Атомная и ядерная физика. Энергия фотонов равна

Из химии и предыдущих разделов физики мы знаем, что все тела построены из отдельных, очень малых частиц - атомов и молекул. Под атомами понимают мельчайшую частицу химического элемента. Молекулой называют более сложную частицу, состоящую из нескольких ато...

§ 195. Постоянная Авогадро. Размеры и массы атомов

Одной из важных постоянных атомной физики является постоянная Авогадро (см. том I, § 242) - число структурных элементов (атомов, молекул, ионов и т. п.) в моле вещества. Зная постоянную Авогадро, можно найти величины, характеризующие отдельный атом: массу...

§ 196. Элементарный электрический заряд

Законы электролиза, открытые Фарадеем, свидетельствуют в пользу существования мельчайших, неделимых количеств электричества. При электролизе один моль любого - валентного элемента переносит заряд кулонов (- постоянная Фарадея). На один атом (точнее, ио...

§ 197. Единицы заряда, массы и энергии в атомной физике

Итак, заряд любой частицы содержит всегда целое число элементарных зарядов. Для частицы атомных размеров это целое число будет к тому же и небольшим. Ввиду этого в атомной физике удобно за единицу электрического заряда принять элементарный заряд. За един...

§ 198. Измерение массы заряженных частиц. Масс-спектрограф

Из курса электричества мы знаем, что на заряженную частицу, движущуюся в магнитном поле, действует сила, называемая силой Лоренца. Сила Лоренца перпендикулярна к магнитному полю и к скорости частицы, и ее направление определяется правилом левой руки (рис....

§ 199. Масса электрона. Зависимость массы от скорости

В опыте по измерению массы электрона с помощью масс-спектрографа на фотопластинке обнаруживается только одна полоска. Так как заряд каждого электрона равен одному элементарному заряду, мы приходим к заключению, что все электроны обладают одной и той же ма...

§ 200. Закон Эйнштейна

В предыдущем параграфе мы установили связь между кинетической энергией тела и его массой: если телу сообщается кинетическая энергия, то его масса возрастает на величину. Эта связь носит общий характер: она относится к любым телам - большим и малым, заря...

§ 201. Массы атомов, изотопы

Рассмотрим результаты опытов по измерению массы положительных ионов. На рис. 352 представлена масс-спектрограмма положительных ионов неона. На спектрограмме четко видны три полоски различной интенсивности. Сравнивая расстояния от полосок до щели, можно по...

§ 202. Разделение изотопов. Тяжелая вода

Все изотопы данного элемента вступают в одни и те же химические реакции и образуют химические соединения, почти неотличимые по растворимости, летучести и подобным свойствам, используемым в химии для разделения элементов. Поэтому обычные химические методы...

§ 203. Ядерная модель атома

В предыдущих параграфах мы познакомились с данными о размерах и массах атомов. Перейдем теперь к вопросу о внутреннем строении атома. Изучению строения атома способствовало открытие явлений радиоактивности. Мы подробно остановимся на этих явлениях в гл. X...

§ 204. Энергетические уровни атомов

Опыты по рассеянию - частиц обнаружили существование в атомах тяжелого положительного ядра и электронной оболочки. Дальнейшие сведения о свойствах атомов дало изучение таких атомных процессов, которые сопровождаются изменением внутренней энергии атома. С...

§ 205. Вынужденное излучение света. Квантовые генераторы

Представление о квантовых энергетических уровнях атомов было введено в физику Н. Бором в 1913 г. Оно очень естественно объяснило линейчатые атомные спектры как результат процессов спонтанного (самопроизвольного) излучения и резонансного (избирательного) п...

§ 206. Атом водорода. Своеобразие законов движения электрона в атоме

Существование дискретных энергетических уровней является фундаментальным свойством атомов (так же как и молекул, и атомных ядер). Попробуем применить известные нам законы физики, чтобы представить себе устройство атома, объясняющее дискретность его энерге...

§ 207. Многоэлектронные атомы. Происхождение оптических и рентгеновских спектров атомов

Точно так же, как и в атоме водорода, в более сложных атомах электроны могут двигаться вокруг ядра только по определенным избранным орбитам. Различные экспериментальные данные указывают, что возможные орбиты электронов в атоме группируются в систему оболо...

§ 208. Периодическая система элементов Менделеева

Периодический закон изменения химических свойств элементов, открытый Д. И. Менделеевым, является отражением глубоких закономерностей строения атомов; он имеет поэтому первостепенное значение не только для химии, но и для физики. Правильная теория строения...

§ 209. Квантовые и волновые свойства фотонов

Как отмечалось в § 184, законы фотоэффекта были объяснены в 1905 г. А. Эйнштейном с помощью представления о световых квантах (фотонах). Согласно этим представлениям энергия электромагнитного поля не может делиться на произвольные части, а излучается и пог...

§ 210. Понятие о квантовой (волновой) механике

Изучение строения атома привело к выводу, что поведение электронов в атоме, так же как поведение фотонов, противоречит привычным законам классической физики, т. е. законам, установленным в опытах с телами макроскопических размеров. Существование дискретны...

§ 211. Открытие радиоактивности. Радиоактивные элементы

Уран, торий и некоторые другие элементы обладают свойством непрерывно и без каких-либо внешних воздействий (т. е. под влиянием внутренних причин) испускать невидимое излучение, которое подобно рентгеновскому излучению способно проникать сквозь непрозрачны...

§ 212. a-, b- и y-излучение. Камера Вильсона.

Как мы видели, радиоактивные излучения обладают ионизационным и фотографическим действием. Оба эти действия свойственны как быстрым заряженным частицам, так и рентгеновскому излучению, представляющим собой электромагнитные волны. Чтобы выяснить, обладает...

§ 213. Способы регистрации заряженных частиц

В развитии знаний о «микромире», в частности в изучении явлений радиоактивности, исключительную роль сыграли приборы, позволяющие регистрировать ничтожное действие одной-единственной частицы атомных размеров. Одним из таких замечательных приборов является...

§ 214. Природа радиоактивного излучения

1. излучение. По своим свойствам излучение подобно рентгеновскому излучению. Как и рентгеновское излучение, оно ионизует воздух, действует на фотопластинку и не отклоняется магнитным полем. При прохождении через кристаллы излучение, подобно рентгеновскому...

§ 215. Радиоактивный распад и радиоактивные превращения

Изучение радиоактивности убеждает нас в том, что радиоактивные излучения испускаются атомными ядрами радиоактивных элементов. Это очевидно в отношении частиц, так как в электронной оболочке их просто нет. Ядерное происхождение частиц доказывается химическ...

§ 216. Применения радиоактивности

1. Биологические действия. Радиоактивные излучения гибельно действуют на живые клетки. Механизм этого действия связан с ионизацией атомов и разложением молекул внутри клеток при прохождении быстрых заряженных частиц. Особенно чувствительны к воздействию и...

> Атомная и ядерная физика

Поиск в библиотеке по авторам и ключевым словам из названия книги:

Атомная и ядерная физика

  • Абрагам А. Ядерный магнетизм. М.: ИЛ, 1963 (djvu)
  • Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. Том 1. М.: Мир, 1972 (djvu)
  • Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. Том 2. М.: Мир, 1973 (djvu)
  • Адлер С., Дашен Р. Алгебры токов и их применение в физике частиц. М.: Мир, 1970 (djvu)
  • Ахиезер А.И., Рекало М.П. Биография элементарных частиц. Киев: Наук. думка, 1979 (djvu)
  • Ахиезер А., Померанчук И. Некоторые вопросы теории ядра (2-е изд.) М.-Л.: ГИТТЛ, 1950 (djvu)
  • Байер В.Н., Катков В.М., Фадин В.С. Излучение релятивистских электронов. М.: Атомиздат, 1973 (djvu)
  • Балдин A.M., Гольданский В.И., Розенталь И.Л. Кинематика ядерных реакций. М.: ГИФМЛ, 1959 (djvu)
  • Бартон Г. Дисперсионные методы в теории поля. М.: Атомиздат, 1968 (djvu)
  • Бейзер А. Основные представления современной физики. М.: Атомиздат, 1973 (djvu)
  • Бернстейн Дж. Элементарные частицы и их токи. М.: Мир, 1970 (djvu)
  • Бете Г., Швебер С., Гофман Ф. Мезоны и поля. Том 1. Поля. М.: Ин. лит., 1957 (djvu)
  • Бете Г., Гофман Ф. Мезоны и поля. Том 2. Мезоны. М.: Ин. лит., 1957 (djvu)
  • Бете Г., Моррисон Ф. Элементарная теория ядра. М.: Ин. лит., 1958 (djvu)
  • Биленький С.М. Введение в диаграммную технику Фейнмана. М.: Атомиздат, 1971 (djvu)
  • Бор Н. Избранные научные труды. Том I. Статьи 1909-1925. М.: Наука, 1970 (djvu)
  • Бор Н. Избранные научные труды. Том II. Статьи 1925 -1961. М.: Наука, 1971 (djvu)
  • Бор Н. Прохождение атомных частиц через вещество. М.: ИЛ, 1950 (djvu)
  • Боргман И.И. (ред.) Новые идеи в физике. Вып. 1. Строение вещества. СПб.: Образование, 1911 (djvu)
  • Борн М. Лекции по атомной механике. Харьков-Киев: НТИУ, 1934 (djvu)
  • Борн M. Атомная физика. М.: Мир, 1965 (djvu)
  • Браун Дж.Е., Джексон А.Д. Нуклон-нуклонные взаимодействия. М.: Атомиздат, 1979 (djvu)
  • Бюклинг Е., Каянти К. Кинематика элементарных частиц. М.: Мир, 1975 (djvu)
  • Вайтман А.С. Проблемы в релятивистской динамике квантованных полей. М.: Наука, 1967 (djvu)
  • Васильев А.Н. Функциональные методы в квантовой теории поля и статистике. Л.: Изд-во Ленингр. ун-та, 1976 (djvu)
  • Вентцель Г. Введение в квантовую теорию волновых полей. М.: Гостехиздат, 1947 (djvu)
  • Вильсон Дж. Камера Вильсона. М.: ИЛ, 1954 (djvu)
  • Волков М.К., Первушин В.Н. Существенно нелинейные квантовые теории, динамические симметрии и физика мезонов. М.: Атомиздат, 1978 (djvu)
  • Гайтлер В. Квантовая теория излучения. М.: ИЛ, 1956 (djvu)
  • Гейзенберг В. Введение в единую полевую теорию элементарных частиц. М.: Мир, 1968 (djvu)
  • Горбунова О.И., Зайцева А.М., Красников С.Н. Задачник-практикум по общей физике. Оптика. Атомная физика. М.: Просвещение, 1977 (djvu)
  • Гриб А.А. Проблема неинвариантности вакуума в квантовой теории поля. М.: Атомиздат, 1978 (djvu)
  • Давыдов А.С. Теория атомного ядра. М.: Физматгиз, 1958 (djvu)
  • Де Альфаро B., Фубини C., Фурлан Г., Росетти К. Токи в физике адронов. М.: Мир, 1976 (djvu)
  • Детлаф А.А., Яворский Б.М. Курс физики. Том 3. Волновые процессы. Оптика. Атомная и ядерная физика (3-е издание). М.: Высшая школа, 1979 (djvu)
  • Джеффрис К. Динамическая ориентация ядер. М.: Мир, 1965 (djvu)
  • Зисман Г.А., Тодес О.М. Курс обшей физики. Том 3. Оптика, физика атомов и молекул, физика атомного ядра и микрочастиц (4-е издание). М.: Наука, 1970 (djvu)
  • Иваненко Д., Соколов А. Классическая теория поля (2-е изд.) М.-Л.: ГИТТЛ, 1951 (djvu)
  • Иваненко Д. Элементарные частицы и компенсирующие поля. Сборник статей. М.: Мир, 1964 (djvu)
  • Камал А. Задачи по физике элементарных частиц. М.: Наука, 1968 (djvu)
  • Коккедэ Я. Теория кварков. М.: Мир, 1971 (djvu)
  • Коллинз П. Введение в реджевскую теорию и физику высоких энергий. М.: Атомиздат, 1980 (djvu)
  • Коллинз П., Сквайрс Ю. Полюса Редже в физике частиц. М.: Мир, 1971 (djvu)
  • Ли Ц., Ву Ц. Слабые взаимодействия. М.: Мир, 1968 (djvu)
  • Ломсадзе Ю.М. Теоретико-групповое введение в теорию элементарных частиц. М.: Высш. школа, 1962 (djvu)
  • Лорентц Г.А. Теория электронов и ее применение к явлениям света и теплового излучения (2-е изд.). М.: ГИТТЛ, 1953 (djvu)
  • Лоудон Р. Квантовая теория света. М.: Мир, 1976 (djvu)
  • Марков М.А. Гипероны K-мезоны. М.: ГИФМЛ, 1958 (djvu)
  • Маршак Р., Судершан Э. Введение в физику элементарных частиц. М.: ИЛ, 1962 (djvu)
  • Матвеев А.Н. Квантовая механика и строение атома. М.: Высш. школа, 1965 (djvu)
  • Менский М.Б. Метод индуцированных представлении: пространство-время и концепция частиц. М.: Наука, 1976 (djvu)
  • Мигдал А.Б. Фермионы и бозоны в сильных полях. М.: Наука, 1978 (djvu)
  • Минлос Р.А. (ред.) Математика. Новое в зарубежной науке-12. Евклидова квантовая теория поля. Марковский подход. Сборник статей. М.: Мир, 1978 (djvu)
  • Мотт Н., Месси Г. Теория атомных столкновений. М.: ИЛ, 1951 (djvu)
  • Мошинский М. Гармонический осциллятор в современной физике: от атомов до кварков. М.: Мир, 1972 (djvu)
  • Мэтьюс П. Релятивистская квантовая теория взаимодействий элементарных частиц. М.: ИЛ, 1959 (djvu)
  • Нгуен Ван Хьеу Лекции по теории унитарной симметрии элементарных частиц. М.: Атомиздат, 1967 (djvu)
  • Нелипа Н.Ф. Введение в теорию сильновзаимодействующих элементарных частиц. М.: Атомиздат, 1970 (djvu)
  • Нишиджима К. Фундаментальные частицы. М.: Мир, 1965 (djvu)
  • Новожилов Ю.В. Введение в теорию элементарных частиц. М.: Наука, 1972 (djvu)
  • Ньютон Р. Теория рассеяния волн и частиц. М.: Мир, 1969 (djvu)
  • Окунь Б. Слабое взаимодействие элементарных частиц. М.: Физматгиз, 1963 (djvu)
  • Очелков Ю.П., Прилуцкий О.Ф., Розенталь И.Л., Усов В.В. Релятивистская кинетика и гидродинамика. М.: Атомиздат, 1979 (djvu)
  • Паули В. Релятивистские полевые теории элементарных частиц. М.: 1947 (djvu)
  • Петрина Д.Я., Иванов С.С., Ребенко А.Л. Уравнения для коэффициентных функций матриц рассеяния. М.: Наука, 1979 (djvu)
  • Поль Р.В. Оптика и Атомная физика. М.: Наука, 1966 (djvu)
  • Попов В.Н. Континуальные интегралы в квантовой теории поля и статистической физике. М.: Атомиздат, 1976 (djvu)
  • Путилов К.А., Фабрикант В.А. Курс физики. Том 3. Оптика. Атомная физика. Ядерная физика (2-е издание). М.: ГИФМЛ, 1963 (djvu)
  • Ракобольская И.В. Ядерная физика. М.: Изд-во МГУ, 1971 (djvu)
  • Романцов Ю.А. Исследование динамики релятивистских частиц в поле резонансных систем с распределенным взаимодействием. Препринт № 47. Харьков: РИ АН УССР, 1990 (djvu)
  • Румер Ю.Б., Фет А.И. Теория групп и квантованные поля. М.: Наука, 1977 (djvu)
  • Савельев И.В. Курс общей физики. Том З. Оптика. Атомная физика. М.: Наука, 1971 (djvu)
  • Сакураи Дж. Токи и мезоны. М.: Атомиздат, 1972 (djvu)
  • Синаноглу О. Многоэлектронная теория атомов, молекул и их взаимодействий. М.: Мир, 1966 (djvu)
  • Собельман И.И. Введение в теорию атомных спектров. М.: ГИФМЛ, 1963 (djvu)
  • Соколов А.А. Элементарные частицы (Расширенная публичная лекция, прочитанная в лектории МГУ 10 января 1962 г.) М.: МГУ, 1963 (djvu)
  • Соколов А.А., Тернов И.М. Квантовая механика и атомная физика. М.: Просвещение, 1970

11.1. Модель атома Резерфорда

До 1911 г. не было правильных представлений о строении атома. В 1911 г. Резерфорд и его сотрудники исследовали рассеяние -частиц при прохождении через тонкие металлические слои (-частицы испускают радиоактивные элементы. Они представляют собой ядра атомов гелия с зарядом 2е и массой, приблизительно в 4 раза большей, чем масса атома водорода. Скорость их достигает 10 7 м/с ). Было установлено, что при облучении листка золота толщиной 6 мкм значительное отклонение от первоначального направления движения испытывала лишь одна из 8000 -частиц. Результат получился таким же неожиданным для того времени, как если бы при обстреле кирпичами кирпичной стены толщиной в несколько тысяч кирпичей почти все кирпичи проходили бы сквозь стену и лишь некоторые отскакивали бы от стены.

На основании своих исследований Резерфорд предложил ядерную модель атома. Согласно этой модели атом состоит из положительного ядра, имеющего заряд Z е (Z - порядковый номер элемента в таблице Менделеева, е - элементарный заряд), размер 10 -5 -10 -4 А (1А= 10 -10 м) и массу практически равную массе атома. Вокруг ядра по замкнутым орбитам движутся электроны, образуя электронную оболочку атома. Так как атомы нейтральны, то вокруг ядра должно вращаться Z электронов, суммарный заряд которых - Z е. Размеры атома определяются размерами

внешних орбит электронов и составляют порядка единиц А.

Масса электронов составляет очень малую долю массы ядра (для водорода 0,054%, для остальных элементов менее 0,03%). Понятие “размер электрона” не удается сформулировать непротиворечиво, хотя r o  10 -3 А называют классическим радиусом электрона.

Итак, ядро атома занимает ничтожную часть объема атома и в нем сосредоточена практически вся ( 99,95%) масса атома. Если бы ядра атомов располагались вплотную друг к другу, то земной шар имел бы радиус  200 м а не  6400 км (плотность вещества атомных ядер  1,810 17 кг/м 3). Поэтому с точки зрения атомистических представлений всякую среду следует рассматривать как вакуум, в который вкраплены атомные ядра и электроны (или по другому - как вакуум, слегка испорченный вкрапленными в него атомными ядрами и электронами).

Результаты опытов по рассеиванию -частиц свидетельствуют в пользу ядерной модели атома. Однако ядерная модель оказалась в противоречии с законами классической механики и электродинамики. Покажем это.

Предположим, что электрон движется вокруг ядра по круговой орбите радиуса r . При этом кулоновская сила взаимодействия между электроном и ядром сообщает электрону нормальное (центростремительное) ускорение, определяемое из второго закона Ньютона.

При r = 1А из (1) находим, что а n 10 22 м/с 2 . Согласно классической электродинамике ускоренно движущиеся электроны должны излучать электромагнитные волны (см. параграф 2.4.) и вследствие этого терять энергию. В результате электроны будут приближаться к ядру и в конце концов упадут на него, что противоречит действительности.

Выход из создавшего тупика был найден в 1913 г. Нильсом Бором, который сформулировал 2 постулата, противоречащие классическим представлениям.

11.2. Постулаты Бора

1. Первый постулат заключается в следующем:

Существуют только некоторые стационарные состояния атома, находясь в которых он не излучает энергию. Этим стационарным состояниям соответствуют вполне определенные (стационарные) орбиты, по которым движется электроны. При движении по стационарным орбитам электроны, несмотря на наличие у них ускорения, не излучают электромагнитных волн.

В стационарном состоянии атома электрон должен иметь дискретные (квантованные) значения момента импульса

L n = mr v = n, n = 1, 2, ... (2)

Здесь m , v - масса и скорость электрона, r - радиус его орбиты. С учетом (1) и (2) находим радиусы стационарных орбит электронов

. (3)

Для атома водорода (Z =1 ) радиус первой орбиты электрона при n = 1 , называемый первым боровским радиусом (а), равен

r 1 = a = 0,528 А. (4)

внутренняя энергия атома слагается из кинетической энергии электрона (Т = mv 2 /2 ) и потенциальной энергии взаимодействия электрона с ядром (U =- Ze 2 /(4  0 r )),

(5)

при выводе формулы (5) учли формулу (1). Подставляя в (5) квантовые радиусы орбит электронов (3), получим, что энергия атома (которая равна энергии электрона, так как ядро атома неподвижно) может принимать только следующие дозволенные дискретные (квантовые) значения

где знак минус означает, что электрон находится в связанном состоянии. (В атомной физике энергия измеряется в электронвольтах, 1 эВ = 1,6 10 -19 Дж ).

2. Второй постулат устанавливает:

При переходе атома (электрона) из одного стационарного состояния в другое испускается или поглощается один фотон с энергией

где Е n , Е m - энергии атома (электрона) в стационарных состояниях n и m , которые определяются согласно (6).

Исходя из своих постулатов Бор создал полуклассическую теорию простейшего водородоподобного атома и объяснил линейчатый спектр атом водорода. К водородоподобным атомам относятся атом водорода (z=1), ион гелия Не + (z=2), ион лития Li ++ (Z =3 ) и др. Для них характерно, что вокруг ядра с зарядом = Ze вращается только один электрон.

11.3. Линейчатый спектр атома водорода

Спектр излучения атомарного водорода состоит из отдельных спектральных линий, которые располагаются в определенном порядке. В 1885 г. Бальмер установил, что длины волн (или частоты) этих линий могут быть представлены формулой. Действительно, из (7) с учетом (6) для водорода (Z = 1), следует, что

где R = 2,07 10 16 с -1 - постоянная Ридберга

Учитывая, что 1/ = v /с = /2с и используя (8), найдем

, (9)

где R =1,0974 10 7 м -1 - называется также постоянной Ридберга.

На рис. 1 изображена схема энергeтических уровней атома водорода, расчитанных согласно (6) при z=1.

0 n = 

При переходе электрона с более высоких энергетических уровней на уровень n = 1 возникает ультрофиолетовое излучение или излучение серии Лаймана (СЛ). Когда электроны переходя на уровень n = 2 возникает видимое излучение или излучение серии Бальмера (СБ). При переходе электронов с более высоких уровней на уровень n = 3 возникает инфракрасное излучение, или излучение серии Пашена (СП) и т.д.

Частоты или длины волн, возникающего при этом излучения, определяются по формулам (8) или (9) при m =1 - для серии Лаймана, при m =2 - для серии Бальмера и при m = 3 - для серии Пашена. Энергия фотонов определяется по формуле (7), которую с учетом (6) можно привести для водородоподобных атомов к виду:

эВ (10)

Теория Бора сыграла огромную роль в создании атомной физики. В период ее развития (1913 - 1925 г.) были сделаны важные открытия, например, в области атомной спектроскопии. Однако в теории Бора обнаружились существенные недостатки, например, с ее помощью невозможно создать теорию более сложных, чем атом водорода, атомов. Поэтому становилось очевидным, что теория Бора представляет собой переходной этап на пути создания последовательной теории атомных и ядерных явлений. Такой последовательной теорией явилась квантовая (волновая) механика.

11.4 Атом водорода согласно квантовой механики. Квантовые числа электрона в атоме

Результаты полученные согласно теории Бора в решении задачи об энергетических уровнях электрона в водородоподобных атомах, получены в квантовой механике без привлечения постулатов Бора. Покажем это.

Состояние электрона в водородоподобном атоме описывается некоторой волновой функцией , удовлетворяющей стационарному уравнению Шредингера [см.(9.22)]. Учитывая, что потенциальная энергия электрона

где r - расстояние между электроном и ядром, получим уравнение Шредингера в виде

(12)

Целесообразно воспользоваться сферической системой координат r , , и искать решение этого уравнения в виде следующих собственных функций

(13)

где n , l , m - целочисленные параметры собственных функций. При этом n - называют главным квантовым числом, l - орбитальным (азимутальным) и m - магнитным квантовым числом.

Доказывается, что уравнение (12) имеет решение только при дискретных отрицательных значениях энергии

где n = 1, 2, 3,... главные квантовые числа.

Сравнение с выражением (6) показывает, что квантовая механика приводит к таким же значениям энергии, какие получились и в теории Бора. Однако в квантовой механике эти значения получаются как следствие основных положений этой науки.

Подставив в (14) Z =1 и приняв n = 1 , получим значение энергии основного состояния (т.е. состояния с наименьшей энергией) атома водорода

эВ. (15)

Из решения (13) уравнения Шредингера (12) также следует, что момент импульса электрона в атоме квантуется по формуле

(16)

где l = 0, 1, 2, ... (n -1), орбитальное (азимутальное) квантовое число.

Проекция момента импульса L электрона на направление Z магнитного поля может принимать лишь целочисленные значения, кратные (пространственное квантование) т.е.

m - называют магнитным квантовым числом. При данном магнитное квантовое число может принимать различных значений.

Атомное ядро — это центральная часть атома, состоящая из протонов и нейтронов (которые вместе называются нуклонами ).

Ядро было открыто Э. Резерфордом в 1911 г. при исследовании прохождения α -частиц через вещество. Оказалось, что почти вся масса атома (99,95%) сосредоточена в ядре. Размер атомного ядра имеет порядок величины 10 -1 3 -10 - 12 см, что в 10 000 раз меньше размера электронной оболочки.

Предложенная Э. Резерфордом планетарная модель атома и экспериментальное наблюдение им ядер водорода , выбитых α -частицами из ядер других элементов (1919-1920 гг.), привели уче-ного к представлению о протоне . Термин протон был введен в начале 20-х гг XX ст.

Протон (от греч. protons — первый, символ p ) — стабильная элементарная частица, ядро ато-ма водорода.

Протон — положительно заряженная частица, заряд которой по абсолютной величине равен заряду электрона e = 1,6 · 10 -1 9 Кл. Масса протона в 1836 раз больше массы электрона. Масса покоя протона m р = 1,6726231 · 10 -27 кг = 1,007276470 а.е.м.

Второй частицей, входящей в состав ядра, является нейтрон .

Нейтрон (от лат. neuter — ни тот, ви другой, символ n ) — это эле-ментарная частица, не имеющая заряда, т. е. нейтральная.

Масса нейтрона в 1839 раз превышает массу электрона. Масса нейтрона почти равна (незначительно больше) массе протона: масса покоя свободного нейтрона m n = 1,6749286 · 10 -27 кг = 1,0008664902 а.е.м. и превосходит массу протона па 2,5 массы электрона. Нейтрон, наря-ду с протоном под общим названием нуклон входит в состав атомных ядер.

Нейтрон был открыт в 1932 г. учеником Э. Резерфорда Д. Чедвигом при бомбардировке бериллия α -частицами. Возникающее при этом излучение с большой проникающей способностью (преодолевало пре-граду из свинцовой пластины толщиной 10-20 см) усиливало свое действие при прохождении через парафиновую пластину (см. рисунок). Оценка энергии этих частиц по трекам в камере Вильсона, сделанная супругами Жолио-Кюри, и дополнительные наблюдения позволили исключить первоначальное предположение о том, что это γ -кванты. Большая проникающая способность новых частиц, названных ней-тронами, объяснялась их электронейтральностью. Ведь заряженные частицы активно взаимодействуют с веществом и быстро теряют свою энергию. Существование нейтронов было предсказано Э. Резерфордом за 10 лет до опытов Д. Чедвига. При попадании α -частиц в ядра бериллия происходит следующая реакция:

Здесь — символ нейтрона; заряд его равен нулю, а относительная атомная масса прибли-зительно равна единице. Нейтрон — нестабильная частица: свободный нейтрон за время ~ 15 мин. распадается на протон, электрон и нейтрино — частицу, лишенную массы покоя.

После открытия Дж. Чедвиком нейтрона в 1932 г. Д. Иваненко и В. Гейзенберг независимо друг от друга предложили протонно-нейтронную (нуклонную) модель ядра . Согласно этой моде-ли, ядро состоит из протонов и нейтронов. Число протонов Z совпадает с порядковым номером элемента в таблице Д. И. Менделеева .

Заряд ядра Q определяется числом протонов Z , входящих в состав ядра, и кратен абсолютной величине заряда электрона e :

Q = +Ze.

Число Z называется зарядовым числом ядра или атомным номером .

Массовым числом ядра А называется общее число нуклонов, т. е. протонов и нейтронов, содер-жащихся в нем. Число нейтронов в ядре обозначается буквой N . Таким образом, массовое число равно:

А = Z + N.

Нуклонам (протону и нейтрону) приписывается массовое число, равное единице, электрону — нулевое значение.

Представлению о составе ядра содействовало также открытие изотопов .

Изотопы (от греч. isos — равный, одинаковый и topoa — место) — это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число прото-нов (Z ) и различное число нейтронов (N ).

Изотопами называются также ядра таких атомов. Изотопы являются нуклидами одного эле-мента. Нуклид (от лат. nucleus — ядро) — любое атомное ядро (соответственно атом) с заданными числами Z и N . Общее обозначение нуклидов имеет вид ……. где X — символ химического эле-мента, A = Z + N — массовое число.

Изотопы занимают одно и то же место в Периодической системе элементов, откуда и про-изошло их название. По своим ядерным свойствам (например, по способности вступать в ядерные реакции) изотопы, как правило, существенно отличаются. Химические (b почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемен-та определяются зарядом ядра, поскольку именно он влияет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н протий , 2 Н дейтерий , 3 Н тритий столь сильно отличаются по массе, что и их физические и хими-ческие свойства различны. Дейтерий стабилен (т.е. не радиоактивен) и входит в качестве неболь-шой примеси (1: 4500) в обычный водород. При соединении дейтерия с кислородом образуется тяжелая вода . Она при нормальном атмосферном давлении кипит при 101,2 °С и замерзает при +3,8 ºС. Тритий β -радиоактивен с периодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактив-ные изотопы.

Изотопы урана. У элемента урана есть два изотопа — с массовыми числами 235 и 238. Изотоп составляет всего 1/140 часть от более распространенного .

Слайд 2

Слайд 3

Слайд 4

А -18. 1.На рисунке представлен фрагмент Периодической системы элементов Д. И. Менделеева. Под названием элемента приведены массовые числа его основных стабильных изотопов, нижний индекс около массового числа указывает (в процентах) распростра- ненностьизотопа в природе. Число протонов и число нейтронов в ядре самого распространенного изотопа бора соответственно равно 1) 6 протонов, 5 нейтронов 2) 10 протонов, 5 нейтронов 3) 6 протонов, 11 нейтронов 4) 5 протонов, 6 нейтронов

Слайд 5

2. На рисунке приведены спектр поглощения разреженных атомарных паров неизвестного вещества (в середине) и спектры поглощения паров известных элементов (вверху и внизу). По анализу спектров можно утверждать, что неизвестное вещество содержит 1) только кальций (Са) 2) только стронций (Sr) 3) кальций и еще какое-то неизвестное вещество 4) стронций и еще какое-то неизвестное вещество

Слайд 6

3. Гамма-излучение - это 1) поток ядер гелия 2) поток протонов 3) поток электронов 4) электромагнитные волны

Слайд 7

4. Атом натрия 2311Na содержит 11 протонов, 23 нейтрона и 34 электрона 2) 23 протона, 11 нейтронов и 11 электронов 3) 12 протонов, 11 нейтронов и 12 электронов 4) 11 протонов, 12 нейтронов и 11 электронов

Слайд 8

5. Какие заряд Z и массовое число А будет иметь ядро элемента, получившегося из ядра изотопа после одного α-распада и одного электронного β-распада? 1) A=213, Z=82 2) A=211, Z=83 3) A=219, Z=86 4) A=212, Z=83

Слайд 9

6. Ядро атома содержит 10 нейтронов и 9 протонов, вокруг него обращаются 8 электронов. Эта система частиц ион фтора 2) ион неона 3) атом фтора 4) атом неона

Слайд 10

7. В камере Вильсона, помещенной во внешнее магнитное поле таким образом, что вектор магнитного поля направлен перпендикулярно плоскости рисунка на нас, были сфотографированы треки 2-х частиц.Какой из треков может принадлежать α-частице 1) только 1-й 2) только 2-й 3) 1-й и 2-й 4) ни один из приведенных

Слайд 11

8. В камере Вильсона, помещенной во внешнее магнитное поле таким образом, что вектор магнитного поля направлен перпендикулярно плоскости рисунка на нас, были сфотографированы треки 2-х частиц. Какой из треков может принадлежать электрону? 1) только 1-й 2) только 2-й 3) 1-й и 2-й 4) ни один из приведенных

Слайд 12

9. α-излучение - это 1) поток ядер гелия 2) поток протонов 3) поток электронов 4) электромагнитные волны

Слайд 13

10. Детектор радиоактивных излучений помещен в закрытую картонную коробку с толщиной стенок ≈ 1 мм. Какие излучения он может зарегистрировать? 1) α и β 2) α и Ƴ 3) β и Ƴ 4) α, β,Ƴ

Слайд 14

11. Какой вид ионизирующих излучений из перечисленных ниже наиболее опасен при внешнем облучении человека? 1) альфа-излучение 2) бета-излучение 3) гамма-излучение 4) все одинаково опасны

Слайд 15

12. В результате электронного β-распада ядра атома элемента с зарядовым числом Z получается ядро атома элемента с зарядовым числом 1) Z – 2 2) Z + 1 3) Z – 1 4) Z + 2

Слайд 16

13. В каком из перечисленных ниже приборов для регистрации ядерных излучений прохождение быстрой заряженной частицы вызывает появление импульса электрического тока в газе? 1) в счетчике Гейгера 2) в камере Вильсона 3) в фотоэмульсии 4) в сцинтилляционном счетчике

Слайд 17

14. Как изменится число нуклонов в ядре атома радиоактивного элемента, если ядро испустит -квант? 1) увеличится на 2 2) не изменится 3) уменьшится на 2 4) уменьшится на 4

Слайд 18

15. На основании исследования явления рассеяния альфа-частиц при прохождении через тонкие слои вещества Резерфорд сделал вывод, что альфа-частицы являются ядрами атомов гелия 2) альфа-распад является процессом самопроизвольного превращения ядра одного химического элемента в ядро другого элемента 3) внутри атомов имеются положительно заряженные ядра очень малых размеров, вокруг ядер обращаются электроны 4) при альфа-распаде атомных ядер выделяется ядерная энергия, значительно большая, чем в любых химических реакциях