

Для ответов на задания С1-С3 используйте от­дельный лист. Запишите сначала номер задания (С1 и т. д.), а затем ответ к нему.

С1. Какие физиологические и химические процес­сы происходят в работающей мышце?

Прочитайте текст «Ткани животных» и выполните задание С2.

Ткани животных

У всех многоклеточных животных клетки объединены в особые группы. Группа клеток вместе с межклеточным веществом, имеющих сходное строение и происхождение и выполняю­щих общую функцию, называется тканью. У жи­вотных имеется четыре вида тканей: эпители­альная, соединительная, мышечная и нервная.

Из эпителиальной ткани образованы на­ружные покровы животных и слизистые обо­лочки полостей внутренних органов и крове­носных сосудов. Форма каждой клетки зависит от функции, которую она выполняет. У клеток кишечной ворсинки цилиндрическая форма, и эпителий называется цилиндрическим. Клетки воздухоносных путей покрыты ресничками. Этот эпителий называют реснитчатым. Узнать эпителиальную ткань можно по форме клеток и практическому отсутствию межклеточного вещества.

Соединительная ткань - главная опорная ткань многоклеточного организма. Ею образо­ваны связки и сухожилия, кости и хрящи. Про­слойки между органами заполнены рыхлой со­единительной тканью. Клетки жировой соединительной ткани заполнены жировыми каплями. Кровь - это тоже вид соединитель­ной ткани, только жидкой, и клетки ее под­вижны. Следовательно, у соединительной тка­ни межклеточное вещество хорошо развито.

Мышечная ткань состоит из сократимых клеток. В их цитоплазме находится сократи­тельный аппарат. Эти клетки вытянуты и со­стоят из мышечных волокон. Поперечно­полосатые мышцы обеспечивают движения скелета. Гладкие мышцы вызывают сокраще­ние внутренних органов - мочевого пузыря, желудка, кровеносных сосудов.

Нервная ткань состоит из нейронов - кле­ток, имеющих тело и отростки. Короткие отро­стки называются дендритами, а длинные - ак­сонами. Функция нервной клетки - проводить нервный импульс, иногда на достаточно боль­шое расстояние, например от большого пальца ноги в головной мозг. Именно поэтому аксоны этих клеток имеют значительную длину.

1) Как взаимодействуют между собой мышеч­ная и нервная ткани?

2) Почему внутренние органы, кроме сердца, образованы гладкой мышечной тканью, а не поперечнополосатой?

3) Какая ткань обеспечивает иммунитет чело­века?

С3. На рисунке дан график колебания численности лис и зайцев в экосистеме. Объясните, с какой периодичностью меняется численность лис и зайцев. Какие процессы обозначены цифрами 1,2,3 со стрелками?

Часть 1 (А)

№ задания

№ задания

Часть 2 (В)

№ задания

Часть 3 (С)

Элементы правильного ответа

1) Физиологические процессы: сокращение и расслабление мышц
в результате возбуждения и торможения нервных импульсов

2) Химические: расщепление АТФ, выделение энергии

В ответе правильно указаны все критерии и не содержится биологических ошибок

В ответе указан один критерий и не содержится биологиче­ских ошибок, ИЛИ указано два критерия, но содержатся не­грубые биологические ошибки

Ответ неправильный

Максимальный балл

(допускаются иные формулировки ответа, не искажающие его смысла)

1) Нервная ткань проводит нервный импульс к мышцам, которые под влиянием импульса возбуждаются и сокращаются

2) Внутренние органы должны сокращаться медленно и независимо от воли человека, иначе они не смогут выполнять свои
функции

3) Жидкая соединительная (кровь)

Ответ включает 2 из названных выше элементов и не содер­жит биологических ошибок, ИЛИ ответ включает 3 из на­званных выше элементов, но содержит негрубые биологиче­ские ошибки.

Ответ включает 1 из названых выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названых выше элементов, но содержит негрубые биологические ошибки

Ответ неправильный

Максимальный балл

(допускаются иные формулировки ответа, не искажающие его смысла)

Элементы ответа:

1) Часть 1 графика показывает: увеличение числа зайцев сопровождается увеличением числа лис и последующему снижению числа зайцев

2) Часть 2 показывает, что снижение количества зайцев приводит к снижению количества лис

3) Часть 3 показывает, что с новым ростом количества зайцев
растет количество лис

Ответ включает 3 названных выше элемента, не содержит био­логических ошибок

Ответ включает 2 из названных выше элементов, ИЛИ ответ включает 3 из названных выше элементов, но содержит биоло­гические ошибки

Ответ включает 1 из названных выше элементов и не содержит биологических ошибок, ИЛИ ответ включает 2 из названных выше элементов, но содержит негрубые биологические ошибки

Ответ неправильный

Максимальный балл


факт
эксперимент
теория
гипотеза
собрать имеющиеся факты
выдвинуть предположение
провести эксперимент
эволюционного учения
клеточной теории
рефлекторной теории
генной теории
анатомия
эволюционное учение
генетика
экология
рефлекторную теорию
теорию эволюции
клеточную теорию
теорию иммунитета

1) молекулярно-генетический
4) популяционно-видовой
7.

Наука цитология получила своё развитие благодаря созданию

В ядрах клеток стенки пищевода плодовой мушки дрозофилы содержится 8 хромосом. Сколько пар хромосом будет в ядрах этих клеток после их митотического деления?
1) 2
2) 4
3) 8
4) 16
1) одноклеточных грибов
2) простейших
3) вирусов
4) одноклеточных водорослей



1) хромосома
2) клеточная стенка
3) лизосома
4) митохондрия




1) рибосома
2) аппарат Гольджи3) ядро
4) митохондрия
13. Какой из перечисленных организмов содержит в своих клетках органоид, изображённый на рисунке?
1) подосиновик
2) инфузория-туфелька
3) кишечная палочка
4) хламидомонада
1) клетка дрожжей
2) клетка кишечной палочки
3) бактериофаг
4) холерный вибрион
1) фотосинтез
2) клеточное дыхание
3) транскрипция
4) трансляции

3) деление цитоплазмы

ТЕМА 1. ИСТОРИЯ ЦИТОЛОГИИ. МЕТОДЫ ИЗУЧЕНИЯ КЛЕТКИ

Основные этапы развития цитологии

История открытия клетки

Цитология («cytos» — ячейка, клетка) наука о клетке. Современная цитология изучает: строение клеток, их формирование как элементарных живых систем, исследует формирование отдельных клеточных компонентов, процессы воспроизведения клеток, репарации, приспособления к условиям среды и другие процессы. Другими словами, современная цитология – это физиология клетки.

Развитие учения о клетке тесно связано с изобретением микроскопа (от греческого «микрос» – небольшой, «скопео» – рассматриваю). Это связано с тем, что человеческий глаз не способен различать объекты с размерами менее 0,1 мм, что составляет 100 микрометров (сокращ. микрон или мкм). Размеры же клеток (а тем более, внутриклеточных структур) существенно меньше.

Например, диаметр животной клетки обычно не превышает 20 мкм, растительной – 50 мкм, а длина хлоропласта цветкового растения – не более 10 мкм. С помощью светового микроскопа можно различать объекты диаметром в десятые доли микрона.

Первый микроскоп был сконструирован в 1610 г. Галилеем и представлял собой сочетание линз в свинцовой трубке (рис. 1.1). А до этого открытия в 1590 г. изготовлением стекол занимались голландские мастера Янсены.

Рис. 1.1. Галилео Галилей (1564-1642)

Впервые микроскоп для исследований применил английский физик и естествоиспытатель Р. Гук (рис. 1.2, 1.4). В 1665 г. он впервые описал клеточное строение пробки и ввел термин «клетка»(рис. 1.3). Р. Гук сделал первую попытку подсчитать количество клеток в определенном объеме пробки.

Он сформулировал представление о клетке как о ячейке, полностью замкнутой со всех сторон и установил факт клеточного строения растительных тканей. Эти два основных вывода и определили направление дальнейших исследований в этой области.

Рис. 1.2. Роберт Гук (1635-1703гг)

Рис. 1.3. Клетки пробки, которые изучал Роберт Гук

Рис. 1.4. Микроскоп Роберта Гука

В 1674 году голландский торговец Антонио ван Левенгук с помощью микроскопа впервые увидел в капле воды «зверьков» - движущиеся живые организмы (одноклеточные организмы, форменные элементы крови, сперматозоиды) и сообщил об этом научному обществу (рис. 1.5, 1.6) . Описания этих «анималькусов» снискали голландцу мировую известность, пробудили интерес к изучению живого микромира.

Рис. 1.5. Антонио ван Левенгук (1632-1723)

Рис. 1.6. Микроскоп Антонио ван Левенгука

В 1693 г. во время пребывания Петра I в Дельфе А. Левенгук продемонстрировал ему, как движется кровь в плавнике рыбы. Эти демонстрации произвели на Петра I такое большое впечатление, что вернувшись в Россию, он создал мастерскую оптических приборов. В 1725 году организована Петербургская академия наук.

Талантливые мастера И.Е. Беляев, И.П. Кулибин изготавливали микроскопы (рис. 1.7, 1.8, 1.9) , в конструировании которых принимали участие академики Л.Эйлер, Ф. Эпинус.

Рис. 1.7. И.П. Кулибин (1735-1818)

Рис. 1.8. И.Е. Беляев

Рис. 1.9. Микроскопы, изготовленные русскими мастерами

В 1671–1679 гг. итальянский биолог и врач Марчелло Мальпиги дал первое систематическое описание микроструктуры органов растений, положившее начало анатомии растений (рис. 1.10) .

Рис. 1.10. Марчелло Мальпиги (1628-1694)

В 1671–1682 гг. англичанин Неемия Грю подробно описал микроструктуры растений; ввел термин «ткань» для обозначения понятия совокупности «пузырьков», или «мешочков» (рис. 1.11) . Оба эти исследователя (они работали независимо друг от друга) дали изумительные по точности описания и рисунки. Они пришли к одному и тому же выводу относительно всеобщности построения растительной ткани из пузырьков.

Рис. 1.11. Неемия Грю (1641-1712)

В 20-х г. XIX в. наиболее значительные работы в области изучения растительных и животных тканей принадлежат французским ученым Анри Дютроше (1824 г.), Франсуа Распайлю (1827 г.), Пьеру Тюрпену (1829 г.). Они доказывали, что клетки (мешочки, пузырьки) являются элементарными структурами всех растительных и животных тканей. Эти исследования подготовили почву для открытия клеточной теории.

Один из основоположников эмбриологии и сравнительной анатомии, академик Петербургской академии наук Карл Максимович Бэр показал, что клетка – единица не только строения, но и развития организмов (рис. 1.12) .

Рис. 1.12. К.М. Бэр (1792-1876гг)

В 1759 г немецкий анатом и физиолог Каспар Фридрих Вольф доказал, что клетка есть единица роста (рис. 1.13) .

Рис. 1.13. К.Ф. Вольф (1733–1794)

1830-е гг. чешский физиолог и анатом Я.Э. Пуркине (рис. 1.14) , немецкий биолог И.П. Мюллер доказали, что клеточная организация является универсальной для всех видов тканей.

Рис. 1.14. Я.Э. Пуркине (1787-1869)

В 1833 г. британский ботаник Р. Броун (рис. 1.15) описал ядро растительной клетки.

Рис. 1.15. Роберт Броун (1773-1858)

В 1837 году Маттиас Якоб Шлейден (рис. 1.16) предложил новую теорию образования растительных клеток, признавая решающую роль в этом процессе клеточного ядра. В 1842 он впервые обнаружил ядрышки в ядре.

Согласно современным представлениям, конкретные исследования Шлейдена содержали ряд ошибок: в частности, Шлейден считал, что клетки могут зарождаться из бесструктурного вещества, а зародыш растения - развиваться из пыльцевой трубки (гипотеза самозарождения жизни).

1.16. Маттиас Якоб Шлейден (1804-1881гг)

Немецкий цитолог, гистолог и физиолог Теодор Шванн (рис. 1.17) ознакомился с трудами немецкого ботаника М. Шлейдена, которые описывали роль ядра в растительной клетке. Сопоставляя эти работы с собственными наблюдениями, Шванн разработал собственные принципы клеточного строения и развития живых организмов.

В 1838 году Шванн опубликовал три предварительных сообщения клеточной теории, а в 1839 году — труд «Микроскопические исследования о соответствии в структуре и росте животных и растений», где опубликовал основные принципы теории клеточного строения живых организмов.

Ф. Энгельс утверждал, что создание клеточной теории было одним из трёх величайших открытий в естествознании XIX века, наряду с законом превращения энергии и эволюционной теории.

Задания 1. Роль биологии в в практической деятельности людей

1.17. Теодор Шванн (1810- 1882гг)

В 1834–1847 гг. профессор Медико-хирургической академии в Петербурге П.Ф. Горянинов (рис. 1.18) сформулировал принцип, согласно которому клетка является универсальной моделью организации живых существ.

Горянинов делил мир живых существ на два царства: царство бесформенное, или молекулярное, и органическое, или клеточное. Он писал, что «…органический мир есть прежде всего клеточное царство …». Он отметил в своих исследованиях, что все животные и растения состоят из соединенных между собой клеток, которые он назвал пузырьками, то есть высказал мнение об общем плане строения растений и животных.

Рис. 1.18. П.Ф. Горянинов (1796-1865)

В истории развития клеточной теории можно выделить два этапа:

1) период накопления наблюдений над строением различных одноклеточных и многоклеточных организмов растений и животных (около 300 лет);

2) период обобщения имеющихся данных в 1838 году и формулирование постулатов клеточной теории;

Читайте также:

Контрольная работа по биологии № 1 (подготовка к ГИА, повторение за 9 класс)
Система наиболее общих знаний в определённой области науки - это
факт
эксперимент
теория
гипотеза
Сформулировать гипотезу - значит
собрать имеющиеся факты
выдвинуть предположение
подтвердить объективность полученных данных
провести эксперимент
Наука цитология получила своё развитие благодаря созданию
эволюционного учения
клеточной теории
рефлекторной теории
генной теории
Как называют науку, изучающую закономерности исторического развития органического мира?
анатомия
эволюционное учение
генетика
экология
На рисунке изображён великий английский естествоиспытатель и биолог середины XIX в., известный тем, что создал
рефлекторную теорию
теорию эволюции
клеточную теорию
теорию иммунитета
Какой уровень организации жизни отражён на данной фотографии?

1) молекулярно-генетический
2) органоидно-клеточный3) биогеоценотический
4) популяционно-видовой
7. В ядрах клеток стенки пищевода плодовой мушки дрозофилы содержится 8 хромосом. Сколько пар хромосом будет в ядрах этих клеток после их митотического деления?
1) 2
2) 4
3) 8
4) 16
8. Представитель какой группы организмов изображён на рисунке?
1) одноклеточных грибов
2) простейших
3) вирусов
4) одноклеточных водорослей
9. Сущность клеточной теории отражена в следующем положении
1) из клеток состоят только животные и растения
2) клетки всех организмов близки по своим функциям
3) все организмы состоят из клеток
4) клетки всех организмов имеют ядро
10. Какая из перечисленных клеточных структур присутствует и в клетках бактерий, и в клетках животных?
1) хромосома
2) клеточная стенка
3) лизосома
4) митохондрия
11. Какова функция органоида, электронная микрофотография которого представлена на рисунке?

1) синтез липидов за счёт окисления соединений азота
2) синтез углеводов за счёт окисления соединений железа
3) синтез липидов за счёт энергии света
4) синтез углеводов за счёт энергии света
12. Органоидом, в котором происходит окисление питательных веществ и образование АТФ, является
1) рибосома
2) аппарат Гольджи3) ядро
4) митохондрия
13.

ГИА онлайн тесты

Какой из перечисленных организмов содержит в своих клетках органоид, изображённый на рисунке?
1) подосиновик
2) инфузория-туфелька
3) кишечная палочка
4) хламидомонада
14. Что из перечисленного изображено на рисунке?
1) клетка дрожжей
2) клетка кишечной палочки
3) бактериофаг
4) холерный вибрион
15. В результате какого процесса энергия химических связей углеводов переходит в энергию АТФ?
1) фотосинтез
2) клеточное дыхание
3) транскрипция
4) трансляции
16. В анафазе митоза происходит
1) выстраивание хромосом по экватору
2) образование веретена деления
3) деление цитоплазмы
4) расхождение хроматид к полюсам клетки

Поиск Лекций

Клеточный уровень организации жизни

§ 16. История изучения клетки. Методы цитологических исследований.

История изучения клетки.

Мир клеток оставался полностью неизвестным до середины XVII в., пока люди не научились шлифовать линзы и использовать их для расширения возможностей зрения.

Одним из первых создателей микроскопа был Роберт Гук физик, метеоролог, биолог, инженер, архитектор. В 1665 г. он издал альбом рисунков под названием «макрография», в котором были представлены его наблюдения под микроскопом.

Одним из одаренных современников Гука был голландец Антони ван Левенгук, который создал 200 микроскопов собственной особой конструкции. Левенгук добился увеличения объектов в 270 раз и сделал выдающиеся открытия.

Роберт Броун в 1833 г. открыл в клетке ядро. После 1825 г. Ян Пуркинье разработал эффективные методики приготовления и окраски препаратов для микроскопической техники.

Клеточную теорию предложил для растений в 1837 г. немецкий ботаник Матиас Шлейден, а распространил на животный мир его друг, физиолог Теодор Шванн. Несколько позже ее дополнил Рудольф Вирхов, который в 1885 г. сформулировал положение «Каждая клетка происходит из клетки».

В середине XIX в. клеточная теория стала общепризнанной и основой для науки о клетке — цитологии. К концу XIX в. было открыто много компонентов клеток. Ученые описали их и дали им названия.

Но в 1945 г. цитологи впервые заглянули в клетки с помощью электронного микроскопа и увидели много неизвестных ранее структур. Итак, решающая роль в развитии цитологии принадлежит новым открытием в других науках, в частности в физике.

Методы цитологических исследований.

Основным методом является метод световой микроскопии. Он предусматривает применение светового микроскопа, но рассмотреть под световым микроскопом можно только специально приготовленные цитологические препараты.

Для приготовления препаратов цитологи используют предметные стекла и специально подготовленные объекты, которые можно рассматривать.

Чаще всего эти структуры бесцветные, поэтому их необходимо красить специальными красителями, каждый раз разными, в зависимости от того, какие структуры желательно увидеть.

Существуют два метода: метод приготовления давлений препаратов — исследуемый объект просто раздавливается в один слой между предметным и накрывным стеклом, и метод приготовления тонких срезов, состоящие из одного слоя клеток.

Для изучения живых клеток применяют метод фазово-контрастной микроскопии. Он базируется на том, что отдельные участки прозрачной клетки отличаются друг от друга по плотности и светопреломления.

Изучая живые клетки, применяют также метод флуоресцентной микроскопии. Смысл его заключается в том, что целый ряд веществ обладают способностью светиться при поглощении ими световой энергии. Например, если в флуоресцентный микроскоп рассматривать клетки растений, то на темно-синем теле будет видно красные зерна, ярко светятся, — это хлоропласты.

Существует метод, в котором используются меченые изотопы — метод авторадиографии — регистрации веществ, меченных изотопами. С помощью этого метода можно увидеть, к каким частям клетки попадают вещества, меченные радиоактивными изотопами.

Метод электронной микроскопии открыл цитолог те структуры клетки, которые имеют размеры, меньше длины световой волны. Благодаря этому методу появилась возможность рассмотреть вирусы и органеллы, на которых происходит синтез белка (рибосомы).

Цитологи могут также получать и изучать различные компоненты клеток с помощью фракционирования клеток. Клетку сначала разрушают, а затем выделяют клеточные структуры, используя специальное устройство — центрифугу.

Метод использования культуры клеток является методом длительного хранения и выращивания в специальных питательных средах клеток, тканей, небольших органов или их частей, выделенных из организма человека, животного или растения. Важным преимуществом этого метода является возможность наблюдения за жизнедеятельностью клеток с помощью микроскопа.

Значение цитологических методов в диагностике и лечении заболеваний человека.

1) Цитологические методы применяются в медицине для исследования физиологического состояния организма человека на основе изучения строения клеток. Они используются для выявления заболеваний крови, распознавания злокачественных и доброкачественных опухолей, многих заболеваний органов дыхания, пищеварения, мочевыделения, нервной системы и их лечение.

2) Стволовая клетка — это незрелая клетка, способная к самообновлению и развитию в специализированные клетки организма. Во взрослом организме стволовые клетки содержатся в основном в костном мозге и в очень небольшом количестве во всех органах и тканях. Их можно использовать для лечения многих заболеваний.

§ 17. Строение клеток прокариот и эукариот.

Единство строения клеток.

Внутренняя среда живой клетки, ограниченное плазматической мембраной, называется цитоплазмой. Она включает гиалоплазму (основную прозрачную вещество) и клеточные органеллы, а также различные непостоянные структурывключения. К органелл, которые есть в любой клетке, относятся также рибосомы, на которых происходит синтез белка.

Строение клеток эукариот.

Эукариоты — это организмы, клетки которых имеют ядро. Ядро — это самая органеллы эукариотической клетки, в которой хранится и из которой переписывается наследственная информация, записанная в хромосомах. Хромосома — это молекула ДНК, интегрированная с белками. В ядре содержится ядрышко — место, где образуются другие важные органеллы, участвующих в синтезе белка — рибосомы. Но рибосомы только формируются в ядре, а работают они (т.е. синтезируют белок) в цитоплазме. Часть из них находится в цитоплазме свободно, а часть прикрепляется к мембран, образуют сетку, которая получила название эндоплазматической.

Рибосомы — немембранни органеллы.

Эндоплазматическая сеть — это сеть канальцев, ограниченных мембранами. Существует два типа: гладкая и гранулярная. На мембранах гранулярной эндоплазматической сети расположены рибосомы, поэтому в ней происходит синтез и транспортировки белков. А гладкая эндоплазматическая сеть — это место синтеза и транспортировки углеводов и липидов. На ней рибосом нет.

Для синтеза белков, углеводов и жиров необходима энергия, которую в эукариотической клетке производят «энергетические станции» клетки — митохондрии.

Митохондрии — двомембранни органеллы, в которых осуществляется процесс клеточного дыхания. На мембранах митохондрий окисляются органические соединения и накапливается химическая энергия в виде особых энергетических молекул (АТФ).

В клетке также есть место, где органические соединения могут накапливаться и откуда они могут транспортироваться, — это аппарат Гольджи, система плоских мембранных мешочков. Он участвует в транспортировке белков, липидов, углеводов. В аппарате Гольджи образуются также органеллы внутриклеточного пищеварения — лизосомы.

Лизосомы — одномембранни органеллы, характерные для клеток животных, содержат ферменты, которые могут расщеплять белки, углеводы, нуклеиновые кислоты, липиды.

В клетке могут быть органеллы, не имеющие мембранной строения, например рибосомы и цитоскелет.

Цитоскелет — это опорно-двигательная система клетки, включает микрофиламенты, реснички, жгутики, клеточный центр, который производит микротрубочки и центриоли.

Существуют органеллы, характерные только для клеток растений, — пластиды. Бывают: хлоропласты, хромопласты и лейкопласты. В хлоропластах происходит процесс фотосинтеза.

В клетках растений также вакуоли — продукты жизнедеятельности клетки, являющиеся резервуарами воды и растворенных в ней соединений. В эукариотических организмов относятся растения, животные и грибы.

Строение клеток прокариот.

Прокариоты — одноклеточные организмы, в клетках которых нет ядра.

Прокариотические клетки малы по размерам, сохраняют генетический материал в форме кольцевой молекулы ДНК (нуклеоидом). В прокариотических организмов относятся бактерии и цианобактерии, которые раньше называли сине-зелеными водорослями.

Если в прокариот происходит процесс аэробного дыхания, то для этого используются специальные выпячивание плазматической мембранымезосомы. Если бактерии фотосинтезирующие, то процесс фотосинтеза происходит на фотосинтетических мембранах — тилакоидов.

Синтез белка в прокариот происходит на рибосомах. В прокариотических клетке мало органелл.

Гипотезы происхождения органелл эукариотических клеток.

Прокариотические клетки появились на Земле раньше, чем эукариотические.

1) симбиотические гипотеза объясняет механизм возникновения некоторых органоидов эукариотической клетки — митохондрий и фотосинтезирующих пластид.

2) Инвагинацыонная гипотеза — утверждает, что происхождение эукариотической клетки исходит из того, что предковой формы был аэробный прокариот. Органеллы в нем возникли в результате впячивания и отслоение частей оболочки с последующей функциональной специализацией в ядро, митохондрии, хлоропласты других органелл.

§ 18. Клеточные мембраны. Транспортировки веществ через мембраны.

Тест "Биологические науки"

Поверхностный аппарат клетки, его функции.

Клеточные мембраны.

Биологические мембраны — это тонкие смежные структуры молекулярных размеров, расположенные на поверхности клеток и субклеточных частей, а также канальцев и пузырьков, пронизывающих протоплазму. Функция биологических мембран — регулирование транспортировки ионов, сахаров, аминокислот и других продуктов обмена веществ.

В основе любой мембраны лежит двойной слой фосфолипидов.

Однако билипидный слой — это еще не готова мембрана, а лишь ее основа. С билипидного слоем должны связаться белки, называемые мембранными белками. Именно мембранные белки определяют многие свойства мембран. Входят в состав мембран и углеводы, образуют комплексы с белками или липидами. Мембрана состоит из слоя билипидив, в котором плавают (или закреплены) белковые молекулы, образуя в нем своеобразную мозаику.

Строение мембраны соответствует ее функциям: транспортной, барьерной и рецепторной.

1) Барьерная функция. Мембрана является барьером, который предотвращает поступление в клетки различных химических веществ и других агентов.

2) Рецепторные функции. Поверхность мембраны имеет большой набор рецепторов, делающих возможными специфические реакции с различными агентами.

3) Транспортная функция. Через мембрану идет транспорт ионов и веществ.

Покрывая клетку и отделяя ее от окружающей среды, биологические мембраны обеспечивают целостность клеток и органелл. Она поддерживает неравномерное распределение ионов калия, натрия, хлора и других ионов между протоплазмой и окружающей средой.

Особенно важной мембраной в клетке является плазмалемма поверхностная мембрана. Она выполняет барьерную, транспортную, рецепторную, сигнальную функции.

Транспортировки веществ через мембраны.

Существуют два активных процесса: экзоцитоз и эндоцитоз.

Из клетки вещества выводятся с помощью экзоцитоза — слияние внутриклеточных пузырьков с плазматической мембраной. В клетку вещества могут попадать посредством эндоцитоза. В процессе эндоцитоза плазматическая мембрана образует вогнутости и вырасти, которые потом, отслаивая, превращаются в пузырьки или вакуоли.

Различают два типа эндоцитоза:

Пиноцитоз — поглощение жидкости и растворенных веществ с помощью небольших пузырьков;

Фагоцитоз — поглощение крупных частиц, таких как микроорганизмы или остатки клеток.

В случае фагоцитоза образуются большие пузыри, которые называются вакуолями.

Молекулы проходят через мембраны благодаря процессам: простой диффузии, облегченной диффузии, активному транспортировке.

Простая диффузия — это пример пассивного транспортировки, проходит из зоны с большей концентрацией молекул в зону с меньшей концентрацией. Путем простой диффузии в клетку проникают неполярные (гидрофобные) вещества, растворимые в липидах, и мелкие незаряженные молекулы (например, вода). Однако большинство веществ переносится через мембрану с помощью погруженных в нее транспортных белков. Различают две формы обращения: облегченная диффузия и активное транспортировки.

Облегченная диффузия обусловлена градиентом концентрации, и молекулы движутся согласно этому градиента. Однако молекула заряжена, то на ее транспортировку влияет как градиент концентрации, так и мембранный потенциал.

Активное транспортировки — это перенос растворенных веществ против градиента концентрации с использованием энергии АТФ. Энергия необходима потому, что вещество должно двигаться, вопреки своему естественному стремлению двигаться по диффузией, в противоположном направлении. Примером может служить натрий-калиевый насос. По законам диффузии ионы Nа постоянно движутся внутрь клетки, а ионы К + — из клетки. Нарушение необходимой концентрации этих ионов влечет за-гибель клетки.

Поверхностный аппарат клетки.

Разновидность клеток прокариот и эукариот состоит из частей: поверхностного аппарата, цитоплазмы, ядерного аппарата.

Поверхностный аппарат клетки выполняет три функции, универсальные для всех видов клеток: барьерную, транспортную, рецепторную. Он может осуществлять и ряд специфических функций (например, механическая тургорного функция клеточной стенки в растительных клетках). Поверхностный аппарат клеток состоит из систем: плазматической мембраны, надмембранный комплекса и субмембранного (т.е. пидмембранного) опорно-сократительного аппарата.

Плазматическая мембрана, или плазмалемма, — это основная, универсальная для всех клеток система поверхностного аппарата. Под ней расположена субмембранна система, которая участвует в трансмембранному транспортировке и рецепции и является частью цитоплазмы.

Надмембранная структура поверхностного аппарата осуществляют взаимодействие клеток с внешней средой или с другими клетками. У клеток животных надмембранный комплекс, или гликокаликс, играет важную роль в рецепторной функции клеток. Гликокаликс состоит из углеводов, он сравнительно тонкий и эластичный.

К производным надмембранным структурам принадлежит клеточная стенка. Ее должны клетки растений, грибов и бактерий. Клеточная стенка растений содержит целлюлозу, грибов — хитин, бактерий — муреин. Она достаточно жесткая, не сжимается. Через клеточную стенку проходит вода, соли, молекулы многих органических веществ. Явление плазмолиза и деплазмолиза в клетках растений.

Плазмолиз — это отделение цитоплазмы от оболочки при погружении клетки в гипертонический, т.е. концентрированные извне, раствор. Если животные клетки погрузить в гипертонический раствор, то они сжимаются. Иногда плазмолизованые клетки остаются живыми. Если погрузить такие клетки в воду, в которой концентрация солей ниже, чем в клетке, происходит деплазмолиз.

Деплазмолиз — это возвращение цитоплазмы клеток растений из состояния плазмолиза в исходное состояние.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Краткая история цитологии

Цитология (греч. citos – клетка, logos – наука) – наука о клетке .

В настоящее время учение о клетке является во многих отношениях центральным объектом биологических исследований.

Предпосылкой для открытия клетки явилось изобретение микроскопа и его использование для исследования биологических объектов.

Первый световой микроскоп сконструировали в Голландии в 1590 году два брата, Ганс и Захариус Янссены, шлифовальщики линз. Долгое время микроскоп использовался как забава, игрушка для развлечения знатных особ.

Антонио ван Левенгук (1632-1723)

Термин «клетка» утвердился в биологии, несмотря на то, что Роберт Гук наблюдал, в действительности, не клетки, а только целлюлозные оболочки растительных клеток. Кроме того, клетки не являются полостями. В дальнейшем клеточное строение многих частей растений видели и описали М. Мальпиги, Н. Грю, а также А. Левенгук.

Важным событием в развитии представлений о клетке была изданная в 1672 году книга Марчелло Мальпиги «Анатомия растений», где приводилось подробное описание микроскопических растительных структур. В своих исследованиях Мальпиги убедился, что растения состоят из клеток, которые он называл «мешочками» и «пузырьками».

Среди блестящей плеяды микроскопистов XVII века одно из первых мест занимает А. Левенгук , голландский купец, который завоевал себе славу учёного. Он прославился созданием линз, которые давали увеличение в 100-300 раз. В 1674 году Антонио ван Левенгук открыл с помощью собственноручно изобретенного микроскопа одноклеточных простейших, названных им «микроскопическими животными», бактерии, дрожжи, клетки крови – эритроциты, половые клетки – сперматозоиды, которые Левенгук называл «анималькули». Из животных тканей Левенгук изучал и точно описал строение сердечной мышцы. Он был первым натуралистом, наблюдавшим клетки животногоорганизма. Это пробудило интерес к изучению живого микромира.

Как наука цитология возникла лишь в XIX веке . В это время были сделаны важные открытия.

В 1830 году чешский исследователь Ян Пуркинье описал вязкое студенистое вещество внутри клетки и назвал его протоплазмой (гр. protos – первый, plasma – образование).

В 1831 году шотландский ученый Роберт Броун открыл ядро .

В 1836 году Габриелем Валентини в ядре было обнаружено ядрышко.

В 1838 году была опубликована работа Матиаса Шлейдена «Данные о фитогенезисе», где автор, опираясь на уже имевшиеся в ботанике представления о клетке, выдвинул идею об идентичности растительных клеток с точки зрения их развития. Он пришёл к выводу, что закон клеточного строения справедлив для растений.

В 1839 году вышла в свет ставшая классической книга Теодора Шванна «Микроскопические исследования о соответствии в структуре и росте животных и растений». В ней автор сделал окончательный вывод о том, что клетка является структурной единицей жизнедеятельности и развития растений и животных.

В 1838 – 1839 годах немецкие ученые Матиас Шлейден и ТеодорШванн независимо друг от друга сформулировали клеточную теорию.

КЛЕТОЧНАЯ ТЕОРИЯ:

1) все живые организмы (растения и животные) состоят из клеток;

2) клетки растений и животных сходны по строению, химическому составу и выполняемым функциям.

М. Шлейден и Т. Шванн считали, что клетки в организме возникают путём новообразования из первичного неклеточного вещества.

В 1858 году немецкий учёный-анатом Рудольф Вирхов в своей книге «Целлюлярная патология» опроверг это представление и доказал, что новые клетки всегда возникают из предшествующих путем деления – «клетка от клетки, всё живое только из клетки» – (omnis cellula a cellula). Важным обобщением Р.Вирхова явилось утверждение, что наибольшее значение в жизнедеятельности клеток имеют не оболочки, а их содержимое – протоплазма и ядро. Опираясь на клеточную теорию, Р. Вирхов поставил на научную основу учение о болезнях. Опровергнув господствующее в то время представление, согласно которому в основе болезней лежит только изменение состава жидкостей организма (крови, лимфы, желчи), он доказал огромное значение изменений, происходящих в клетках и тканях. Р. Вирхов установил: «Всякое болезненное изменение связано с каким-то патологическим процессом в клетках, составляющих организм». Это утверждение стало основой для появления важнейшего раздела современной медицины – патологической анатомии.

Вирхов был одним из основоположников исследования явлений жизнедеятельности на клеточном уровне, что является его бесспорной заслугой. Однако при этом он недооценивал исследования тех же явлений на уровне организма как целостной системы. В представлении Вирхова организм – это государство клеток и все его функции сводятся к сумме свойств отдельных клеток.

В преодолении этих односторонних представлений об организме большое значение имели работы И.М.Сеченова, С.П.Боткина и И.П.Павлова. Отечественные ученые доказали, что организм представляет собой по отношению к клеткам высшее единство. Клетки и другие структурные элементы, составляющие тело, не обладают физиологической самостоятельностью. Их формирование и функции координируются и управляются целостным организмом с помощью сложной системы химической и нервной регуляции.

Коренное улучшение всей техники микроскопирования позволило исследователям к началу XX столетия обнаружить основные клеточные органоиды, выяснить строение ядра и закономерности клеточного деления, расшифровать механизмы оплодотворения и созревания половых клеток.

В 1876 году Эдуард Ван Бенеден установил наличие клеточного центра в делящихся половых клетках.

В 1890 году Рихард Альтман описал митохондрии, назвав их биобластами, и выдвинул идею о возможности их самовоспроизведения.

В 1898 году Камилло Гольджи открыл органоид, названный в его честь комплексом Гольджи.

В 1898 году хромосомы впервые были описаны Карлом Бенда.

Крупный вклад в развитие учения о клетке во второй половине XIX – начале XX вв. внесли отечественные цитологи И.Д.Чистяков (описание фаз митотического деления), И.Н.Горожанкин (изучение цитологических основ оплодотворения у растений), С.Г.Навашин, открывший в 1898г. явление двойного оплодотворения у растений. Успехи в изучении клетки привели к тому, что внимание биологов все больше концентрировалось на клетке как основной структурной единице живых организмов.

Качественный скачок в цитологии произошел в XX веке . В 1932 году МаксКнолль иЭрнст Руска изобрели электронный микроскоп, дающий увеличение в 106 раз. Были обнаружены и описаны невидимые в световой микроскоп микро- и ультрамикроструктуры клетки. С этого момента клетку начали изучать на молекулярном уровне.

Таким образом, достижения цитологии всегда связаны с усовершенствованием техники микроскопирования.

Цитология — это наука о клетке, наука о клеточном уровне организации живой материи.

Развитие цитологии

Клеточная теория

Возникновение цитологии как науки относится к моменту формирования одного из крупнейших обобщений биологии — клеточной теории. Центральная идея последней о единстве строения и развития живой материи на основе ее клеточной организации полностью сохранила свое значение и до сих пор. Однако в связи с внедрением в биологию в середине XX в.

Наука цитология…

прин-ципиально новых методов исследований, приведших к существен-ной детализации наших знаний о закономерностях организации живого, к настоящему времени оформились и вошли в науку представления о различных уровнях организации живой мате-рии, обладающих своей спецификой и своими закономерностями.

Уровни организации клетки

В организации любой клетки можно выделить следующие уров-ни: молекулярный, надмолекулярный, органоидный, субсистем-ный и системный. При этом низшие уровни клеточной организа-ции, так же как и неклеточные формы жизни, находятся в центре внимания таких наук, как органическая химия, биохи-мия, молекулярная биология. На органоидном, системном и субсистемном уровнях доминирующее значение имеют уже цитологические исследования.

Объект изучения цитологии

см. Клетка

Объектом общецитологи-ческих исследований являются конкретные разновидности кле-ток (клетки про- и эукариот, клетки животных и растительных одноклеточных и многоклеточных организмов, а в пределах по-следних— клетки различных направлений специализации).

Те же объекты находятся и в центре внимания других биологических наук — гистологии, эмбрио-логии, микробиологии, протозоологии и т. д. Однако в этих науках основное внимание уделяется специфическим особенно-стям данного типа клеток.

Цель цитологии

В цитологии при исследо-вании конкретных разновидностей клеток ставится цель выяс-нить общие закономерности организации клеточных структур и внутриклеточных процессов, универсальных для всех клеток, а также общие закономерности организации регуляторных ин-тегративных механизмов целостной клетки.

Таким образом, в цитологии органически сочетаются два основных направления исследований: дискретный анализ отдельных клеточных компонентов и анализ клетки как целостной элементарной системы живой материи.

Исследования в цитологии

см. Методы изучения клетки

В настоящее время в общей цитологии можно выделить два главных направления исследований, два различных аспекта изучения закономерностей организации клет-ки, каждый из которых имеет свою специфику (и методическую, и качественную, определяемую логикой исследования). Это:

  • изучение функционального значения морфологических струк-тур
  • сравнительно-цитологическое исследование общих за-кономерностей клеточной организации.

В изучении функциональ-ного значения клеточных структур и клетки как интегрирован-ной целостной системы, в свою очередь, можно выделить два подхода к проблеме, два способа ее анализа, условно назван-ные нами морфофункциональным и экспериментальным.

Цитология и другие науки

Несмотря на различные конечные задачи указанных выше биологических наук и цитологии, они тесно связаны между собой. С одной стороны, глубокое понимание общих закономер-ностей организации клеток невозможно без выяснения конкрет-ных проявлений этих закономерностей, т. е. всего спектра моди-фикаций общих признаков, свойственных конкретным разновид-ностям клеток. С другой стороны, достаточно полное выяснение специфических особенностей конкретного типа клеток требует знания тех общих механизмов, на основе которых и появляется та или иная специфическая особенность. Материал с сайта http://wiki-med.com

В цитологических исследованиях при дис-кретном анализе клеточных структур и процессов широко используются биохимические и молекулярно-биологические ме-тоды, благодаря чему интересы цитологов, биохимиков, биофи-зиков и молекулярных биологов во многих случаях совпадают. Глубокое знание закономерностей молекулярного и надмолеку-лярного уровней организации необходимо цитологам для успеш-ного анализа более высоких уровней организации клетки.

Специфической особенностью современной цитологии помимо ее тесной связи с частными цитологи-ческими науками является не менее тесная связь с науками, занимающимися тонкими механизмами организации живой ма-терии на ее низших субклеточных уровнях.

Прогрессивное развитие общей цитологии во многом обус-ловлено внедрением в практику некоторых принципиально но-вых методов, оказавших существенное влияние на разработку ее основных проблем.

Материал с сайта http://Wiki-Med.com

На этой странице материал по темам.