Где находится нервный центр поддержания гомеостаза. Медицинский информационный портал "вивмед"

Гомеоста́з (др.-греч. ὁμοιοστάσις от ὅμοιος - одинаковый, подобный и στάσις - стояние, неподвижность) - саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды. Гомеостаз популяции - способность популяции поддерживать определённую численность своих особей длительное время.

Общие сведения

Свойства гомеостаза

  • Нестабильность
  • Стремление к равновесию
  • Непредсказуемость
  • Регуляция уровня основного обмена в зависимости от пищевого режима.

Основная статья: Обратная связь

Экологический гомеостаз

Биологический гомеостаз

Клеточный гомеостаз

Регуляция химической деятельности клетки достигается с помощью ряда процессов, среди которых особое значение имеет изменение структуры самой цитоплазмы, а также структуры и активности ферментов. Авторегуляция зависит от температуры, степени кислотности, концентрации субстрата, присутствия некоторых макро- и микроэлементов. Клеточные механизмы гомеостаза направлены на восстановление естественно погибших клеток тканей или органов в случае нарушения их целостности.

Регенерация -процесс обновления структурных элементов организма и восстановление их количества после повреждения, направленный на обеспечение необходимой функциональной активности

В зависимости от регенерационной реакции ткани и органы млекопитающих можно разделить на 3 группы:

1)ткани и органы, для которых характерна клеточная регенерация(кости,рыхлая соединительная ткань, кроветворная система,эндотелий,мезотелий, слизистые оболочки желудочно-кишечного тракта, дыхательных путей и мочеполовой системы)

2)ткани и органы, для которых характерна клеточная и внутриклеточная регенерация (печень, почки, лёгкие, гладкие и скелетные мышцы, вегетативная нервная система, поджелудочная железа, эндокринная система)

3)ткани, для которых характерно преимущественно или исключительно внутриклеточная регенерация(миокард и ганглиозные клетки центральной нервной системы)

В процессе эволюции сформировались 2 типа регенерации: физиологическая и репаративная.

Другие сферы

Актуарий может говорить о рисковом гомеостазе , при котором, к примеру, люди, у которых в машине установлена антиблокировочная система, не находятся в более безопасном положении по сравнению с теми, у кого она не установлены, потому что эти люди бессознательно компенсируют более безопасный автомобиль рискованной ездой. Это происходит потому, что некоторые удерживающие механизмы - например, страх - перестают действовать.

стрессовом гомеостазе

Примеры

  • Терморегуляция
    • Может начаться дрожание скелетных мышц, если температура тела слишком низка.
  • Химическая регуляция

Источники

1. О.-Я.Л.Бекиш. Медицинская биология. - Минск: Ураджай, 2000. - 520 с. - ISBN 985-04-0336-5.

Тема № 13. Гомеостаз, механизмы его регуляции.

Организм как открытая саморегулирующаяся система.

Живой организм – открытая система, имеющая связь с окружающей средой посредством нервной, пищеварительной, дыхательной, выделительной систем и др.

В процессе обмена веществ с пищей, водой, при газообмене в организм поступают разнообразные химические соединения, которые в организме подвергаются изменениям, входят в структуру организма, но не остаются постоянно. Усвоенные вещества распадаются, выделяют энергию, продукты распада удаляются во внешнюю среду. Разрушенная молекула заменяется новой и т.д.

Организм – открытая, динамичная система. В условиях непрерывно меняющейся среды организм поддерживает устойчивое состояние в течение определенного времени.

Понятие о гомеостазе. Общие закономерности гомеостаза живых систем.

Гомеостаз – свойство живого организма сохранять относительное динамическое постоянство внутренней среды. Гомеостаз выражается в относительном постоянстве химического состава, осмотического давления, устойчивости основных физиологических функций. Гомеостаз специфичен и обусловлен генотипом.

Сохранение целостности индивидуальных свойств организма один из наиболее общих биологических законов. Этот закон обеспечивается в вертикальном ряду поколений механизмами воспроизведения, а на протяжении жизни индивидуума – механизмами гомеостаза.

Явление гомеостаза представляет собой эволюционно выработанное, наследственно-закрепленное адаптационное свойство организма к обычным условиям окружающей среды. Однако эти условия могут кратковременно или длительно выходить за пределы нормы. В таких случаях явления адаптации характеризуются не только восстановлением обычных свойств внутренней среды, но и кратковременными изменениями функции (например, учащение ритма сердечной деятельности и увеличение частоты дыхательных движений при усиленной мышечной работе). Реакции гомеостаза могут быть направлены на:

    поддержание известных уровней стационарного состояния;

    устранение или ограничение действия вредностных факторов;

    выработку или сохранение оптимальных форм взаимодействия организма и среды в изменившихся условиях его существования. Все эти процессы и определяют адаптацию.

Поэтому понятие гомеостаза означает не только известное постоянство различных физиологических констант организма, но и включает процессы адаптации и координации физиологических процессов, обеспечивающих единство организма не только в норме, но и при изменяющихся условиях его существования.

Основные компоненты гомеостаза были определены К. Бернаром, и их можно разделить на три группы:

А. Вещества, обеспечивающие клеточные потребности:

    Вещества, необходимые для образования энергии, для роста и восстановления – глюкоза, белки, жиры.

    NaCl, Ca и другие неорганические вещества.

    Кислород.

    Внутренняя секреция.

Б. Окружающие факторы, влияющие на клеточную активность:

    Осмотическое давление.

    Температура.

    Концентрация водородных ионов (рН).

В. Механизмы, обеспечивающие структурное и функциональное единство:

    Наследственность.

    Регенерация.

    Иммунобиологическая реактивность.

Принцип биологического регулирования обеспечивает внутреннее состояние организма (его содержание), а также взаимосвязь этапов онтогенеза и филогенеза. Этот принцип оказался широко распространненым. При его изучении возникла кибернетика – наука о целенаправленном и оптимальном управлении сложными процессами в живой природе, в человеческом обществе, промышленности (Берг И.А., 1962).

Живой организм представляет сложную управляемую систему, где происходит взаимодействие многих переменных внешней и внутренней среды. Общим для всех систем является наличие входных переменных, которые в зависимости от свойств и законов поведения системы преобразуются в выходные переменные (Рис. 10).

Рис. 10 - Общая схема гомеостаза живых систем

Выходные переменные зависят от входных и законов поведения системы.

Влияние выходного сигнала на управляющую часть системы называется обратной связью , которая имеет большое значение в саморегуляции (гомеостатической реакции). Различают отрицательную и положительную обратную связь.

Отрицательная обратная связь уменьшает влияние входного сигнала на величину выходного по принципу: «чем больше (на выходе), тем меньше (на входе)». Она способствует восстановлению гомеостаза системы.

При положительной обратной связи величина входного сигнала увеличивается по принципу: «чем больше (на выходе), тем больше (на входе)». Она усиливает возникшее отклонение от исходного состояния, что приводит к нарушению гомеостаза.

Однако все виды саморегуляции действуют по одному принципу: самоотклонение от исходного состояния, что служит стимулом для включения механизмов коррекции. Так, в норме рН крови составляет 7,32 – 7,45. Сдвиг рН на 0,1 приводит к нарушению сердечной деятельности. Этот принцип был описан Анохиным П.К. в 1935 году и назван принципом обратной связи, который служит для осуществления приспособительных реакций.

Общий принцип гомеостатической реакции (Анохин: «Теория функциональных систем»):

отклонение от исходного уровня → сигнал → включение регуляторных механизмов по принципу обратной связи → коррекция изменения (нормализация).

Так, при физической работе концентрация СО 2 в крови увеличивается → рН сдвигается в кислую сторону → сигнал поступает в дыхательный центр продолговатого мозга → центробежные нервы проводят импульс к межреберным мышцам и дыхание углубляется → снижение СО 2 в крови, рН восстанавливается.

Механизмы регуляции гомеостаза на молекулярно-генетическом, клеточном, организменном, популяционно-видовом и биосферном уровнях.

Регуляторные гомеостатические механизмы функционируют на генном, клеточном и системном (организменном, популяционно-видовом и биосферном) уровнях.

Генные механизмы гомеостаза. Все явления гомеостаза организма генетически детерминированы. Уже на уровне первичных генных продуктов существует прямая связь – «один структурный ген – одна полипептидная цепь». Причем между нуклеотидной последовательностью ДНК и последовательностью аминокислот полипептидной цепи существует коллинеарное соответствие. В наследственной программе индивидуального развития организма предусмотрено формирование видоспецифических характеристик не в постоянных, а в меняющихся условиях среды, в пределах наследственно обусловленной нормы реакции. Двуспиральность ДНК имеет существенное значение в процессах ее репликации и репарации. И то и другое имеет непосредственное отношение к обеспечению стабильности функционирования генетического материала.

С генетической точки зрения можно различать элементарные и системные проявления гомеостаза. Примерами элементарных проявлений гомеостаза могут служить: генный контроль тринадцати факторов свертывания крови, генный контроль гистосовместимости тканей и органов, позволяющий осуществить трансплантацию.

Пересаженный участок называется трансплантатом. Организм, у которого берут ткань для пересадки, является донором , а которому пересаживают – реципиентом . Успех трансплантации зависит от иммунологических реакций организма. Различают аутотрансплантацию, сингенную трансплантацию, аллотрасплантацию и ксенотрансплантацию.

Аутотрансплантация –пересадка тканей у одного и того же организма. При этом белки (антигены) трансплантата не отличаются от белков реципиента. Иммунологическая реакция не возникает.

Сингенная трансплантация проводится у однояйцовых близнецов, имеющих одинаковый генотип.

Аллотрансплантация пересадка тканей от одной особи к другой, относящихся к одному виду. Донор и реципиент отличаются по антигенам, поэтому у высших животных наблюдается длительное приживление тканей и органов.

Ксенотрансплантация –донор и реципиент относятся к разным видам организмов. Этот вид трансплантации удается у некоторых беспозвоночных, но у высших животных такие трансплантанты не приживаются.

При трансплантации большое значение имеет явление иммунологической толерантности (тканевой совместимости). Подавление иммунитета в случае пересадки тканей (иммунодепрессия) достигается: подавлением активности иммунной системы, облучением, введением антилимфотической сыворотки, гормонов коры надпочечников, химических препаратов – антидепрессантов (имуран). Основная задача подавить не просто иммунитет, а трансплантационный иммунитет.

Трансплантационный иммунитет определяется генетической конституцией донора и реципиента. Гены, ответственные за синтез антигенов, вызывающих реакцию на пересаженную ткань, называются генами тканевой несовместимости.

У человека главной генетической системой гистосовместимости является система HLA (Human Leukocyte Antigen). Антигены достаточно полно представлены на поверхности лейкоцитов и определяются с помощью антисывороток. План строения системы у человека и животных одинаков. Принята единая терминология для описания генетических локусов и аллелей системы HLA. Антигены обозначаются: HLA-A 1 ; HLA-A 2 и т.д. Новые антигены, окончательно не идентифицированные обозначают – W (Work). Антигены системы HLA делят на 2 группы: SD и LD (Рис. 11).

Антигены группы SD определяются серологическими методами и детерминируются генами 3-х сублокусов системы HLA: HLA-A; HLA-B; HLA-C.

Рис. 11 - HLA главная генетическая система гистосовместимости человека

LD – антигены контролируются сублокусом HLA-D шестой хромосомы, и определяются методом смешанных культур лейкоцитов.

Каждый из генов, контролирующих HLA – антигены человека, имеет большое число аллелей. Так сублокус HLA-A – контролирует 19 антигенов; HLA-B – 20; HLA-C – 5 «рабочих» антигенов; HLA-D – 6. Таким образом, у человека уже обнаружено около 50 антигенов.

Антигенный полиморфизм системы HLA является результатом происхождения одних от других и тесной генетической связи между ними. Идентичность донора и реципиента по антигенам системы HLA необходима при трансплантации. Пересадка почки, идентичной по 4 антигенам системы, обеспечивает приживаемость на 70%; по 3 – 60%; по 2 – 45%; по 1 – 25%.

Имеются специальные центры, ведущие подбор донора и реципиента при трансплантации, например в Голландии – «Евротрансплантат». Типирование по антигенам системы HLA проводится и в Республике Беларусь.

Клеточные механизмы гомеостаза направлены на восстановление клеток тканей, органов в случае нарушения их целостности. Совокупность процессов, направленных на восстановление разрушаемых биологических структур называется регенерацией. Такой процесс характерен для всех уровней: обновление белков, составных частей органелл клетки, целых органелл и самих клеток. Восстановление функций органов после травмы или разрыва нерва, заживление ран имеет значение для медицины с точки зрения овладения этими процессами.

Ткани, по их регенерационной способности, делят на 3 группы:

    Ткани и органы, для которых характерны клеточная регенерация (кости, рыхлая соединительная ткань, кроветворная система, эндотелий, мезотелий, слизистые оболочки кишечного тракта, дыхательных путей и мочеполовой системы.

    Ткани и органы, для которых характерна клеточная и внутриклеточная регенерация (печень, почки, легкие, гладкие и скелетные мышцы, вегетативная нервная система, эндокринная, поджелудочная железа).

    Ткани, для которых характерна преимущественно внутриклеточная регенерация (миокард) или исключительно внутриклеточная регенерация (клетки ганглиев центральной нервной системы). Она охватывает процессы восстановления макромолекул и клеточных органелл путем сборки элементарных структур или путем их деления (митохондрии).

В процессе эволюции сформировалось 2 типа регенерации физиологическая и репаративная .

Физиологическая регенерация – это естественный процесс восстановления элементов организма в течении жизни. Например, восстановление эритроцитов и лейкоцитов, смена эпителия кожи, волос, замена молочных зубов на постоянные. На эти процессы влияют внешние и внутренние факторы.

Репаративная регенерация – это восстановление органов и тканей, утраченных при повреждении или ранении. Процесс происходит после механических травм, ожогов, химических или лучевых поражений, а также в результате болезней и хирургических операций.

Репаративная регенерация подразделяется на типичную (гомоморфоз) и атипичную (гетероморфоз). В первом случае регенерирует орган, который был удален или разрушен, во втором – на месте удаленного органа развивается другой.

Атипичная регенерация чаще встречается у беспозвоночных.

Регенерацию стимулируют гормоны гипофиза и щитовидной железы . Различают несколько способов регенерации:

    Эпиморфоз или полная регенерация – восстановление раневой поверхности, достраивание части до целого (например, отрастание хвоста у ящерицы, конечности у тритона).

    Морфоллаксис – перестройка оставшейся части органа до целого, только меньших размеров. Для этого способа характерна перестройка нового из остатков старого (например, восстановление конечности у таракана).

    Эндоморфоз – восстановление за счет внутриклеточной перестройки ткани и органа. Благодаря увеличению числа клеток и их размеров масса органа приближается к исходному.

У позвоночных репаративная регенерация осуществляется в следующей форме:

    Полная регенерация – восстановление исходной ткани после ее повреждения.

    Регенерационная гипертрофия , характерная для внутренних органов. При этом раневая поверхность заживает рубцом, удаленный участок не отрастает и форма органа не восстанавливается. Масса оставшейся части органа увеличивается за счет увеличения числа клеток и их размеров и приближается до исходной величины. Так у млекопитающих регенерирует печень, легкие, почки, надпочечники, поджелудочная, слюнные, щитовидная железа.

    Внутриклеточная компенсаторная гиперплазия ультраструктур клетки. При этом на месте повреждения образуется рубец, а восстановление исходной массы происходит за счет увеличения объема клеток, а не их числа на основе разрастания (гиперплазии) внутриклеточных структур (нервная ткань).

Системные механизмы обеспечиваются взаимодействием регуляторных систем: нервной, эндокринной и иммунной .

Нервная регуляция осуществляется и координируется центральной нервной системой. Нервные импульсы, поступая в клетки и ткани, вызывают не только возбуждение, но и регулируют химические процессы, обмен биологически активных веществ. В настоящее время известно более 50 нейрогормонов. Так, в гипоталамусе вырабатывается вазопрессин, окситоцин, либерины и статины, регулирующие функцию гипофиза. Примерами системных проявлений гомеостаза являются сохранение постоянства температуры, артериального давления.

С позиций гомеостаза и адаптации, нервная система является главным организатором всех процессов организма. В основе приспособления, уравновешивания организмов с окружающими условиями, по Н.П. Павлову, лежат рефлекторные процессы. Между разными уровнями гомеостатического регулирования существует частная иерархическая соподчиненность в системе регуляции внутренних процессов организма (Рис. 12).

кора полушарий и отделы головного мозга

саморегуляция по принципу обратной связи

периферические нервно-регуляторные процессы, местные рефлексы

Клеточный и тканевой уровени гомеостаза

Рис. 12. - Иерархическая соподчиненность в системе регуляции внутренних процессов организма.

Самый первичный уровень составляют гомеостатические системы клеточного и тканевого уровня. Над ними представлены периферические нервные регуляторные процессы типа местных рефлексов. Далее в этой иерархии располагаются системы саморегуляции определенных физиологических функций с разнообразными каналами "обратной связи". Вершину этой пирамиды занимает кора больших полушарий и головной мозг.

В сложном многоклеточном организме как прямые, так и обратные связи осуществляются не только нервными, но и гормональными (эндокринными) механизмами. Каждая из желез, входящая в эндокринную систему, оказывает влияние на прочие органы этой системы и, в свою очередь, испытывает влияние со стороны последних.

Эндокринные механизмы гомеостаза по Б.М. Завадскому, это – механизм плюс-минус взаимодействия, т.е. уравновешивание функциональной активности железы с концентрацией гормона. При высокой концентрации гормона (выше нормы) деятельность железы ослабляется и наоборот. Такое влияние осуществляется путем действия гормона на продуцирующую его железу. У ряда желез регуляция устанавливается через гипоталамус и переднюю долю гипофиза, особенно при стресс-реакции.

Эндокринные железы можно разделить на две группы по отношению их к передней доле гипофиза. Последняя считается центральной, а прочие эндокринные железы – периферическими. Это разделение основано на том, что передняя доля гипофиза продуцирует так называемые тропные гормоны, которые активируют некоторые периферические эндокринные железы. В свою очередь, гормоны периферических эндокринных желез действуют на переднюю долю гипофиза, угнетая секрецию тропных гормонов.

Реакции, обеспечивающие гомеостаз, не могут ограничиваться какой-либо одной эндокринной железой, а захватывает в той или иной степени все железы. Возникающая реакция приобретает цепное течение и распространяется на другие эффекторы. Физиологическое значение гормонов заключается в регуляции других функций организма, а потому цепной характер должен быть выражен максимально.

Постоянные нарушения среды организма способствуют сохранению его гомеостаза в течение длительной жизни. Если создать такие условия жизни, при которых ничто не вызывает существенных сдвигов внутренней среды, то организм окажется полностью безоружен при встрече с окружающей средой и вскоре погибает.

Объединение в гипоталамусе нервных и эндокринных механизмов регуляции позволяет осуществлять сложные гомеостатические реакции, связанные с регуляцией висцеральной функции организма. Нервная и эндокринная системы являются объединяющим механизмом гомеостаза.

Примером общей ответной реакции нервных и гуморальных механизмов является состояние стресса, которое развивается при неблагоприятных жизненных условиях и возникает угроза нарушения гомеостаза. При стрессе наблюдается изменение состояния большинства систем: мышечной, дыхательной, сердечно-сосудистой, пищеварительной, органов чувств, кровяного давления, состава крови. Все эти изменения являются проявлением отдельных гомеостатических реакций, направленных на повышение сопротивляемости организма к неблагоприятным факторам. Быстрая мобилизация сил организма выступает как защитная реакция на состояние стресса.

При "соматическом стрессе" решается задача повышения общей сопротивляемости организма по схеме, приведенной на рисунке 13.

Рис. 13 - Схема повышения общей сопротивляемости организма при

Гомеостаз - это что такое? Понятие гомеостаза

Гомеостаз – это саморегулирующийся процесс, в котором все биологические системы стремятся сохранить стабильность в период адаптации к определенным условиям, оптимальным для выживания. Любая система, находясь в динамическом равновесии, стремится к достижению устойчивого состояния, которое сопротивляется внешним факторам и раздражителям.

Понятие о гомеостазе

Все системы организма должны работать вместе для поддержания правильного гомеостаза внутри тела. Гомеостаз - это регуляция в организме таких показателей, как температура, содержание воды и уровень углекислого газа. Например, сахарный диабет - это состояние, при котором организм не может регулировать уровень глюкозы в крови.

Гомеостаз - это термин, который используется как для описания существования организмов в экосистеме, так и для описания успешного функционирования клеток внутри организма. Организмы и популяции могут поддерживать гомеостаз в условиях поддержания стабильного уровня рождаемости и смертности.

Обратная связь

Обратная связь - это процесс, который происходит, когда системы организма необходимо замедлить или полностью остановить. Когда человек ест, пища поступает в желудок, и начинается пищеварение. В перерывах между приемами пищи желудок работать не должен. Пищеварительная система работает с серией гормонов и нервных импульсов, чтобы остановить и начать выработку секреции кислоты в желудке.

Другой пример отрицательной обратной связи можно наблюдать в случае повышения температуры тела. Регуляция гомеостаза проявляется потоотделением, защитной реакцией организма на перегрев. Таким образом, рост температуры прекращается, и проблема перегрева нейтрализуется. В случае переохлаждения организмом также предусмотрен ряд мер, принимаемых для того, чтобы согреться.

Поддержание внутреннего баланса

Гомеостаз можно определить как свойство организма или системы, которое помогает ему поддерживать заданные параметры в пределах нормального диапазона значений. Это ключ к жизни, и неправильный баланс в поддержании гомеостаза может привести к таким болезням, как гипертония и диабет.

Гомеостаз – это ключевой элемент в понимании того, как устроено человеческое тело. Такое формальное определение характеризует систему, которая регулирует свою внутреннюю среду и стремится поддерживать стабильность и регулярность всех процессов, происходящих в организме.


Гомеостатическое регулирование: температура тела

Контроль температуры тела у человека является хорошим примером гомеостаза в биологической системе. Когда человек здоров, его температура тела колеблется около значения + 37°C, но различные факторы могут повлиять на это значение, в том числе гормоны, скорость обмена веществ и различные заболевания, вызывающие повышение температуры.

В организме регуляция температуры контролируется в части мозга, которая называется гипоталамус. Через кровоток к мозгу осуществляется поступление сигналов о температурных показателях, а также анализ результатов данных по частоте дыхания, уровня сахара в крови и метаболизма. Потеря тепла в организме человека также способствует снижению активности.

Водно-солевой баланс

Независимо от того, сколько воды выпивает человек, организм не раздувается, как воздушный шар, также тело человека не сморщивается, как изюм, если пить очень мало. Наверное, кто-то когда-то об этом хоть раз задумывался. Так или иначе, организм знает, какое количество жидкости нужно сохранить для поддержания нужного уровня.

Концентрация соли и глюкозы (сахара) в организме поддерживается на постоянном уровне (при отсутствии негативных факторов), количество крови в организме составляет около 5 литров.

Регулирование уровня сахара в крови

Глюкоза - это вид сахара, который содержится в крови. В теле человека должен поддерживаться надлежащий уровень глюкозы для того, чтобы человек оставался здоровым. Когда уровень глюкозы становится слишком высоким, поджелудочная железа вырабатывает гормон инсулин.

Если уровень глюкозы в крови опускается слишком низко, печень преобразует гликоген в крови, тем самым повышая уровень сахара. Когда болезнетворные бактерии или вирусы попадают в организм, он начинает бороться с инфекцией прежде, чем патогенные элементы смогут привести к каким-либо проблемам со здоровьем.

Давление под контролем

Поддержание здорового кровяного давления также является примером гомеостаза. Сердце может ощущать изменения в кровяном давлении и посылать сигналы в мозг для обработки. Далее мозг отправляет обратно сигнал к сердцу с инструкцией, как правильно реагировать. Если кровяное давление слишком высокое, его нужно снизить.

Как достигается гомеостаз?

Каким образом человеческий организм регулирует все системы и органы и компенсирует происходящие изменения в окружающей среде? Это происходит благодаря наличию множества естественных датчиков, контролирующих температуру, солевой состав крови, артериальное давление и многие другие параметры. Эти детекторы посылают сигналы в мозг, в главный центр управления, в случае, если некоторые значения отклонились от нормы. После этого запускаются компенсаторные мероприятия для восстановления нормального состояния.

Поддержание гомеостаза невероятно важно для организма. Человеческое тело содержит определенное количество химических веществ, известных как кислоты и щелочи, их правильный баланс необходим для оптимального функционирования всех органов и систем тела. Уровень кальция в крови должен поддерживаться на должном уровне. Поскольку дыхание является непроизвольным, нервная система обеспечивает организму получение столь необходимого кислорода. Когда токсины попадают в вашу кровь, они нарушают гомеостаз организма. Человеческое тело реагирует на это нарушение с помощью мочевыделительной системы.

Важно подчеркнуть, что гомеостаз организма работает автоматически, если система функционирует нормально. Например, реакция на нагревание - кожа краснеет, потому что ее мелкие кровеносные сосуды автоматически расширяются. Дрожь - это ответная реакция на охлаждение. Таким образом, гомеостаз - это не набор органов, а синтез и баланс телесных функций. В совокупности это позволяет поддерживать весь организм в стабильном состоянии.

9.4. Понятие о гомеостазе. Общие закономерности гомеостаза живых систем

Несмотря на то, что живой организм - открытая система, обменивающаяся веществом и энергией с окружающей средой и существующая в единстве с ней, он сохраняет себя во времени и в пространстве как отдельную биологическую единицу, сохраняет своё строение (морфологию), поведенческие реакции, специфические физико-химические условия в клетках, тканевой жидкости. Способность живых систем противостоять изменениям и сохранять динамическое постоянство состава и свойств получила название гомеостаза. Термин «гомеостаз» предложил У. Кеннон в 1929 году. Однако идея о существовании физиологических механизмов, обеспечивающих поддержание постоянства внутренней среды организмов, была высказана ещё во второй половине XIX века К. Бернаром.

Гомеостаз совершенствовался в ходе эволюции. У многоклеточных появилась внутренняя среда, в которой находятся клетки различных органов и тканей. Затем образовались специализированные системы органов (кровообращения, питания, дыхания, выделения и др.), участвующие в обеспечении гомеостаза на всех уровнях организации (молекулярном, субклеточном, клеточном, тканевом, органном и организменном). Наиболее совершенные механизмы гомеостаза сформировались у млекопитающих, что способствовало значительному расширению возможностей их приспособления к окружающей среде. Механизмы и виды гомеостаза складывались в процессе длительной эволюции, закрепляясь генетически. Появление в организме чужеродной генетической информации, которая часто вносится бактериями, вирусами, клетками других организмов, а также собственными мутировавшими клетками, может существенно нарушить гомеостаз организма. Как защита от чужеродной генетической информации, проникновение которой внутрь организма и последующая её реализация привели бы к отравлению токсинами (чужеродными белками), возник такой вид гомеостаза, как генетический гомеостаз, обеспечивающий генетическое постоянство внутренней среды организма. В его основе лежат иммунологические механизмы, включающие неспецифическую и специфическую защиту собственной целостности и индивидуальности организма. Неспецифические механизмы лежат в основе врождённого, конституционального, видового иммунитета, а также индивидуальной неспецифической резистентности. К ним относят барьерную функцию кожи и слизистых оболочек, бактерицидное действие секрета потовых и сальных желез, бактерицидные свойства содержимого желудка и кишечника, лизоциму секрета слюнных и слезных желез. Если же организмы проникают во внутреннюю среду, то устраняются в ходе воспалительной реакции, которая сопровождается усиленным фагоцитозом, а также вирусостатическим действием интерферона (белка с молекулярным весом 25000 - 110000).

Специфические иммунологические механизмы лежат в основе приобретённого иммунитета, осуществляемого иммунной системой, которая распознаёт, перерабатывает и устраняет чужеродные антигены. Гуморальный иммунитет осуществляется посредством образования антител, циркулирующих в крови. В основе клеточного иммунитета лежит образование Т-лимфоцитов, появление долгоживущих Т- и В-лимфоцитов «иммунологической памяти», возникновение аллергии (повышенной чувствительности к специфическому антигену). У человека защитные реакции вступают в действие только на 2-ой неделе жизни, достигают наивысшей активности к 10 годам, с 10 до 20 лет несколько уменьшаются, с 20 до 40 лет остаются примерно на одном уровне, затем постепенно угасают.

Механизмы иммунологической защиты являются серьёзным препятствием при трансплантации органов, вызывая рассасывание трансплантанта. Наиболее успешными являются в настоящее время результаты аутотрансплантации (пересадки тканей в пределах организма) и аллотрансплантации между однояйцевыми близнецами. Гораздо менее успешны они при межвидовой трансплантации (гетеротрансплантация или ксенотрансплантация).

Другой вид гомеостаза - биохимический гомеостаз способствует поддержанию постоянства химического состава жидкой внеклеточной (внутренней) среды организма (крови, лимфы, тканевой жидкости), а также постоянства химического состава цитоплазмы и плазмолеммы клеток. Физиологический гомеостаз обеспечивает постоянство процессов жизнедеятельности организма. Благодаря ему возникли и совершенствуются изоосмия (постоянство содержания осмотически активных веществ), изотермия (поддержание в определённых пределах температуры тела птиц и млекопитающих) и др. Структурный гомеостаз обеспечивает постоянство строения (морфологической организации) на всех уровнях (молекулярном, субклеточном, клеточном и т.д.) организации живого.

Популяционный гомеостаз обеспечивает постоянство численности особей в популяции. Биоценотический гомеостаз способствует постоянству видового состава и численности особей в биоценозах.

В связи с тем, что организм функционирует и взаимодействует со средой как единая система, процессы, лежащие в основе различных видов гомеостатических реакций, тесно взаимосвязаны друг с другом. Отдельные гомеостатические механизмы объединяются и реализуются в целостной приспособительной реакции организма как единого целого. Такое объединение осуществляется благодаря деятельности (функции) регуляторных интегрирующих систем (нервной, эндокринной, иммунной). Наиболее быстрые изменения состояния регулируемого объекта обеспечиваются нервной системой, что связано с быстротой процессов возникновения и проведения нервного импульса (от 0,2 до 180 м/сек). Регуляторная функция эндокринной системы осуществляется медленнее, так как ограничена скоростью выделения гормонов железами и их переноса в кровеносном русле. Однако результат воздействия на регулируемый объект (орган) накапливающихся в нём гормонов значительно более продолжительный, чем при нервной регуляции.

Организм - саморегулирующаяся живая система. Благодаря наличию гомеостатических механизмов организм представляет собой сложную саморегулирующуюся систему. Принципы существования и развития таких систем изучает кибернетика, а живых систем - биологическая кибернетика.

В основе саморегуляции биологических систем лежит принцип прямой и обратной связи.

Информация об отклонении регулируемой величины от заданного уровня по каналам обратной связи передаётся регулятору и изменяет его деятельность таким образом, что регулируемая величина возвращается к исходному (оптимальному) уровню (рис.122). Обратная связь бывает отрицательной (когда регулируемая величина отклонилась в положительную сторону (синтез вещества, например, чрезмерно увеличился)) и положи-

Рис. 122. Схема прямой и обратной связи в живом организме:

Р – регулятор (нервный центр, эндокринная железа); РО – регулируемый объект (клетка, ткань, орган); 1 – оптимальная функциональная активность РО; 2 – пониженная функциональная активность РО при положительной обратной связи; 3 – повышенная функциональная активность РО при отрицательной обратной связи

тельной (когда регулируемая величина отклонилась в отрицательную сторону (вещество синтезируется в недостаточном количестве)). Этот механизм, а также более сложные комбинации нескольких механизмов имеют место на разных уровнях организации биологических систем. В качестве примера их функционирования на молекулярном уровне можно указать ингибирование ключевого фермента при избыточном образовании конечного продукта или репрессию синтеза ферментов. На клеточном уровне механизмы прямой и обратной связи обеспечивают гормональную регуляцию и оптимальную плотность (численность) клеточной популяции. Проявлением прямой и обратной связи на уровне организма является регуляция содержания глюкозы в крови. В живом организме механизмы автоматического регулирования и управления (изучаемые биокибернетикой) особо сложные. Степень их усложнения способствует повышению уровня «надёжности» и устойчивости живых систем по отношению к изменениям окружающей среды.

Механизмы гомеостаза дублируются на разных уровнях. Этим в природе реализуется принцип многоконтурности регуляции систем. Главные контуры представлены клеточными и тканевыми гомеостатическими механизмами. Им свойственна высокая степень автоматизма. Основная роль в управлении клеточными и тканевыми гомеостатическими механизмами принадлежит генетическим факторам, местным рефлекторным влияниям, химическим и контактным взаимодействиям между клетками.

Механизмы гомеостаза претерпевают значительные изменения на протяжении онтогенеза человека. Только на 2-ой неделе после рождения

Рис. 123. Варианты потерь и восстановлений в организме

вступают в действие биологические защитные реакции (образуются клетки, обеспечивающие клеточный и гуморальный иммунитет), а их эффективность продолжает повышаться к 10 годам. В этот период совершенствуются механизмы защиты от чужеродной генетической информации, а также повышается зрелость нервной и эндокринной регуляторных систем. Наибольшей надёжности механизмы гомеостаза достигают в зрелом возрасте, к концу периода развития и роста организма (19-24 года). Старение организма сопровождается снижением эффективности механизмов генетического, структурного, физиологического гомеостаза, ослаблением регуляторных влияний нервной и эндокринной систем.

5. Гомеостаз.

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Для обеспечения стационарного состояния у всех организмов – от морфологически самых простых до наиболее сложных – выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды.

Впервые мысль о том, что постоянство внутренней среды обеспечивает оптимальные условия для жизни и размножения организмов, была высказана в 1857 г. французским физиологом Клодом Бернаром. На протяжении всей его научной деятельности Клода Бернара поражала способность организмов регулировать и поддерживать в достаточно узких границах такие физиологические параметры, как температура тела или содержание в нем воды. Это представление о саморегуляции как основе физиологической стабильности он резюмировал в виде ставшего классическим утверждения: «Постоянство внутренней среды является обязательным условием свободной жизни».

Клод Бернар подчеркивал различие между внешней средой, в которой живут организмы, и внутренней средой, в которой находятся их отдельные клетки, и понимал, как важно, чтобы внутренняя среда оставалась неизменной. Так, например, млекопитающие способны поддерживать температуру тела, несмотря на колебания окружающей температуры. Если становится слишком холодно, животное может переместиться в более теплое или более защищенное место, а если это невозможно, вступают в действие механизмы саморегуляции, которые повышают температуру тела и препятствуют теплоотдаче. Адаптивное значение этого заключается в том, что организм как целое функционирует более эффективно, так как клетки, из которых он состоит, находятся в оптимальных условиях. Системы саморегуляции действуют не только на уровне организма, но и на уровне клеток. Организм является суммой составляющих его клеток, и оптимальное функционирование организма как целого зависит от оптимального функционирования образующих его частей. Любая самоорганизующаяся система поддерживает постоянство своего состава - качественного и количественного. Это явление называется гомеостаз, и оно свойственно большинству биологических и социальных систем. Термин гомеостаз в 1932 г. ввел американский физиолог Уолтер Кэннон.

Гомеостаз (греч. homoios – подобный, тот же самый; stasis-состояние, неподвижность) – относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных. Регуляторные механизмы, поддерживающие физиологическое состояние или свойства клеток, органов и систем целостного организма на оптимальном уровне, называются гомеостатическими. Исторически и генетически понятие гомеостаза имеет биологические и медико-биологические предпосылки. Там оно соотносится как конечный процесс, период жизни с отдельным обособленно взятым организмом или человеческим индивидуумом как чисто биологическим явлением. Конечность существования и необходимость выполнения своего предназначения - репродукции себе подобного - позволяют определить стратегию выживания отдельного организма через понятие "сохранение". "Сохранение структурно-функциональной стабильности" - суть любого гомеостаза, управляемого гомеостатом или саморегулируемого.

Как известно, живая клетка представляет подвижную, саморегулирующую систему. Ее внутренняя организация поддерживается активными процессами, направленными на ограничение, предупреждение или устранение сдвигов, вызываемых различными воздействиями из окружающей и внутренней среды. Способность возвращаться к исходному состоянию после отклонения от некоторого среднего уровня, вызванного тем или иным «возмущающим» фактором, является основным свойством клетки. Многоклеточный организм представляет собой целостную организацию, клеточные элементы которой специализированы для выполнения различных функций. Взаимодействие внутри организма осуществляется сложными регулирующими, координирующими и коррелирующими механизмами с участием нервных, гуморальных, обменных и других факторов. Множество отдельных механизмов, регулирующих внутри- и межклеточные взаимоотношения, оказывает в ряде случаев взаимно противоположные воздействия, уравновешивающие друг друга. Это приводит к установлению в организме подвижного физиологического фона (физиологического баланса) и позволяет живой системе поддерживать относительное динамическое постоянство, несмотря на изменения в окружающей среде и сдвиги, возникающие в процессе жизнедеятельности организма.

Как показывают исследования, существующие у живых организмов способы регуляции имеют много общих черт с регулирующими устройствами в неживых системах, таких как машины. И в том и в другом случае стабильность достигается благодаря определенной форме управления.

Само представление о гомеостазе не соответствует концепции устойчивого (не колеблющегося) равновесия в организме – принцип равновесия не приложим к сложным физиологическим и биохимическим процессам, протекающим в живых системах. Неправильно также противопоставление гомеостаза ритмическим колебаниям во внутренней среде. Гомеостаз в широком понимании охватывает вопросы циклического и фазового течения реакций, компенсации, регулирования и саморегулирования физиологических функций, динамику взаимозависимости нервных, гуморальных и других компонентов регуляторного процесса. Границы гомеостаза могут быть жесткими и пластичными, меняться в зависимости от индивидуальных возрастных, половых, социальных, профессиональных и иных условий.

Особое значение для жизнедеятельности организма имеет постоянство состава крови - жидкой основы организма (fluidmatrix), по выражению У. Кеннона. Хорошо известна устойчивость ее активной реакции (pH), осмотического давления, соотношения электролитов (натрия, кальция, хлора, магния, фосфора), содержания глюкозы, числа форменных элементов и т. д. Так, например, pH крови, как правило, не выходит за пределы 7,35-7,47. Даже резкие расстройства кислотно-щелочного обмена с патологическим накоплением кислот в тканевой жидкости, например при диабетическом ацидозе, очень мало влияют на активную реакцию крови. Несмотря на то, что осмотическое давление крови и тканевой жидкости подвергается непрерывным колебаниям вследствие постоянного поступления осмотически активных продуктов межуточного обмена, оно сохраняется на определенном уровне и изменяется только при некоторых выраженных патологических состояниях. Сохранение постоянного осмотического давления имеет первостепенное значение для водного обмена и поддержания ионного равновесия в организме. Наибольшим постоянством отличается концентрация ионов натрия во внутренней среде. Содержание других электролитов колеблется также в узких границах. Наличие большого количества осморецепторов в тканях и органах, в том числе в центральных нервных образованиях (гипоталамусе, гиппокампе), и координированной системы регуляторов водного обмена и ионного состава позволяет организму быстро устранить сдвиги в осмотическом давлении крови, происходящие, например, при введении воды в организм.

Несмотря на то, что кровь представляет общую внутреннюю среду организма, клетки органов и тканей непосредственно не соприкасаются с ней. В многоклеточных организмах каждый орган имеет свою собственную внутреннюю среду (микросреду), отвечающую его структурным и функциональным особенностям, и нормальное состояние органов зависит от химического состава, физико-химических, биологических и других свойств этой микросреды. Ее гомеостаз обусловлен функциональным состоянием гистогематических барьеров и их проницаемостью в направлениях кровь - тканевая жидкость; тканевая жидкость - кровь.

Особо важное значение имеет постоянство внутренней среды для деятельности центральной нервной системы: даже незначительные химические и физико-химические сдвиги, возникающие в цереброспинальной жидкости, глии и околоклеточных пространствах, могут вызвать резкое нарушение течения жизненных процессов в отдельных нейронах или в их ансамблях. Сложной гомеостатической системой, включающей различные нейрогуморальные, биохимические, гемодинамические и другие механизмы регуляции, является система обеспечения оптимального уровня артериального давления. При этом верхний предел уровня артериального давления определяется функциональными возможностями барорецепторов сосудистой системы тела, а нижний предел – потребностями организма в кровоснабжении.

К наиболее совершенным гомеостатическим механизмам в организме высших животных и человека относятся процессы терморегуляции; у гомойотермных животных колебания температуры во внутренних отделах тела при самых резких изменениях температуры в окружающей среде не превышают десятых долей градуса.

Организующая роль нервного аппарата (принцип нервизма) лежит в основе широко известных представлений о сущности принципов гомеостаза. Однако ни принцип доминанты, ни теория барьерных функций, ни общий адаптационный синдром, ни теория функциональных систем, ни гипоталамическое регулирование гомеостаза и многие другие теории не позволяют полностью решить проблему гомеостаза.

В некоторых случаях представление о гомеостазе не совсем правомерно используется для объяснения изолированных физиологических состояний, процессов и даже социальных явлений. Так возникли встречающиеся в литературе термины «иммунологический», «электролитный», «системный», «молекулярный», «физико-химический», «генетический гомеостаз» и т.п. Предпринимались попытки свести проблему гомеостаза к принципу саморегулирования. Примером решения проблемы гомеостаза с позиций кибернетики является попытка Эшби (W.R. Ashby, 1948) сконструировать саморегулирующее устройство, моделирующее способность живых организмов поддерживать уровень некоторых величин в физиологически допустимых границах.

Перед исследователями и клиницистами на практике встают вопросы оценки приспособительных (адаптационных) или компенсаторных возможностей организма, их регулирования, усиления и мобилизации, прогнозирования ответных реакций организма на возмущающие воздействия. Некоторые состояния вегетативной неустойчивости, обусловленные недостаточностью, избытком или неадекватностью регуляторных механизмов, рассматриваются как «болезни гомеостаза». С известной условностью к ним могут быть отнесены функциональные нарушения нормальной деятельности организма, связанные с его старением, вынужденная перестройка биологических ритмов, некоторые явления вегетативной дистонии гипер - и гипокомпенсаторная реактивность при стрессовых и экстремальных воздействиях и т.д.

Для оценки состояния гомеостатических механизмов в физиологическом эксперименте и в клинической практике применяются разнообразные дозированные функциональные пробы (холодовая, тепловая, адреналиновая, инсулиновая, мезатоновая и др.) с определением в крови и моче соотношения биологически активных веществ (гормонов, медиаторов, метаболитов) и т.д.

Биофизические механизмы гомеостаза.

С точки зрения химической биофизики гомеостаз – это состояние, при котором все процессы, ответственные за энергетические превращения в организме, находятся в динамическом равновесии. Это состояние обладает наибольшей устойчивостью и соответствует физиологическому оптимуму. В соответствии с представлениями термодинамики организм и клетка могут существовать и приспосабливаться к таким условиям среды, при которых в биологической системе возможно установление стационарного течения физико-химических процессов, т.е. гомеостаза. Основная роль в установлении гомеостаза принадлежит в первую очередь клеточным мембранным системам, которые ответственны за биоэнергетические процессы и регулируют скорость поступления и выделения веществ клетками.

С этих позиций основными причинами нарушения являются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования. К факторам, являющимся причиной нарушения гомеостаза, относятся также агенты, вызывающие радикалообразование, - ионизирующие излучения, инфекционные токсины, некоторые продукты питания, никотин, а также недостаток витаминов и т.д.

Одним из основных факторов, стабилизирующих гомеостатическое состояние и функции мембран, являются биоантиокислители, которые сдерживают развитие окислительных радикальных реакций.

Возрастные особенности гомеостаза у детей.

Постоянство внутренней среды организма и относительная устойчивость физико-химических показателей в детском возрасте обеспечиваются при выраженном преобладании анаболических процессов обмена над катаболическими. Это является непременным условием роста и отличает детский организм от организма взрослых, у которых интенсивность метаболических процессов находится в состоянии динамического равновесия. В связи с этим нейроэндокринная регуляция гомеостаза детского организма оказывается более напряженной, чем у взрослых. Каждый возрастной период характеризуется специфическими особенностями механизмов гомеостаза и их регуляции. Поэтому у детей значительно чаще, чем у взрослых, встречаются тяжелые нарушения гомеостаза, нередко угрожающие жизни. Эти нарушения чаще всего связаны с незрелостью гомеостатических функций почек, с расстройствами функций желудочно-кишечного тракта или дыхательной функции легких.

Рост ребенка, выражающийся в увеличении массы его клеток, сопровождается отчетливыми изменениями распределения жидкости в организме. Абсолютное увеличение объема внеклеточной жидкости отстает от темпов общего нарастания веса, поэтому относительный объем внутренней среды, выраженный в процентах от веса тела, с возрастом уменьшается. Эта зависимость особенно ярко выражена на первом году после рождения. У детей более старших возрастов темпы изменений относительного объема внеклеточной жидкости уменьшаются. Система регуляции постоянства объема жидкости (волюморегуляция) обеспечивает компенсацию отклонений в водном балансе в достаточно узких пределах. Высокая степень гидратации тканей у новорожденных и детей раннего возраста определяет значительно более высокую, чем у взрослых, потребность ребенка в воде (в расчете на единицу массы тела). Потери воды или ее ограничение быстро ведут к развитию дегидратации за счет внеклеточного сектора, т. е. внутренней среды. При этом почки - главные исполнительные органы в системе волюморегуляции - не обеспечивают экономии воды. Лимитирующим фактором регуляции является незрелость канальцевой системы почек. Важнейшая особенность нейроэндокринного контроля гомеостаза у новорожденных и детей раннего возраста заключается в относительно высокой секреции и почечной экскреции альдостерона, что оказывает прямое влияние на состояние гидратации тканей и функцию почечных канальцев.

Регуляция осмотического давления плазмы крови и внеклеточной жидкости у детей также ограничена. Осмолярность внутренней среды колеблется в более широком диапазоне ( 50 мосм/л), чем у взрослых

( 6 мосм/л). Это связано с большей величиной поверхности тела на 1 кг веса и, следовательно, с более существенными потерями воды при дыхании, а также с незрелостью почечных механизмов концентрации мочи у детей. Нарушения гомеостаза, проявляющиеся гиперосмосом, особенно часто встречаются у детей периода новорожденности и первых месяцев жизни; в более старших возрастах начинает преобладать гипоосмос, связанный главным образом с желудочно-кишечными заболеванием или болезнями почек. Менее изучена ионная регуляция гомеостаза, тесно связанная с деятельностью почек и характером питания.

Ранее считалось, что основным фактором, определяющим величину осмотического давления внеклеточной жидкости, является концентрация натрия, однако более поздние исследования показали, что тесной корреляции между содержанием натрия в плазме крови и величиной общего осмотического давления при патологии не существует. Исключение составляет плазматическая гипертония. Следовательно, проведение гомеостатической терапии путем введения глюкозосолевых растворов требует контроля не только за содержанием натрия в сыворотке или плазме крови, но и за изменениями общей осмолярности внеклеточной жидкости. Большое значение в поддержании общего осмотического давления во внутренней среде имеет концентрация сахара и мочевины. Содержание этих осмотически активных веществ и их влияние на водно-солевой обмен при многих патологических состояниях могут резко возрастать. Поэтому при любых нарушениях гомеостаза необходимо определять концентрацию сахара и мочевины. В силу вышесказанного у детей раннего возраста при нарушении водно-солевого и белкового режимов может развиваться состояние скрытого гипер - или гипоосмоса, гиперазотемии.

Важным показателем, характеризующим гомеостаз у детей, является концентрация водородных ионов в крови и внеклеточной жидкости. В антенатальном и раннем постнатальном периодах регуляция кислотно-щелочного равновесия тесно связана со степенью насыщения крови кислородом, что объясняется относительным преобладанием анаэробного гликолиза в биоэнергетических процессах. При этом даже умеренная гипоксия у плода сопровождается накоплением в его тканях молочной кислоты. Кроме того, незрелость ацидогенетической функции почек создает предпосылки для развития «физиологического» ацидоза (сдвиг кислотно-щелочного равновесия в организме в сторону относительного увеличения количества анионов кислот.). В связи с особенностями гомеостаза у новорожденных нередко возникают расстройства, стоящие на грани между физиологическими и патологическими.

Перестройка нейроэндокринной системы в пубертатном периоде (периоде полового созревания) также сопряжена с изменениями гомеостаза. Однако функции исполнительных органов (почки, легкие) достигают в этом возрасте максимальной степени зрелости, поэтому тяжелые синдромы или болезни гомеостаза встречаются редко, чаще же речь идет о компенсированных сдвигах в обмене веществ, которые можно выявить лишь при биохимическом исследовании крови. В клинике для характеристики гомеостаза у детей необходимо исследовать следующие показатели: гематокрит, общее осмотическое давление, содержание натрия, калия, сахара, бикарбонатов и мочевины в крови, а также рН крови, р0 2 и рСО 2 .

Особенности гомеостаза в пожилом и старческом возрасте.

Один и тот же уровень гомеостатических величин в различные возрастные периоды поддерживается за счет различных сдвигов в системах их регулирования. Например, постоянство уровня артериального давления в молодом возрасте поддерживается за счет более высокого минутного сердечного выброса и низкого общего периферического сопротивления сосудов, а в пожилом и старческом - за счет более высокого общего периферического сопротивления и уменьшения величины минутного сердечного выброса. При старении организма постоянство важнейших физиологических функций поддерживается в условиях уменьшения надежности и сокращения возможного диапазона физиологических изменений гомеостаза. Сохранение относительного гомеостаза при существенных структурных, обменных и функциональных изменениях достигается тем, что одновременно происходит не только угасание, нарушение и деградация, но и развитие специфических приспособительных механизмов. За счет этого поддерживается неизменный уровень содержания сахара в крови, рН крови, осмотического давления, мембранного потенциала клеток и т.д.

Существенное значение в сохранении гомеостаза в процессе старения организма имеют изменения механизмов нейрогуморальной регуляции, увеличение чувствительности тканей к действию гормонов и медиаторов на фоне ослабления нервных влияний.

При старении организма существенно изменяется работа сердца, легочная вентиляция, газообмен, почечные функции, секреция пищеварительных желез, функция желез внутренней секреции, обмен веществ и др. Изменения эти могут быть охарактеризованы как гомеорезис - закономерная траектория (динамика) изменения интенсивности обмена и физиологических функций с возрастом во времени. Значение хода возрастных изменений очень важно для характеристики процесса старения человека, определения его биологического возраста.

В пожилом и старческом возрасте снижаются общие потенциальные возможности приспособительных механизмов. Поэтому в старости при повышенных нагрузках, стрессах и других ситуациях вероятность срыва адаптационных механизмов и нарушения гомеостаза увеличиваются. Такое уменьшение надежности механизмов гомеостаза является одной из важнейших предпосылок развития патологических нарушений в старости.

Таким образом, гомеостаз – это интегральное понятие, функционально и морфологически объединяющее сердечно-сосудистую систему, систему дыхания, почечную систему, водно-электролитный обмен, кислотно-щелочное равновесие .

Основное назначение сердечно-сосудистой системы – подача и распределение крови по всем бассейнам микроциркуляции. Количество крови, выбрасываемое сердцем в 1 мин., составляет минутный объем. Однако функция сердечно-сосудистой системы заключается не просто в поддержании заданного минутного объема и его распределении по бассейнам, а в изменениях минутного объема в соответствии с динамикой потребностей тканей при разных ситуациях.

Главная задача крови – транспорт кислорода. Многие хирургические больные испытывают острое падение минутного объема, что нарушает доставку кислорода к тканям и может быть причиной гибели клеток, органа и даже всего организма. Поэтому оценка функции сердечно-сосудистой системы должна учитывать на только минутный объем, но и снабжение тканей кислородом и их потребность в нем.

Основное назначение системы дыхания – обеспечение адекватного газообмена между организмом и окружающей средой при постоянно меняющейся скорости обменных процессов. Нормальная функция системы дыхания – это поддержание постоянного уровня кислорода и углекислоты в артериальной крови при нормальном сосудистом сопротивлении в малом круге кровообращения и при обычной затрате энергии на дыхательную работу.

Данная система теснейшим образом связана с другими системами, и в первую очередь с сердечно-сосудистой. Функция системы дыхания включает в себя вентиляцию, легочное кровообращение, диффузию газов через альвеолярно-капиллярную мембрану, транспорт газов кровью и тканевое дыхание.

Функции почечной системы : почки являются основным органом, предназначенным для сохранения постоянства физико-химических условий в организме. Главная из их функций экскреторная. Она включает: регуляцию водно-электролитного баланса, поддержания кислотно-щелочного равновесия и удаление из организма продуктов обмена белков и жиров.

Функции водно-электролитного обмена : вода в организме играет транспортную роль, заполняя собой клетки, интерстициальные (промежуточные) и сосудистые пространства, является растворителем солей, коллоидов и кристаллоидов и принимает участие в биохимических реакциях. Все биохимические жидкости представляют собой электролиты, так как растворенные в воде соли и коллоиды находятся в диссоциированном состоянии. Перечислить все функции электролитов невозможно, но главными из них являются: сохранения осмотического давления, поддержание реакции внутренней среды, участие в биохимических реакциях.

Главное назначение кислотно-щелочного равновесия заключается в сохранении постоянства pH жидких сред организма как основы для нормальных биохимических реакций и, следовательно, жизнедеятельности. Метаболизм происходит при непременном участии ферментативных систем, активность которых тесно зависит от химической реакции электролита. Вместе с водно-электролитным обменом кислотно-щелочное равновесие играет решающую роль в упорядочении биохимических реакций. В регуляции кислотно-щелочного равновесия принимают участие буферные системы и многие физиологические системы организма.

Гомеостаз

Гомеостаз, гомеорез, гомеоморфоз - характеристики состояния организма. Системная сущность организма проявляется в первую очередь в его способности к саморегуляции в непрерывно меняющихся условиях окружающей среды. Поскольку все органы и ткани организма состоят из клеток, каждая из которых является относительно самостоятельным организмом, состояние внутренней среды человеческого организма имеет огромное значение для его нормального функционирования. Для организма человека - сухопутного существа - окружающую среду составляют атмосфера и биосфера, при этом он в определенной мере взаимодействует с литосферой, гидросферой и ноосферой. В то же время большинство клеток человеческого тела погружено в жидкую среду, которая представлена кровью, лимфой и межклеточной жидкостью. Лишь покровные ткани непосредственно взаимодействуют с окружающей человека средой, все остальные клетки изолированы от внешнего мира, что позволяет организму в значительной мере стандартизировать условия их существования. В частности, способность поддерживать постоянную температуру тела около 37 °С обеспечивает стабильность метаболических процессов, поскольку все биохимические реакции, которые составляют сущность метаболизма, очень сильно зависят от температуры. Не менее важно поддерживать в жидких средах организма неизменное напряжение кислорода, углекислого газа, концентрацию разнообразных ионов и т.п. В обычных условиях существования, в том числе при адаптации и деятельности, возникают небольшие отклонения такого рода параметров, но они быстро устраняются, внутренняя среда организма возвращается к стабильной норме. Великий французский физиолог XIX в. Клод Бернар утверждал: «Постоянство внутренней среды является обязательным условием свободной жизни». Физиологические механизмы, обеспечивающие поддержание постоянства внутренней среды, называются гомеостатическими, а само явление, отражающее способность организма к саморегуляции внутренней среды, называется гомеостазом. Этот термин был введен в 1932 г. У. Кэнноном - одним из тех физиологов XX в., который наряду с Н.А.Бернштейном, П.К.Анохиным и Н.Винером стоял у истоков науки об управлении - кибернетики. Термин «гомеостаз» используется не только в физиологических, но и в кибернетических исследованиях, поскольку именно поддержание постоянства каких-либо характеристик сложноорганизованной системы и является главной целью любого управления.

Другой замечательный исследователь, К.Уоддингтон, обратил внимание на то, что организм способен сохранять не только стабильность своего внутреннего состояния, но и относительное постоянство динамических характеристик, т. е. протекания процессов во времени. Это явление по аналогии с гомеостазом было названо гомеорезом. Оно имеет особое значение для растущего и развивающегося организма и состоит в том, что организм способен сохранять (в определенных пределах, разумеется) «канал развития» в ходе своих динамических преобразований. В частности, если ребенок из-за болезни или резкого ухудшения условий жизни, вызванных социальными причинами (война, землетрясение и т.п.), существенно отстает от своих нормально развивающихся сверстников, то это еще не означает, что такое отставание фатально и необратимо. Если период неблагоприятных событий заканчивается и ребенок получает адекватные для развития условия, то как по росту, так и по уровню функционального развития он вскоре догоняет сверстников и в дальнейшем ничем существенно от них не отличается. Этим объясняется то обстоятельство, что перенесшие в раннем возрасте тяжелую болезнь дети нередко вырастают в здоровых и пропорционально сложенных взрослых. Гомеорез играет важнейшую роль как в управлении онтогенетическим развитием, так и в процессах адаптации. Между тем физиологические механизмы гомеореза пока недостаточно изучены.

Третьей формой саморегуляции постоянства организма является гомеоморфоз - способность поддерживать неизменность формы. Эта характеристика в большей мере присуща взрослому организму, поскольку рост и развитие несовместимы с неизменностью формы. Тем не менее если рассматривать короткие отрезки времени, особенно в периоды торможения роста, то и у детей можно обнаружить способность к гомеоморфозу. Речь идет о том, что в организме непрерывно происходит смена поколений составляющих его клеток. Клетки долго не живут (исключение составляют только нервные клетки): обычный срок жизни клеток тела составляет недели или месяцы. Тем не менее каждое новое поколение клеток почти в точности повторяет форму, размеры, расположение и соответственно функциональные свойства предыдущего поколения. Специальные физиологические механизмы препятствуют значительным изменениям массы тела в условиях голодания или переедания. В частности, при голодании резко повышается усвояемость пищевых веществ, а при переедании, напротив, большая часть поступающих с пищей белков, жиров и углеводов «сжигается» без всякой пользы для организма. Доказано (Н. А. Смирнова), что у взрослого человека резкие и значительные изменения массы тела (главным образом за счет количества жира) в любую сторону являются верными признаками срыва адаптации, перенапряжения и свидетельствуют о функциональном неблагополучии организма. Детский организм становится особенно чувствителен к внешним воздействиям в периоды наиболее бурного роста. Нарушение гомеоморфоза - такой же неблагоприятный признак, как нарушения гомеостаза и гомеореза.

Понятие о биологических константах. Организм представляет собой комплекс огромного количества самых разнообразных веществ. В процессе жизнедеятельности клеток организма концентрация этих веществ может существенно меняться, что означает изменение внутренней среды. Было бы немыслимо, если бы управляющие системы организма вынуждены были следить за концентрацией всех этих веществ, т.е. иметь множество датчиков (рецепторов), непрерывно анализировать текущее состояние, принимать управляющие решения и контролировать их эффективность. Ни информационных, ни энергетических ресурсов организма не хватило бы на такой режим управления всеми параметрами. Поэтому организм ограничивается слежением за сравнительно небольшим числом наиболее значимых показателей, которые необходимо поддерживать на относительно постоянном уровне ради благополучия абсолютного большинства клеток тела. Эти наиболее жестко гомеостазируемые параметры тем самым превращаются в «биологические константы», а их неизменность обеспечивается за счет иногда достаточно значительных колебаний других параметров, не относящихся к разряду гомеостазируемых. Так, уровни гормонов, участвующих в регуляции гомеостаза, могут меняться в крови в десятки раз в зависимости от состояния внутренней среды и воздействия внешних факторов. В это же время гомеостазируемые параметры изменяются лишь на 10-20 %.

Важнейшие биологические константы. Среди наиболее важных биологических констант, за поддержание которых на сравнительно неизменном уровне ответственны различные физиологические системы организма, следует назвать температуру тела, уровень глюкозы в крови, содержание ионов Н+ в жидких средах организма, парциальное напряжение кислорода и углекислоты в тканях.

Болезнь как признак или следствие нарушений гомеостаза. Практически все болезни человека связаны с нарушением гомеостаза. Так, например, при многих инфекционных заболеваниях, а также в случае воспалительных процессов, в организме резко нарушается температурный гомеостаз: возникает лихорадка (повышение температуры), иногда опасная для жизни. Причина такого нарушения гомеостаза может заключаться как в особенностях нейроэндокринной реакции, так и в нарушениях деятельности периферических тканей. В этом случае проявление болезни - повышенная температура - представляет собой следствие нарушения гомеостаза.

Обычно лихорадочные состояния сопровождаются ацидозом - нарушением кислотно-щелочного равновесия и сдвигом реакции жидких сред организма в кислую сторону. Ацидоз характерен также для всех заболеваний, связанных с ухудшением работы сердечно-сосудистой и дыхательной систем (заболевания сердца и сосудов, воспалительные и аллергические поражения бронхолегочной системы и т.п.). Нередко ацидоз сопровождает первые часы жизни новорожденного, особенно если у него не сразу после появления на свет началось нормальное дыхание. Для устранения этого состояния новорожденного помещают в специальную камеру с повышенным содержанием кислорода. Метаболический ацидоз при тяжелой мышечной нагрузке может наблюдаться у людей любого возраста и проявляется в одышке и повышенном потоотделении, а также болезненных ощущениях в мышцах. После завершения работы состояние ацидоза может сохраняться от нескольких минут до 2-3 сут, в зависимости от степени утомления, тренированности и эффективности работы гомеостатических механизмов.

Весьма опасны болезни, приводящие к нарушению водно-солевого гомеостаза, например холера, при которой из организма Удаляется огромное количество воды и ткани утрачивают свои функциональные свойства. К нарушению водно-солевого гомеостаза ведут также многие заболевания почек. В результате некоторых из этих заболеваний может развиваться алкалоз - чрезмерное повышение концентрации щелочных веществ в крови и увеличение рН (сдвиг в щелочную сторону).

В некоторых случаях незначительные, но длительные нарушения гомеостаза могут стать причиной развития тех или иных заболеваний. Так, есть данные, что неумеренное употребление в пищу сахара и других источников углеводов, нарушающих гомеостаз глюкозы, ведет к поражению поджелудочной железы, в результате человек заболевает диабетом. Также опасно чрезмерное употребление поваренной и других минеральных солей, острых приправ и т.п., увеличивающих нагрузку на выделительную систему. Почки Могут не справиться с обилием веществ, которые необходимо удалить из организма, в результате чего наступит нарушение водно-солевого гомеостаза. Одним из его проявлений являются отеки - скопление жидкости в мягких тканях организма. Причина отеков обычно лежит либо в недостаточности сердечно-сосудистой системы, либо в нарушениях работы почек и, как следствие, минерального обмена.

Гомеостаз это:

Гомеостаз

Гомеоста́з (др.-греч. ὁμοιοστάσις от ὁμοιος - одинаковый, подобный и στάσις - стояние, неподвижность) - саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды.

Гомеостаз популяции - способность популяции поддерживать определённую численность своих особей длительное время.

Американский физиолог Уолтер Кеннон (Walter B. Cannon) в 1932 году в своей книге «The Wisdom of the Body» («Мудрость тела») предложил этот термин как название для «координированных физиологических процессов, которые поддерживают большинство устойчивых состояний организма». В дальнейшем этот термин распространился на способность динамически сохранять постоянство своего внутреннего состояния любой открытой системы. Однако представление о постоянстве внутренней среды было сформулировано ещё в 1878 году французским учёным Клодом Бернаром.

Общие сведения

Термин «гомеостаз» чаще всего применяется в биологии. Многоклеточным организмам для существования необходимо сохранять постоянство внутренней среды. Многие экологи убеждены, что этот принцип применим также и к внешней среде. Если система неспособна восстановить свой баланс, она может в итоге перестать функционировать.

Комплексные системы - например, организм человека - должны обладать гомеостазом, чтобы сохранять стабильность и существовать. Эти системы не только должны стремиться выжить, им также приходится адаптироваться к изменениям среды и развиваться.

Свойства гомеостаза

Гомеостатические системы обладают следующими свойствами:

  • Нестабильность системы: тестирует, каким образом ей лучше приспособиться.
  • Стремление к равновесию : вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.
  • Непредсказуемость : результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.

Примеры гомеостаза у млекопитающих:

  • Регуляция количества микронутриентов и воды в теле - осморегуляция. Осуществляется в почках.
  • Удаление отходов процесса обмена веществ - выделение. Осуществляется экзокринными органами - почками, лёгкими, потовыми железами и желудочно-кишечным трактом.
  • Регуляция температуры тела. Понижение температуры через потоотделение, разнообразные терморегулирующие реакции.
  • Регуляция уровня глюкозы в крови. В основном осуществляется печенью, инсулином и глюкагоном, выделяемыми поджелудочной железой.

Важно отметить, что, хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Во многих организмах наблюдаются эндогенные изменения в форме циркадного, ультрадианного и инфрадианного ритмов. Так, даже находясь в гомеостазе, температура тела, кровяное давление, частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.

Механизмы гомеостаза: обратная связь

Основная статья: Обратная связь

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, на которые реагирует система:

  1. Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.
    • Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.
    • Терморегуляция - другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ - понижение температуры (или повышение).
  2. Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.
    • Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, - такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

Экологический гомеостаз

Экологический гомеостаз наблюдается в климаксовых сообществах с максимально возможным биоразнообразием при благоприятных условиях среды.

В нарушенных экосистемах, или субклимаксовых биологических сообществах - как, например, остров Кракатау, после сильного извержения вулкана в 1883 - состояние гомеостаза предыдущей лесной климаксовой экосистемы было уничтожено, как и вся жизнь на этом острове. Кракатау за годы после извержения прошёл цепь экологических изменений, в которых новые виды растений и животных сменяли друг друга, что привело к биологической вариативности и в результате климаксовому сообществу. Экологическая сукцессия на Кракатау осуществилась за несколько этапов. Полная цепь сукцессий, приведшая к климаксу, называется присерией. В примере с Кракатау на этом острове образовалось климаксовое сообщество с восемью тысячами различных видов, зарегистрированных в 1983, спустя сто лет с того времени, как извержение уничтожило на нём жизнь. Данные подтверждают, что положение сохраняется в гомеостазе в течение некоторого времени, при этом появление новых видов очень быстро приводит к быстрому исчезновению старых.

Случай с Кракатау и другими нарушенными или нетронутыми экосистемами показывает, что первоначальная колонизация пионерными видами осуществляется через стратегии воспроизведения, основанные на положительной обратной связи, при которых виды расселяются, производя на свет как можно больше потомства, но при этом практически не вкладываясь в успех каждого отдельного. В таких видах наблюдается стремительное развитие и столь же стремительный крах (например, через эпидемию). Когда экосистема приближается к климаксу, такие виды заменяются более сложными климаксовыми видами, которые через отрицательную обратную связь адаптируются к специфическим условиям окружающей их среды. Эти виды тщательно контролируются потенциальной ёмкостью экосистемы и следуют иной стратегии - произведению на свет меньшего потомства, в репродуктивный успех которого в условиях микросреды его специфической экологической ниши вкладывается больше энергии.

Развитие начинается с пионер-сообщества и заканчивается на климаксовом сообществе. Это климаксовое сообщество образуется, когда флора и фауна пришла в баланс с местной средой.

Подобные экосистемы формируют гетерархии, в которых гомеостаз на одном уровне способствует гомеостатическим процессам на другом комплексном уровне. К примеру, потеря листьев у зрелого тропического дерева даёт место для новой поросли и обогащает почву. В равной степени тропическое дерево уменьшает доступ света на низшие уровни и помогает предотвратить инвазию других видов. Но и деревья падают на землю и развитие леса зависит от постоянной смены деревьев, круговорота питательных веществ, осуществляемого бактериями, насекомыми, грибами. Схожим образом такие леса способствуют экологическим процессам - таким, как регуляция микроклиматов или гидрологических циклов экосистемы, а несколько разных экосистем могут взаимодействовать для поддержания гомеостаза речного дренажа в рамках биологического региона. Вариативность биорегионов так же играет роль в гомеостатической стабильности биологического региона, или биома.

Биологический гомеостаз

Дополнительные сведения: Кислотно-основное равновесие

Гомеостаз выступает в роли фундаментальной характеристики живых организмов и понимается как поддержание внутренней среды в допустимых пределах.

Внутренняя среда организма включает в себя организменные жидкости - плазму крови, лимфу, межклеточное вещество и цереброспинальную жидкость. Сохранение стабильности этих жидкостей жизненно важно для организмов, тогда как её отсутствие приводит к повреждению генетического материала.

В отношении любого параметра организмы делятся на конформационные и регуляторные. Регуляторные организмы сохраняют параметр на постоянном уровне, независимо от того, что происходит в среде. Конформационные организмы позволяют окружающей среде определять параметр. Например, теплокровные животные сохраняют постоянную температуру тела, тогда как холоднокровные демонстрируют широкий диапазон температур.

Речь не идёт о том, что конформационные организмы не обладают поведенческими приспособлениями, позволяющими им в некоторой степени регулировать взятый параметр. Рептилии, к примеру, часто сидят на нагретых камнях утром, чтобы повысить температуру тела.

Преимущество гомеостатической регуляции состоит в том, что она позволяет организму функционировать более эффективно. Например, холоднокровные животные, как правило, становятся вялыми при низких температурах, тогда как теплокровные почти так же активны, как и всегда. С другой стороны, регуляция требует энергии. Причина, почему некоторые змеи могут есть только раз в неделю, состоит в том, что они тратят намного меньше энергии для поддержания гомеостаза, чем млекопитающие.

Клеточный гомеостаз

Регуляция химической деятельности клетки достигается с помощью ряда процессов, среди которых особое значение имеет изменение структуры самой цитоплазмы, а также структуры и активности ферментов. Авторегуляция зависит от температуры, степени кислотности, концентрации субстрата, присутствия некоторых макро- и микроэлементов.

Гомеостаз в организме человека

Дополнительные сведения: Кислотно-основное равновесие См. также: Буферные системы крови

Разные факторы влияют на способность жидкостей организма поддерживать жизнь. В их числе такие параметры, как температура, солёность, кислотность и концентрация питательных веществ - глюкозы, различных ионов, кислорода, и отходов - углекислого газа и мочи. Так как эти параметры влияют на химические реакции, которые сохраняют организм живым, существуют встроенные физиологические механизмы для поддержания их на необходимом уровне.

Гомеостаз нельзя считать причиной процессов этих бессознательных адаптаций. Его следует воспринимать как общую характеристику многих нормальных процессов, действующих совместно, а не как их первопричину. Более того, существует множество биологических явлений, которые не подходят под эту модель - например, анаболизм.

Другие сферы

Понятие «гомеостаз» используется также и в других сферах.

Актуарий может говорить о рисковом гомеостазе , при котором, к примеру, люди, у которых на машине установлены незаклинивающие тормоза, не находятся в более безопасном положении по сравнению с теми, у кого они не установлены, потому что эти люди бессознательно компенсируют более безопасный автомобиль рискованной ездой. Это происходит потому, что некоторые удерживающие механизмы - например, страх - перестают действовать.

Социологи и психологи могут говорить о стрессовом гомеостазе - стремлении популяции или индивида оставаться на определённом стрессовом уровне, зачастую искусственно вызывая стресс, если «естественного» уровня стресса недостаточно.

Примеры

  • Терморегуляция
    • Может начаться дрожание скелетных мышц, если слишком низкая температура тела.
    • Иной вид термогенеза включает расщепление жиров для выделения тепла.
    • Потоотделение охлаждает тело посредством испарения.
  • Химическая регуляция
    • Поджелудочная железа секретирует инсулин и глюкагон для контроля уровня глюкозы в крови.
    • Лёгкие получают кислород, выделяют углекислый газ.
    • Почки выделяют мочу и регулируют уровень воды и ряда ионов в организме.

Многие из этих органов контролируются гормонами гипоталамо-гипофизарной системы.

См. также

Категории:
  • Гомеостаз
  • Открытые системы
  • Физиологические процессы

Wikimedia Foundation. 2010.

В своей книге «The Wisdom of the Body» («Мудрость тела») предложил этот термин как название для «координированных физиологических процессов , которые поддерживают большинство устойчивых состояний организма». В дальнейшем этот термин распространился на способность динамически сохранять постоянство своего внутреннего состояния любой открытой системы . Однако представление о постоянстве внутренней среды было сформулировано ещё в 1878 году французским учёным Клодом Бернаром .

Общие сведения

Термин «гомеостаз» чаще всего применяется в биологии . Многоклеточным организмам для существования необходимо сохранять постоянство внутренней среды. Многие экологи убеждены, что этот принцип применим также и к внешней среде. Если система неспособна восстановить свой баланс, она может в итоге перестать функционировать.

Комплексные системы - например, организм человека - должны обладать гомеостазом, чтобы сохранять стабильность и существовать. Эти системы не только должны стремиться выжить, им также приходится адаптироваться к изменениям среды и развиваться.

Свойства гомеостаза

Гомеостатические системы обладают следующими свойствами:

  • Нестабильность системы: тестирует, каким образом ей лучше приспособиться.
  • Стремление к равновесию : вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.
  • Непредсказуемость : результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.
  • Регуляция количества микронутриентов и воды в теле - осморегуляция . Осуществляется в почках .
  • Удаление отходов процесса обмена веществ - выделение. Осуществляется экзокринными органами - почками, лёгкими , потовыми железами и желудочно-кишечным трактом .
  • Регуляция температуры тела. Понижение температуры через потоотделение , разнообразные терморегулирующие реакции.
  • Регуляция уровня глюкозы в крови. В основном осуществляется печенью , инсулином и глюкагоном , выделяемыми поджелудочной железой .

Важно отметить, что, хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Во многих организмах наблюдаются эндогенные изменения в форме циркадного , ультрадианного и инфрадианного ритмов. Так, даже находясь в гомеостазе, температура тела, кровяное давление , частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.

Механизмы гомеостаза: обратная связь

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, на которые реагирует система:

  1. Отрицательная обратная связь , выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.
    • Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.
    • Терморегуляция - другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ - понижение температуры (или повышение).
  2. Положительная обратная связь , которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.
    • Например, в нервах пороговый электрический потенциал вызывает генерацию намного большего потенциала действия. Свёртывание крови и события при рождении можно привести в качестве других примеров положительной обратной связи.

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, - такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

Экологический гомеостаз

В нарушенных экосистемах, или субклимаксовых биологических сообществах - как, например, остров Кракатау , после сильного извержения вулкана в - состояние гомеостаза предыдущей лесной климаксовой экосистемы было уничтожено, как и вся жизнь на этом острове. Кракатау за годы после извержения прошёл цепь экологических изменений, в которых новые виды растений и животных сменяли друг друга, что привело к биологической вариативности и в результате климаксовому сообществу. Экологическая сукцессия на Кракатау осуществилась за несколько этапов. Полная цепь сукцессий, приведшая к климаксу, называется присерией. В примере с Кракатау на этом острове образовалось климаксовое сообщество с восемью тысячами различных видов, зарегистрированных в , спустя сто лет с того времени, как извержение уничтожило на нём жизнь. Данные подтверждают, что положение сохраняется в гомеостазе в течение некоторого времени, при этом появление новых видов очень быстро приводит к быстрому исчезновению старых.

Случай с Кракатау и другими нарушенными или нетронутыми экосистемами показывает, что первоначальная колонизация пионерными видами осуществляется через стратегии воспроизведения, основанные на положительной обратной связи, при которых виды расселяются, производя на свет как можно больше потомства, но при этом практически не вкладываясь в успех каждого отдельного. В таких видах наблюдается стремительное развитие и столь же стремительный крах (например, через эпидемию). Когда экосистема приближается к климаксу, такие виды заменяются более сложными климаксовыми видами, которые через отрицательную обратную связь адаптируются к специфическим условиям окружающей их среды. Эти виды тщательно контролируются потенциальной ёмкостью экосистемы и следуют иной стратегии - произведению на свет меньшего потомства, в репродуктивный успех которого в условиях микросреды его специфической экологической ниши вкладывается больше энергии .

Развитие начинается с пионер-сообщества и заканчивается на климаксовом сообществе. Это климаксовое сообщество образуется, когда флора и фауна пришла в баланс с местной средой.

Подобные экосистемы формируют гетерархии , в которых гомеостаз на одном уровне способствует гомеостатическим процессам на другом комплексном уровне. К примеру, потеря листьев у зрелого тропического дерева даёт место для новой поросли и обогащает почву . В равной степени тропическое дерево уменьшает доступ света на низшие уровни и помогает предотвратить инвазию других видов. Но и деревья падают на землю и развитие леса зависит от постоянной смены деревьев, круговорота питательных веществ, осуществляемого бактериями , насекомыми , грибами . Схожим образом такие леса способствуют экологическим процессам - таким, как регуляция микроклиматов или гидрологических циклов экосистемы, а несколько разных экосистем могут взаимодействовать для поддержания гомеостаза речного дренажа в рамках биологического региона. Вариативность биорегионов так же играет роль в гомеостатической стабильности биологического региона, или биома .

Биологический гомеостаз

Гомеостаз выступает в роли фундаментальной характеристики живых организмов и понимается как поддержание внутренней среды в допустимых пределах.

Внутренняя среда организма включает в себя организменные жидкости - плазму крови, лимфу , межклеточное вещество и цереброспинальную жидкость . Сохранение стабильности этих жидкостей жизненно важно для организмов, тогда как её отсутствие приводит к повреждению генетического материала.

Гомеостаз в организме человека

Разные факторы влияют на способность жидкостей организма поддерживать жизнь. В их числе такие параметры, как температура, солёность , кислотность и концентрация питательных веществ - глюкозы , различных ионов , кислорода , и отходов - углекислого газа и мочи . Так как эти параметры влияют на химические реакции , которые сохраняют организм живым, существуют встроенные физиологические механизмы для поддержания их на необходимом уровне.

Гомеостаз нельзя считать причиной процессов этих бессознательных адаптаций. Его следует воспринимать как общую характеристику многих нормальных процессов, действующих совместно, а не как их первопричину. Более того, существует множество биологических явлений , которые не подходят под эту модель - например, анаболизм .

Другие сферы

Понятие «гомеостаз» используется также и в других сферах.

Актуарий может говорить о рисковом гомеостазе , при котором, к примеру, люди, у которых на машине установлены незаклинивающие тормоза , не находятся в более безопасном положении по сравнению с теми, у кого они не установлены, потому что эти люди бессознательно компенсируют более безопасный автомобиль рискованной ездой. Это происходит потому, что некоторые удерживающие механизмы - например, страх - перестают действовать.

Социологи и психологи могут говорить о стрессовом гомеостазе - стремлении популяции или индивида оставаться на определённом стрессовом уровне, зачастую искусственно вызывая стресс, если «естественного» уровня стресса недостаточно.

Примеры

  • Терморегуляция
    • Может начаться дрожание скелетных мышц, если слишком низкая температура тела.
    • Иной вид термогенеза включает расщепление жиров для выделения тепла .
    • Потоотделение охлаждает тело посредством испарения .
  • Химическая регуляция
    • Поджелудочная железа секретирует инсулин и глюкагон для контроля уровня глюкозы в крови.
    • Лёгкие получают кислород, выделяют углекислый газ .
    • Почки выделяют мочу и регулируют уровень воды и ряда ионов в организме.

Многие из этих органов контролируются гормонами гипоталамо-гипофизарной системы.

См. также


Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Гомеостаз" в других словарях:

    Гомеостаз … Орфографический словарь-справочник

    гомеостаз - Общий принцип саморегулирования живых организмов. Перлз настоятельно указывает на важность этого понятия в своей работе The Gestalt Approach and Eye Witness to Therapy . Краткий толковый психолого психиатрический словарь. Под ред. igisheva. 2008 … Большая психологическая энциклопедия

    Гомеостазис (от греч. подобный, одинаковый и состояние), свойство организма поддерживать свои параметры и физиоло гич. функции в определ. диапазоне, основанное на устойчивости внутр. среды организма по отношению к возмущающим воздействиям … Философская энциклопедия

    - (от греч. homoios тот же самый, похожий и греч. stasis неподвижность, стояние), гомеостазис, способность организма или системы организмов поддерживать устойчивое (динамическое) равновесие в изменяющихся условиях среды. Гомеостаз в популяции… … Экологический словарь

    Гомеостазис (от гомео... и греч. stasis неподвижность, состояние), способность биол. систем противостоять изменениям и сохранять динамич. относит, постоянство состава и свойств. Термин «Г.» предложил У. Кен нон в 1929 для характеристики состояний … Биологический энциклопедический словарь

В биологии – это поддержание постоянства внутренней среды организма.
В основе гомеостаза лежит чувствительность организма к отклонению определённых параметров (гомеостатических констант) от заданного значения. Пределы допустимых колебаний гомеостатического параметра (гомеостатической константы ) могут быть широкими и узкими. Узкие пределы имеют: температура тела, рН крови, содержание глюкозы в крови. Широкие пределы имеют: давление крови, масса тела, концентрация аминокислот в крови.
Специальные внутриорганизменные рецепторы (интерорецепторы ) реагируют на отклонение гомеостатических параметров от заданных пределов. Такие интерорецепторы имеются внутри таламуса, гипоталамуса, в сосудах и в органах. В ответ на отклонение параметров они запускают восстановительные гомеостатические реакции.

Общий механизм нейроэндокринных гомеостатических реакций для внутренней регуляции гомеостаза

Параметры гомеостатической константы отклоняются, интерорецепторы возбуждаются, затем возбуждаются соответствующие центры гипоталамуса, они стимулируют выброс гипоталамусом соответствующих либеринов. В ответ на действие либеринов происходит выброс гормонов гипофизом, а затем под их действием идёт выброс гормонов других эндокринных желёз. Гормоны, выделившись из желёз внутренней секреции в кровь, изменяют обмен веществ и режим работы органов и тканей. В итоге установившийся новый режим работы органов и тканей смещает изменившиеся параметры в сторону прежнего заданного значения и восстанавливает величину гомеостатической константы. Таков общий принцип восстановления гомеостатических констант при их отклонении.

2. В этих функциональных нервных центрах определяется отклонение данных констант от нормы. Отклонение констант в заданных пределах устраняется за счёт регуляторных возможностей самих функциональных центров.

3. Однако при отклонении любой гомеостатической константы выше или ниже допустимых пределов функциональные центры передают возбуждение выше: в "потребностные центры" гипоталамуса. Это необходимо для того, чтобы переключиться с внутренней нейрогуморальной регуляции гомеостаза на внешнюю - поведенческую.

4. Возбуждение того или иного потребностного центра гипоталамуса формирует соответствующее ему функциональное состояние, которое субъективно переживается как потребность в чём-то: пище, воде, тепле, холоде или сексе. Возникает активирующее и побуждающее к действию психоэмоциональное состояние неудовлетворённости.

5. Для организации целенаправленного поведения необходимо выбрать только одну из потребностей в качестве первоочередной и создать для её удовлетворения рабочую доминанту. Считается, что главную роль в этом играют миндалины мозга (Сorpus amygdoloideum). Получается, что на основе одной из потребностей, которые формирует гипоталамус, миндалина создаёт ведущую мотивацию, организующую целенаправленное поведение для удовлетворения только одной этой избранной потребности.

6. Следующим этапом можно считать запуск подготовительного поведения, или драйв-рефлекса, который должен повысить вероятность для запуска исполнительного рефлекса в ответ на пусковой стимул. Драйв-рефлекс побуждает организм к созданию такой ситуации, в которой будет повышена вероятность обнаружения объекта, подходящего для удовлетворения текущей потребности. Это может быть, например, перемещение в место, богатое пищей, или водой, или сексульными партнёрами, в зависимости от ведущей потребности. Когда же в достигнутой ситуации обнаруживается конкретный объект, подходящий для удовлетворения данной доминантной потребности, то он запускает исполнительное рефлекторное поведение, направленное на удовлетворение потребности с помощью именно этого объекта.

© 2014-2018 Сазонов В.Ф. © 2014-2016 kineziolog.bodhy.ru..

Системы гомеостаза - подробный образовательный ресурс по гомеостазу.

Допущено
Всероссийским учебно - методическим центром
по непрерывному медицинскому и фармацевтическому образованию
Министерства здравоохранения Российской Федерации
в качестве учебника для студентов медицинских институтов

Основная цель, проходящая через все главы читаемого тобой, коллега, учебника - формирование представления о болезни как о нарушении гомеостаза.

Способность организма, несмотря на довольно частые патогенные воздействия на организм неблагоприятных вредных факторов, поддерживать устойчивое состояние здоровья, известна с древних времен. Еще Гиппократ знал, что болезни могут излечиваться естественными силами природы "vis medicas nature". Теперь это явление природы живых организмов обозначают как Гомеостаз. Таким образом, термин гомеостаз в общей форме обозначает устойчивость организма к вредоносным влияниям среды.

Реакции, обеспечивающие гомеостаз, направлены на поддержание устойчивого (постоянного) неравновесного состояния внутренней среды, т.е. известных уровней состояния путем координации комплексных процессов для устранения или ограничения действия вредоносных факторов, на выработку или сохранение оптимальных форм взаимодействия организма и среды.

29.1. Реактивность

Изменения реактивности направлены на противодействие вредоносным влиянием среды и имеют, главным образом, защитный (приспособительный), т.е. адаптивный характер. Гомеостаз при этом сохраняется на новом уровне выраженности механизмов устойчивости.

Таким образом, термин реактивность в общей форме обозначает механизм устойчивости (резистентности) организма к вредным влияниям среды, т.е. механизм поддержания гомеостаза.

Общей формой реактивности является биологическая (видовая) реактивность. Она, в свою очередь, делится на групповую и индивидуальную реактивность.

Биологическая реактивность - изменения жизнедеятельности защитно-приспособительного характера, которые возникают под влиянием обычных (адекватных) для каждого вида животных раздражений окружающей среды. Она генетически закреплена и направлена на сохранение как вида (человек, птицы, рыбы) в целом, так и каждой особи в отдельности. Ч.Дарвин: "Эволюционный механизм изменчивости целенаправлен (телеологичен) на увеличение выживаемости".

Примеры: сложнорефлекторная деятельность пчел, сезонные миграции птиц, рыб, сезонные изменения жизнедеятельности животных (спячка сусликов, медведей и т.д.).

Давая характеристику основ учения о гомеостазе, крупный отечественный патофизиолог И.Д.Горизонтов писал: "Явление гомеостаза по существу представляет собой эволюционно выработанное, наследственно закрепленное адаптационное устройство организма к обычным условиям окружающей среды".

Измененная реактивность возникает при действии на организм болезнетворных факторов среды. Она, в общем, характеризуется:

  1. понижением приспособительных реакций;
  2. но в то же время при болезни имеет место и усиление ряда реакций для защиты организма от данного вредного фактора и от последствий вызванного им повреждения (лихорадка, потоотделение, повышение артериального давления, выработка антител, воспаление и др.).

Как же с точки зрения учения о гомеостазе должен вести себя организм в случаях воздействия факторов окружающей среды, выходящих за пределы "нормы", то есть вредоносных? Восстановление обычных свойств внутренней среды является результатом усиления функциональной активности либо кратковременной (тахикардия, тахипноэ, потоотделение), либо длительной, например, викарное усиление активности потовых желез при недостаточности почек; (лихорадка, выработка Т-лимфоцитов-киллеров); в тоже время болезнетворное начало может нарушить согласованность работы механизмов поддержания постоянства внутренней среды, что будет сопровождаться снижением приспособительных реакции организма.

Суммируем наши размышления: гомеостаз - более широкое понятие, чем реактивность. Различные виды реактивности - это механизм гомеостаза. Отсюда следует принципиальный вывод: гомеостаз означает не только сохранение постоянства или оптимальное восстановление и приспособление к условиям окружающей среды. Сама болезнь по своей биологической сущности также представляет собой проблему гомеостаза, нарушения его механизмов и путей восстановления. Болезнь - это нарушенный гомеостаз.

Итак, раздел "реактивность" целесообразно изучать и знать с позиции гомеостаза. О реактивности вы прочтете в учебнике А.Д.Адо и соавторов, а я расскажу вам далее о гомеостазе. Вместе с тем, вы должны четко представлять, что различные виды реактивности могут поддерживать гомеостаз до определенных пределов и составляют предмет изучаемой традиционной медицины. В измененных условиях среды физиологические механизмы гомеостаза не справляются, возникают экологические болезни (рак, аллергия, наследственные патологии), угроза может быть предупреждена только с позиций экологической медицины. Цель ее - идентификация вредного фактора окружающей среды, разработка мер профилактики и лечения его неблагоприятного воздействия на уровне популяции.

29.2. Гомеостаз, его механизм и значение. Исторические основы учения о гомеостазе

Почти 100 лет назад выдающийся французский ученый Клод Бернар впервые поставил вопрос о значении гомеостаза (хотя сам термин был введен позднее американским ученым У.Кенноном). Будучи непримиримым противником витализма (духовного первотолчка в происхождении жизни), К.Бернар придерживался материалистических взглядов. По его мнению, все проявления жизни обусловлены конфликтом между предшествующими силами организма (конституцией) и влиянием внешней среды.

Может быть, в этом же кроется и вечность проблемы "отцов и детей", конфликт между взглядами, традициями 25-35 летней давности (молодость отцов) и новыми взглядами, диктуемыми текущей жизнью, которые легко впитываются юношеством и критически воспринимаются отцами?

Возвращаясь к концепции К.Бернара. Сам конфликт между конституцией и средой выявляется в виде феноменов двух видов: синтеза и распада. На основе этих двух противоположных процессов и создается приспособление организмов к условиям среды или адаптация, которая представляет собой гармоничную связь между организмом и средой.

29.2.1. Формы жизни по К.Бернару

К.Бернар считал, что воздействие внешней среды привело к образованию 3-х форм жизни:

  1. Латентной - жизнь внешне не проявляется, полное подавление обмена веществ (цисты у глистов, споры у растений, сухие дрожжи);
  2. Осциллирующей - зависящей от окружающей среды. Это свойственно для беспозвоночных и холоднокровных позвоночных (лягушек, змей), некоторых видов теплокровных, впадающих в состояние гибернации (спячки). В это время они мало чувствительны к кислородному голоданию, травме, действию инфекции. В настоящее время искусственное охлаждение вызывают и у человека при производстве сложных операций на сердце. Обязательным условием благоприятного выхода из гибернации является предварительное накопление в организме питательных веществ;
  3. Постоянная или свободная жизнь - такая форма жизни характерна для животных с высокой организацией, жизнь которых не прекращается даже при резких изменениях условий окружающей среды. Поэтому эти формы жизни эволюционно более прогрессивны, и стали господствующими на Земле.

29.2.1.1. Две среды организма

Органы и ткани функционируют примерно одним и тем же образом, без значительного изменения уровня их активности. Происходит это благодаря тому, что внутренняя среда (кровь, лимфа, межклеточная жидкость), окружающая органы и ткани, не меняется.

К.Бернар писал, что в организме создается собственная неизменяемая среда, несмотря на меняющиеся условия внешней среды. В результате организм живет как бы в теплице, оставаясь свободным и независимым.

Таким образом, у каждого высокоорганизованного животного имеется две среды: внешняя (экологические взаимодействия), в которой находится организм, и внутренняя, в которой живут элементы тканей. Резюмируя, можно сказать, что гомеостаз, т.е. постоянство внутренней среды, является условием свободной и независимой жизни.

29.2.1.2. Значение резервов в организме для гомеостаза

Питание физиологических механизмов гомеостаза не является прямым, а осуществляется путем расходования резервов. Можно сказать, что мы едим не то, что приняли только что, а то, что съели перед этим (вчера). Следовательно, принимаемая пища должна ассимилироваться, а затем уже организм ее расходует. Значение резервов для гомеостаза позже было показано в трудах Кэннона. В организме существуют резервы углеводов (гликоген), жиров. Энергия запасается в виде АТФ, ГТФ. Значение этих резервов энергии чрезвычайно высоко, т.к. устойчивое неравновесие как уникальный признак биологической системы возможно только при условии постоянных энергетических затрат.

Подводя итоги работы, К.Бернар писал, что в латентной жизни существо целиком подчинено влиянию внешней среды. В осциллирующей - оно периодически зависит от окружающей среды. В постоянной жизни существо кажется свободным и его проявления образуются и направляются внутренними жизненными процессами. Однако, это понятие не адекватно независимому "жизненному началу", к которому прибегают виталисты для объяснения сущности жизни.

29.3. Дальнейшее развитие учении о гомеостазе

К.Бернар особо подчеркивал, что независимость проявлений внутренней жизни является иллюзорной. Наоборот, в механизмах постоянной или свободной жизни взаимоотношения внутренней и внешней среды являются наиболее тесными и наиболее очевидными.

В то же время К.Бернар, опираясь на свое учение о постоянстве реакций организма, считал, что он приобретает независимость от внешних превратностей и не признал учение Ч.Дарвина. Известно, что великий англичанин во главу своего учения ставил влияние внешней среды на организм. Изменившиеся организмы, приобретшие более совершенные механизмы приспособляемости, выживали, адаптировались. Другие - безжалостно уничтожались природой. Примирил эти два противоположных взгляда американский физиолог Кэннон.

Кэннон Вильямс (1871-1945) - выдающийся физиолог нашего столетия, основатель учения о гомеостазе как саморегуляции постоянства внутренней среды организма. Влияние этого учения не ограничилось физиологией и стало основополагающим для всей медицины. Значимость учения о гомеостазе для патофизиологии, изучающей теоретические основы болезни, делает необходимым подробнее остановиться на этой важной вехе развития медицинской науки. "Чудо биологии - удивительная способность живого организма сохранять постоянство своих реакций. И это вопреки непрочности компонентов, его составляющих".

Как же Кэннону удалось объединить экспериментальный и эволюционный способы мышления? Это удалось ему сделать, исходя из позиций телеологичности - целесообразности всего живого. Им была выдвинута идея о том, что сохранение постоянства внутренней среды делает организм более устойчивым к изменениям внешней среды, т.е. сохраняет выживаемость организма. Говоря проще, эволюционно приобретенное свойство гомеостаза высших организмов позволяет им быстрее приспосабливаться к изменениям внешней среды.

Организм в целом Кэннон рассматривает как активную саморегулирующуюся систему. Главным объектом саморегуляции является внутренняя среда - кровь, лимфа, межклеточная жидкость.

Основной механизм гомеостаза - реактивность. Главным мотором Кэннон считал симпато-адреналовую систему. В ходе исторического познания природы организма нервный и гуморальный факторы превратились в объекты специального анализа. Феномены, нераздельные в живом организме, оказались искусственно разграниченными.

29.4. Регулирующая роль нервной и эндокринной (САС, ОАС) систем в поддержании постоянства внутренней среды, т.е. гомеостаза

Кэннон в своей книге "Мудрость тела" разбирал роль симпатической нервной системы в гомеостазе. Он рассматривал симпатический отдел нервной системы в качестве главного фактора срочной мобилизации защитных сил организма для восстановления нарушенного равновесия. Можно вообще сказать, что быстрота реакции (сек) для экстренной перестройки обеспечивается именно нервной системой.

Л.А.Орбели, наш выдающийся физиолог, установил адаптационно-трофическую роль нервной системы, сущность которой заключается в том, что симпатическая нервная система меняет функциональную готовность органов в соответствии с условиями существования организма. Например, раздражение симпатической нервной системы восстанавливает работоспособность утомленной скелетной мускулатуры. Фактически им заложены основы учения о допинге. Большая роль при этом принадлежит ретикулярной формации (сетевидному образованию) ствола головного мозга - центральному отделу САС.

Гормональные влияния рассчитаны на более длительное время перестройки организма (минуты, часы). Кэннон соединил "симпатическое" и "адреналовое" дефисом, призванным отобразить понятие системного единого характера функционирования особого, целостного механизма - САС, предназначение которой - обеспечить гомеостаз.

Дальнейшее развитие представлений о возникновении болезни как патологии регуляторных систем организма, связано с именем канадского физиолога Ганса Селье, директора института экспериментальной хирургии и медицины в Монреале, автора одного из величайших открытий биологии XX века - явления стресса.

Развитие медицины XIX пека привело к представлению о том, что каждое заболевание должно иметь свою собственную причину.

Например, характерный синдром кори или дифтерии может быть обусловлен только специфическим организмом (микроорганизмом). Но специфических признаков, по которым ставят диагноз, так мало.

В отличие от этого, Г.Селье сформировал понятие о "синдроме заболевания вообще". К мысли об этом он пришел еще в студенческие годы. Много позже он вкладывал в это понятие неспецифичность однообразной реакции системы гипоталамус-гипофнз-кора надпочечников, отмечающейся при действии любого повреждающего агента.

Эта реакция была названа им "общим адаптационным синдромом" (ОАС), направленным на поддержание гомеостаза организма. Вот как описывает Г.Селье свои представления об ОАС: "Человек должен был уяснить, что во всех случаях, когда он сталкивался с длительной или непривычно тяжелой задачей - будь то плавание в холодной воде, поднимание тяжелых камней или голодание - он проходит через 3 стадии: вначале он ощущает трудность, затем привыкает к ней, и наконец, не может больше с ней справиться. Он не думает об этом, как об общем законе, регулирующем поведение животных существ в особо напряженных условиях. Настоятельная необходимость поиска пищи и жилья не позволяет ему думать о таких концепциях, как гомеостаз (поддержание постоянства внутренней среды) или биологический стресс".

Г.Селье было показано, что на различные агенты: хирургическая травма, ожог, боль, унижение, интоксикация, обстоятельства жизни делового человека, спортсмена и множество других, организм отвечает стереотипной формой биохимических, функциональных и структурных изменений. Для стрессорной реакции несущественно, вызвана она приятным или неприятным агентом. Основным здесь является интенсивность требования для организма, которое создаст стресс-агент.

Механизм этой неспецифической реакции основан на возбуждении системы гипоталамус-гииофиз-кора надпочечников и САС. Возникающие нейро-эндокринные импульсы способствуют запуску защитных сил организма. Это способствует резкому повышению гомеостатических возможностей организма. Многолетние исследования Г.Селье показали, что при любом заболевании специфические его проявления накладываются на неспецифические реакции, обусловленные системой гипоталамус-гипофиз-кора надпочечников. Этим вызвано широкое использование стероидов в медицинской практике.

29.5. Роль биомембран в механизмах поддержания гомеостаза

В.Кэннон и К.Бернар основой внутренней среды считали жидкую часть организма, в состав которой входит кровь, лимфа, межтканевая жидкость. Однако, кровь не приходит в непосредственное соприкосновение с клетками ткани. Как впервые показано отечественной исследовательницей Л.С.Штерн, между кровью и тканью находятся так называемые гисто-гематические барьеры, основу которых составляют биологические мембраны (ГЭБ, гемато-офтальмический, плацентарный и др. барьеры).

Кроме разделительной, есть еще одна важная функция мембран в гомеостазе - это р е ц е п т о р н а я функция клеточных мембран. Она играет решающую роль в осуществлении обратной связи. Обратная связь означает влияние выходного сигнала на вход - управляющую часть системы. Отрицательная обратная связь приводит к уменьшению влияния входного воздействия на величину выходного сигнала. Например, увеличение в крови концентрации гормонов щитовидной железы Т 3 , Т 4 приводит к снижению уровня в гипоталамусе соматостатина и угнетению выработки в гипофизе тиреотропного гормона.

Положительная обратная связь приводит к увеличению действия выходного сигнала. Например, переход острого воспаления в хроническое возникает при изменении конформации и антигенных свойств собственных белков - образования аутоантигенов. Последние вызывают усиление образования аутоантител, а иммунный конфликт поддерживает воспалительную реакцию. Если отрицательная обратная связь обычно способствует восстановлению исходного состояния, то положительная чаще уводит ее от этого состояния. Вследствие этого не происходит коррекции, что может послужить причиной возникновения "порочного круга", хорошо известного патофизиологам и клиницистам (пример патогенеза хронического воспаления, аутоаллергпи).

29.6. Гомеостаз и норма

В одной из своих первых работ по гомеостазу Кэннон напоминает, что животные существа представляют собой открытые системы, имеющие множество связей с окружающей средой. Эти связи осуществляются через посредство дыхательного и пищеварительного трактов, поверхность кожи, рецепторов, нервно-мышечных органов и костных рычагов. Изменения окружающей среды прямо или опосредованно воздействуют на указанные системы. Однако, эти воздействия обычно не сопровождаются большими отклонениями от нормы и не вызывают серьезных нарушений в физиологических процессах благодаря тому, что автоматическая регуляция ограничивает возникающие в организме колебания в указанных пределах "нормы".

С точки зрения гомеостаза дано наиболее емкое определение "нормы". Норма - это условное обозначение устойчивого неравновесия организма, отдельных его органов и тканей во внешней среде. Видно, что это определение учитывает индивидуальные особенности. Например, устойчивое состояние может быть при систолическом АД равном 120 мм рт.ст. (для одного индивидуума это норма) и при АД 140 (для другого - это тоже норма). Можно попользовать аналогию с парусом и рулем корабля. Есть ли для них нормальное положение? Нет, т.к. норма - это изменение, обеспечивающее движение данного корабля. Например, реакции иммунной системы под влиянием "ветра" антигенных воздействий (Р.В.Петрова).

Это относительное постоянство можно было бы обозначить термином уравновешивание, используемым в описании простых физико-химических процессов. Однако, в сложно устроенном живом организме кроме процессов уравновешивания обычно включается взаимодействие, интегративная кооперация целого ряда органов и систем. Так, например, когда создаются условия, меняющие состав крови или вызывающие нарушения дыхательных функций (геморрагия, пневмония), быстро реагируют мозг, нервы, сердце, почки, легкие, селезенка и т.к. Для обозначения таких явлений термин "уравновешивание" недостаточен, т.к. он не включает сложный и специфический процесс координации. Для его быстрейшего и устойчивого положения обязательно наличие контррегуляторных систем, цель которых - общая устойчивость внутренней среды.

Именно для этих состояний и процессов, обеспечивающих устойчивость организма, Кэннон и предложил термин гомеостаз. Слово "гомео" указывает не на фиксированную тождественность "тоже самое", а на сходство, подобие.

Таким образом, гомеостаз не обозначает простого постоянства физико-химических свойств внутренней среды. Этот термин включает в себя и физиологические механизмы, обеспечивающие устойчивость живых существ (т.е. процессы реактивности). Гомеостаз - это активная саморегуляция постоянства внутренней среды.

29.7. Гомеостаз и адаптация

По существу, на основе гомеостаза базируется явление адаптации. Т.е. организм приспосабливается (адаптируется) к изменяющимся условиям внешней среды, используя те или иные механизмы гомеостаза.

Компенсация - скрытая патология, выявляемая функциональной нагрузкой (порок аортального клапана компенсируется гипертрофией миокарда. Клинические его проявления выявляются повышенной физической нагрузкой).

29.7.1. Виды адаптации

Различают адаптацию кратковременную и длительную:

  1. При кратковременном выходе за пределы нормы при воздействии условий окружающей среды организм отвечает кратковременным изменением функциональной активности (бег вызывает тахикардию и тахипноэ);
  2. При длительном или повторном воздействии могут возникать более стойкие пли даже структурные изменения:
    1. повышенная физическая нагрузка и объем мускулатуры, гипертрофия беременной матки, структуры костной ткани при неправильном прикусе;
    2. при повреждении какого-либо органа происходит включение механизмов компенсации. Например, викарное (заместительное, компенсаторное) подключение других систем организма: кровопотеря вызывает тахикардию, тахипноэ, выход крови из депо, усиление кроветворения).

В медицинской практике под адаптацией подразумевают именно ту форму приспособления, которая создастся в необычных условиях существования организма. Следует еще раз подчеркнуть, что любой вид адаптации создастся на основе уже существующих механизмов гомеостаза.

29.8. Уровни регуляции гомеостаза

Организм с точки зрения гомеостаза представляет собой саморегулирующуюся систему. Различают 3 уровня регуляции:

  1. Низший, определяет постоянство физиологических констант и обладает автономностью (поддержание pH, Р осм).
  2. Средний, определяет приспособительные реакции при изменении внутренней среды организма. Регулируется нейро-эндокринной системой.
  3. Высший, определяет приспособительные реакции, сознательное поведение при изменениях внешней среды. По сигналам внешнего мира изменяются вегетативные функции и сознательное поведение организма. Регулируется ЦНС и ее внешним отделом - корой больших полушарий.

И.П.Павлов писал: "Большие полушария - орган живого организма, который специализирован на то, чтобы постоянно осуществлять все более и более совершенное уравновешивание организма с внешней средой".

Кора больших полушарий - эволюционно самый молодой, но в то же время и самый сложный орган регуляции. Это ни в коем случае не означает, что кора головного мозга постоянно вмешивается во все процессы организма. Ее цель, ее задача - поддержание связи организма с внешней средой, главным образом, социальных отношений. Это обеспечивает высшим животным лидирующее положение в животном мире.

Великой заслугой отечественного физиолога И.П.Павлова является разработка методов исследования свободного поведения, интеллектуальной сферы организма. Им было обосновано использование для этой цели метода условных рефлексов и показано, что сознательная деятельность коры больших полушарий во многом построена на принципе адаптивных условных рефлексов. И.П.Павловым было проведено преобразование понятия о рефлексе от истинного, автоматического, лежащего в основе гомеостаза, до рефлекса условного, определяющего механизмы "жизненных встреч организма со средой", основы социального гомеостаза.

Чрезвычайно важно понимать, что эволюция животных диктуется не только стремлением удержать устойчивость неравновесного состояния за счет гомеостаза с истинными, автоматическими рефлексами, она непрерывно связана с активностью свободного поведения (негомеостатическая высшая нервная деятельность с условными рефлексами), поддерживающей это неравновесие как отличительный признак живых систем.

Гомеостаз, поддерживаемый автоматически за счет деятельности САС, открывает простор для высших форм нервной деятельности, высвобождая для этого кору головного мозга. Т.е. Кэннон показал, что гомеостатические механизмы существуют автономно, независимо от контроля сознания, сохраняя его свободным для интеллектуальной деятельности. Таким образом, освобождая сознание от регуляции телесных процессов, мы, посредством коры головного мозга, устанавливаем интеллектуальное отношение с окружающим миром, анализируем опыт, занимаемся наукой, техникой и искусством, общаемся с друзьями, воспитываем детей, выражаем симпатии и т.д. - словом, ведем себя как человеческие существа - писал Кэннон.

Применительно к этому, тело, по мнению Кэннона, оказывается "мудрым" (название книги), поскольку оно ежесекундно сохраняет устойчивость крупного организма без вмешательства разума, открывая просторы для свободного поведения.

Заключая тему роли гомеостаза в изучении физиологии больного организма, хочу сказать, что основным направлением вашего обучения на клинических кафедрах старших курсов и будущей врачебной деятельности должно стать сознательное восстановление способности организма больного к самостоятельному поддержанию гомеостаза в условиях экологически безопасной среды.

Биологическая система любой сложности, от субклеточных структур функциональных систем и целого организма, характеризуется способностью к самоорганизации и саморегуляции. Способность к самоорганизации проявляется разнообразием клеток и органов при наличии общего принципа элементарной строения (мембран, органоидов и т. п). Саморегуляцию обеспечивают механизмы, заложенные в самой сущности живого.

Организм человека состоит из органов, которые для выполнения своих функций чаще всего сочетаются с другими, тем самым образуя функциональные системы. Для этого структуры любого уровня сложности, начиная от молекул и заканчивая целым организмом, нуждаются систем регуляции. Эти системы обеспечивают взаимодействие различных структур уже в состоянии физиологического покоя. Особенно они важны в активном состоянии при взаимодействии организма с изменчивой внешней средой, поскольку любые изменения требуют адекватного ответа организма. В таком случае одно из обязательных условий самоорганизации и саморегуляции - сохранение свойственных организму постоянных условий внутренней среды, что обозначают понятием гомеостаза.

Ритмичность физиологических функций. Физиологические процессы жизнедеятельности даже в условиях полного физиологического покоя протекают с различной активностью. Усиление или ослабление их происходит под влиянием сложного взаимодействия экзогенных и эндогенных факторов, что получило название "биологические ритмы". Причем периодичность колебания различных функций варьирует в чрезвычайно широких пределах, начиная от периода до 0,5 ч вплоть до многодневных и даже многолетних.

Понятие о гомеостаз

Эффективное функционирование биологических процессов требует определенных условий, большинство из которых должны быть постоянными. И что они стабильнее, тем надежнее функционирует биологическая система. К этим условиям прежде всего необходимо отнести те, которые способствуют сохранению нормального уровня обмена веществ. Для этого необходимо поступление исходных ингредиентов обмена и кислорода, а также удаление конечных метаболитов. Эффективность протекания обменных процессов обеспечивается определенной интенсивности внутриклеточных процессов, обусловленной прежде всего активностью ферментов. В то же время ферментативная активность зависит и от таких, казалось бы, внешних факторов, как, например, температура.

Стабильность большинстве условий необходима на любом структурно-функциональном уровне, начиная от отдельной биохимической реакции, клетки и кончая сложными функциональными системами организма. В реальной жизни эти условия часто могут нарушаться. Появление изменений отражается на состоянии биологических объектов, протекания в них процессов обмена. К тому же чем сложнее устроено биологическую систему, то большие отклонения от стандартных условий она выдерживает без существенных нарушений жизнедеятельности. Это связано с наличием в организме соответствующих механизмов, направленных на ликвидацию изменений, которые возникли. Так, например, активность ферментативных процессов в клетке при снижении температуры на каждые 10 °С снижается в 2-3 раза. Вместе с тем теплокровные животные благодаря наличию механизмов терморегуляции сохраняют внутреннюю температуру постоянной за достаточно широкого диапазона изменения внешней. Вследствие этого поддерживается стабильность этого условия для протекания ферментативных реакций на неизменном уровне. И например, человек, обладающий еще и разумом, имея одежду и жилье, может длительное время существовать при внешней температуре, значительно ниже 0 °С.

В процессе эволюции происходило формирование приспособительных реакций, направленных на поддержание постоянных условий внешней среды организма. Они существуют как на уровне отдельных биологических процессов, так и всего организма. Каждое из этих условий характеризуют соответствующие параметры. Поэтому системы регуляции постоянства условий контролируют постоянство этих параметров. А если указанные параметры по какой-то причине отклоняются от нормы, механизмы регуляции обеспечивают возвращение их к исходному уровню.

Универсальное свойство живого активно сохранять стабильность функций организма, несмотря на внешние воздействия, которые могут ЕЕ нарушить, называют гомеостазом.

Состояние биологической системы любого структурно-функционального уровня зависит от комплекса воздействий. Этот комплекс состоит из взаимодействия многих факторов, как внешних по отношению к ней, так и тех, что находятся внутри или образуются в результате процессов, происходящих в ней. Уровень воздействия внешних факторов определяют соответствующим состоянием среды: температурой, влажностью, освещенностью, давлением, газовым составом, магнитными полями и тому подобное. Однако степень воздействия далеко не всех внешних и внутренних факторов организм может и должен поддерживать на постоянном уровне. Эволюция отобрала те из них, которые более необходимы для сохранения жизнедеятельности, или те, для поддержания которых были найдены соответствующие механизмы.

Константы параметров гомеостаза Не имеют четкого постоянства. Возможны и отклонения их от среднего уровня в ту или другую сторону в своеобразном "коридоре". Для каждого параметра существуют свои пределы максимально возможных отклонений. Отличаются они и по времени, в течение которого организм может выдерживать нарушение конкретного параметра гомеостаза без каких-либо серьезных последствий. Вместе с тем само по себе отклонение параметра за пределы "коридора" может обусловить гибель соответствующей структуры - будь то клетка или даже организм в целом. Так, в норме рН крови составляет около 7,4. Но он может колебаться в пределах 6,8-7,8. Крайняя степень отклонений этого параметра организм человека может выдержать без пагубных последствий лишь в течение нескольких минут. Другой гомеостатический параметр - температура тела - при некоторых инфекционных заболеваниях может возрастать до 40 °С и выше и держаться на таком уровне в течение многих часов и даже дней. Таким образом, одни константы организма достаточно стабильны - - жесткие константы, другие отличаются более широким диапазоном колебаний - пластические константы.

Изменение гомеостаза может происходить под воздействием любых внешних факторов, а также иметь эндогенное происхождение: интенсификация процессов метаболизма стремится изменить параметры гомеостаза. При этом активизация систем регуляции легко обеспечивает возвращение их на стабильный уровень. Но, если в состоянии покоя у здорового человека эти процессы сбалансированы и механизмы восстановления функционируют с запасом мощности, то в случае резкого изменения условий существования, при заболеваниях они включаются с максимальной активностью. Совершенствование систем регуляции гомеостаза нашло отражение и в эволюционном развитии. Так, отсутствие системы поддержания постоянной температуры тела у холоднокровных, обусловив зависимость жизненных процессов от изменчивой внешней температуры, резко ограничила их эволюционное развитие. Однако наличие такой системы в теплокровных обеспечила расселение их по всей планете и сделала такие организмы действительно свободными существами с высокой эволюционной потенцией.

В свою очередь, каждому человеку присущи индивидуальные функциональные возможности самих систем регуляции гомеостаза. Это в большой степени определяет выраженность реакции организма на любые воздействия, а в конечном итоге сказывается и на продолжительности жизни.

Клеточный гомеостаз . Один из своеобразных параметров гомеостаза - "генетическая чистота" клеточных популяций организма. За нормальной пролиферацией клеток "следит" иммунная система организма. В случае ее нарушения или нарушения считывания генетической информации появляются клетки, чужеродные для данного организма. Уничтожает их упомянутая система. Можно сказать, что подобный механизм осуществляет и борьбу с поступлением в организм инородных клеток (бактерий, глистов) или их продуктов. И это также обеспечивает система иммунитета (см. разд. С - "Физиологическая характеристика лейкоцитов").

Механизмы гомеостаза и их регуляция

Системы, контролирующие параметры гомеостаза, состоят из механизмов различной структурной сложности: как с сравнительно просто устроенных элементов, так и достаточно сложных нейрогормональних комплексов. Одними из простейших механизмов считают метаболиты, часть которых может местно влиять на активность ферментативных процессов, на различные структурные компоненты клеток и тканей. Более сложные механизмы (нейроэндокринные), осуществляющих міжорганну взаимодействие, подключаются тогда, когда простых уже недостаточно для того, чтобы вернуть параметр до необходимого уровня.

В клетке происходят местные процессы авторегуляция с отрицательной обратной связью. Так, например, при интенсивной мышечной работе в скелетной мускулатуре через относительный дефицит 02 накапливаются недоокис нэп и продукты обмена. Они сдвигают рН саркоплазми в кислую сторону, что может обусловить гибель отдельных структур, всей клетки или даже организма. При снижении рН изменяются конформационные свойства цитоплазматических белков, мембранных комплексов. Последнее обусловливают изменение радиуса пор, повышение проницаемости мембран (перегородок) всех субклеточных структур, нарушение ионных градиентов.

Роль жидких сред организма в гомеостазе. Центральным звеном сохранения гомеостаза считают жидкие среды организма. Для большинства органов это кровь и лимфа, а для мозга - кровь и спинномозговая жидкость (СМЖ). Особенно большую роль играет кровь. Кроме того, для клетки жидкими средами является ее цитоплазма и міжклітинна жидкость.

Функции жидких сред В поддержание гомеостаза достаточно разнообразны. Во-первых, жидкие среды обеспечивают обменные процессы с тканями. Они не только приносят к клеткам необходимые для жизнедеятельности вещества, но и транспортируют от них метаболиты, которые иначе могут накапливаться в клетках в высокой концентрации.

Во-вторых, жидкие среды имеют собственные механизмы, необходимые для поддержания некоторых параметров гомеостаза. Например, буферные системы смягчают сдвиг кислотно-основного состояния при поступлении в кровь кислот или оснований.

в-третьих, жидкие среды принимают участие в организации системы контроля гомеостаза. Здесь также существует несколько механизмов. Так, за счет транспортировки метаболитов в процесс поддержания гомеостаза подключаются отдаленные органы и системы (почки, легкие и др). Кроме того, метаболиты, содержащиеся в крови, воздействуя на структуры и рецепторы других органов и систем, могут запускать сложные рефлекторные ответы, гормональные механизмы. Например, терморецепторы реагируют на "горячую" или "холодную" кровь и соответствующим образом изменяют активность органов, участвующих в образовании и сдаче тепла.

Рецепторы располагаются также и в самих стенках кровеносных сосудов. Они участвуют в регуляции химического состава крови, ее объема, давления. С раздражение сосудистых рецепторов начинаются рефлексы, ефекторною звеном которых являются органы и системы организма. Большое значение крови в поддержании гомеостаза стало основой для формирования специальной системы гомеостаза многих параметров самой крови, ее объема. Для их сохранения существуют сложные механизмы, включены в единую систему регуляции гомеостаза организма.

Приведенное выше можно наглядно проиллюстрировать на примере интенсивной мышечной деятельности. Во время ее выполнения из мышц в русло крови выходят продукты обмена в виде молочной, пировиноградной, ацетоуксусной и других кислот. Кислые метаболиты сначала нейтрализуются щелочными резервами крови. Кроме того, они через рефлекторные механизмы активируют кровообращение и дыхание. Подключение указанных систем организма, с одной стороны, улучшает поступление 02 к мышцам, а следовательно, уменьшает образование недоокисленных продуктов; с другой - способствует увеличению выделения СО2 через легкие, многих метаболитов через почки, потовые железы.