Джефф Хокинс, Сандра Блейксли. Об интеллекте

В книге Об интеллекте Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему «память–предсказание» как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Хокинс предполагает, что идеи, сформулированные им в книге Об интеллекте, лягут в основу создания искусственного интеллекта - не копирующего, а превосходящего человеческий разум. Кроме этого, книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.

Джефф Хокинс, Сандра Блейксли. Об интеллекте. – М.: Вильямс, 2016. – 240 с.

Скачать конспект (краткое содержание) в формате или

Глава 1. Искусственный интеллект

В начале 80-х маститые ученые в области кибернетики совершенно не интересовались тем, как работает настоящий мозг. Я интуитивно считал такой подход вопиюще неправильным. Фундаментальные принципы работы компьютера и функционирования человеческого разума в корне различны. Основой первой является программирование, а второго – процесс самообучения. Я понял, что основной причиной, препятствующей созданию разумных механизмов, является их транзисторная структура.

К сожалению, преподаватели и студенты Массачусетсского института не поддержали меня в этих стремлениях. Мне прямо сообщили, что в сфере создания искусственного интеллекта (ИИ) нет места изучению живого мозга. В 1981 году мои документы на поступление в аспирантуру были отклонены приемной комиссией.

Кибернетики, работающие в сфере искусственного интеллекта, убеждены в том, что смогут создать мыслящий компьютер, увеличив объем его памяти и ресурсов для обработки данных. Но не тут-то было. Ключевой недостаток искусственного интеллекта – отсутствие зоны, отвечающей за понимание. Все попытки создания искусственного интеллекта заканчивались изобретением очередной программы, обеспечивающей выполнение только одной четко определенной функции.

Компьютеры так и не научились обобщать или проявлять гибкость. Даже создатели программ отмечали, что их детища не могут мыслить, как человек. Некоторые проблемы искусственного интеллекта поначалу казались простыми, но со временем так и не были найдены способы их решения. Даже сегодня ни один компьютер не может воспринимать речь так же легко, как трехлетний ребенок, или видеть так же хорошо, как, скажем, мышь.

У идеи искусственного интеллекта остались некоторые сторонники, но большинство ученых считает его создание невозможным. Джон Сирл, один из наиболее именитых преподавателей философии Калифорнийского университета (Беркли), утверждал, что у компьютера разума нет и быть не может. В доказательство своих взглядов в 1980 году он предложил провести эксперимент, который назвал Китайской комнатой .

Участник эксперимента, подобно компьютеру, манипулирует символами, но не может придать им какого бы то ни было смысла. Следовательно, заключил Сирл, машина, или физическая система способная выполнять определенные функции, не может стать разумной и действовать осознанно. Сирл отмечал, что он затрудняется дать определение понятию разума, однако полон уверенности, что, независимо от определения, компьютеры разумом не обладают и обладать не могут.

Ключевой тезис моей книги: понимание не поддается оцениванию на основе наблюдения внешних реакций.

Глава 2. Нейронные сети

В январе 1986 года я приступил к учебе в аспирантуре Калифорнийский университет (Беркли) по специальности «Биофизика». Создатели нейронных сетей (НС) оказались далеко впереди своих коллег, бившихся над разработкой искусственного интеллекта. НС были построены, хоть и весьма приблизительно, по принципу биологической нервной системы. Вместо того чтобы заниматься программированием, исследователи нейронных сетей, так называемые коннекционисты, сосредоточились на изучении того, какие типы поведения генерируют различные нейронные комбинации.

Мозг состоит из нейронов, стало быть, мозг – это нейронная сеть. Задачи коннекционистов состояли в том, чтобы изучить неуловимые свойства разума путем изучения взаимодействия нейронов. Нейронные сети отличаются от компьютеров тем, что у них нет центрального микропроцессора и они не сохраняют информацию в центральном блоке памяти. Информация, занесенная в память нейронной сети, сосредоточена в связях – точно так же, как и в головном мозге человека.

На тот момент я четко видел три фактора, критичных для понимания работы мозга. Во-первых, в исследования мозга следует включать временной критерий, ведь скорость обработки потока информации чрезвычайно высока. Данные, поступающие в мозг и исходящие из него, никогда не пребывают в статическом состоянии. Во-вторых, мозг насквозь пронизан обратными связями. В-третьих, любая модель (или теория мозга) должна соответствовать биологическому строению живого мозга.

Первые нейронные сети представляли собой крайне упрощенные модели, которые не удовлетворяли ни одному из трех описанных выше требований. Я рассчитывал, что разработчики нейронных сетей в будущем перейдут от простых моделей к более совершенным и реалистичным, однако этого не произошло.

По моему мнению, фундаментальной проблемой большинства нейронных сетей является следующая их особенность, присущая также программам, основывающимся на принципе искусственного интеллекта. И программы, базирующиеся на принципах искусственного интеллекта, и нейронные сети отягощены акцентом на поведении. Называют ли его «ответами», «моделями» или «выходными сигналами», предполагается, что именно в поведении, моделируемом НС или ИИ, заключается их «разумность». Об успешности компьютерной программы или нейронной сети судят по тому, выдает она правильный или желаемый выходной сигнал. Со времен Алана Тьюринга между интеллектом и поведением ставят знак равенства.

Небольшая отколовшаяся группа теоретиков разработала НС, положив в ее основу автоассоциативную память. В отличие от НС нейроны автоасссоциативной памяти были соединены большим числом обратных связей. Автоассоциативная память способна воспроизвести сохраненную модель в неизмененном виде, даже если все, что у вас есть в наличии, – ее искаженный вариант. Имея в наличии лишь часть усвоенной последовательности, автоассоциативная память воссоздаст ее всю. Именно таким способом обучаются люди – усваивая последовательности паттернов.

Согласно положениям функционализма, наличие интеллекта или обладание разумом – исключительно свойство организации, не имеющее ничего общего с составными элементами (еще говорят эмерджентное свойство). Разум присущ любой системе, составные части которой, будь то нейроны, кремниевые чипы или что-то еще, взаимодействуют друг с другом.

Согласно изложенному принципу, искусственная система, имеющая ту же архитектуру, что и биологическая будет по-настоящему разумной. Защитники идеи искусственного интеллекта, коннекционисты и я сам являемся функционалистами, поскольку все мы уверены в том, что интеллект обеспечивает человеку нечто отнюдь не мистическое в головном мозге.

Созданные нами наземные средства передвижения, способные обогнать гепарда, имеют не четыре конечности, а колеса. Несмотря на то что в процессе эволюции не было создано ничего, хотя бы отдаленно напоминающего колесо, последнее, тем не менее, является революционным изобретением, позволяющим великолепно передвигаться по ровным поверхностям. Философы порой обращаются к метафоре «когнитивного колеса», отражающей возможное решение проблемы создания искусственного интеллекта, вероятно, принципиально отличное от того, как функционирует мозг.

Я убежден, что данная интерпретация вводит теоретиков искусственного интеллекта в глубокое заблуждение. Как показал эксперимент Сирла «Китайская комната», поведенческого соответствия недостаточно. Поскольку интеллект изначально присущ головному мозгу, нам следует заглянуть внутрь, чтобы понять, что представляет собой разум.

Глава 3. Мозг человека

Независимо от размеров, общей чертой, характерной для коры головного мозга большинства млекопитающих, является шестислойное строение. Кора головного мозга образована нервными клетками, или нейронами. На площади, равной крошечному квадрату со стороной один миллиметр содержится примерно сто тысяч нейронов. Количество нервных клеток в коре головного мозга составляет порядка 30 млрд. За разные психические функции отвечают определенные отделы головного мозга. Каждая зона полунезависима и специализируется на определенных аспектах восприятия или мышления.

Функциональная организация головного мозга имеет форму отраслевой иерархии. Иерархическое расположение и физическая позиция в пространстве не тождественны: низшие зоны поставляют информацию в высшие через определенные нейронные каналы связи. Высшие зоны используют совершенно другие нейронные каналы связи для передачи обратных сигналов.

Первичные сенсорные зоны, в которые непосредственно поступает информация об окружающем мире, являются низшими функциональными зонами. На более высоких иерархических уровнях расположены зоны, отвечающие за запоминание всевозможных визуальных объектов (людей, животных, предметов и т.д.) и ассоциативные связи между ними. Хотя иерархия строения коры головного мозга действительно существует, не стоит считать, что информационные потоки всегда движутся одними и теми же путями.

Рис. 1. Строение нервной клетки

Любая нервная клетка состоит из тела клетки, или сомы, и двух типов внешних древоподобных ветвей: аксона («передатчика») и дендритов («приемников»). Нейрон получает сигналы (импульсы) от других нейронов через дендриты и передает сигналы, сгенерированные телом клетки, вдоль аксона, который в конце разветвляется на волокна. На окончаниях этих волокон находятся синапсы. Синапсы (от греч. synapsis – соединение, связь) – это специализированные функциональные контакты между возбудимыми клетками, служащие для передачи и преобразования сигналов.

По функциональному значению синапсы могут быть возбуждающими и тормозящими – в зависимости от того, активируют они или подавляют деятельность соответствующей клетки. В результате взаимодействия двух нейронов могут возникнуть совершенно новые синапсы. Формирование и усиление синапсов – это то, от чего зависит процесс запоминания.

В коре головного мозга существует много типов нейронов, но 80% из них являются пирамидальными. Типичная пирамидальная клетка имеет несколько, тысяч синапсов.

Выдающийся ученый Вернон Маунткастл – нейрофизик, работавший в Университете Джона Хопкинса, Балтимор, – в 1978 году опубликовал работу под названием Организующий принцип мозговой функции. Он предположил, что при выполнении разных функций кора головного мозга использует один и тот же инструмент. В то время как именитые анатомы бились над поиском ничтожных различий между зонами коры головного мозга, он обратил внимание именно на ее однородность. Механизм зрительного восприятия не отличается от слухового восприятия, а слуховое восприятие – от двигательной функции.

Казалось бы, вполне естественно предположить, что различные функции мозг выполняет разными способами. Кора головного мозга сама себя подразделяет на специфические функциональные зоны, руководствуясь исключительно опытом человека. Человеческий мозг обладает редкостным даром – способностью к обучению и адаптации к изменениям. Это признак очень гибкой системы, а не такой, у которой есть тысяча решений на тысячу задач.

Зоны мозга развивают специализированные функции в зависимости от типа поступающей к ним информации. Кора головного мозга не является жесткой структурой, части которой предназначены для выполнения разных функций согласно разным алгоритмам, подобно тому, как разделение поверхности Земли на страны не было «запрограммировано» в ходе эволюции.

Вы слышите звук, видите изображение, чувствуете давление, но для вашего мозга не существует принципиальных различий между типами подачи информации. Нервный импульс – это нервный импульс. Он одинаков независимо от того, что послужило его причиной. Все, чем оперирует ваш мозг, – это сигналы. Мозг очень пластичен, а входящая информация, которая поступает в него, является не чем иным, как сигналами. Коре головного мозга безразлично, какой из органов чувств посылает сигналы.

Все перечисленное означает, что базовой основой интеллекта не являются сенсорные каналы взаимодействия или их комбинации. Благодаря сигналам кора головного мозга создает модель, очень близкую к реальному миру, а потом эту модель фиксирует в памяти.

Глава 4. Память

Принципы действия неокортекса и компьютера различны. Вместо вычисления решений и программирования поведения кора головного мозга использует память. Четыре особенности памяти неокортекса коренным образом отличают ее от памяти компьютера:

  • неокортекс запоминает последовательности элементов, а не отдельные элементы окружающего мира;
  • неокортекс вспоминает последовательности автоассоциативно;
  • неокортекс запоминает последовательности в инвариантной форме;
  • неокортекс сохраняет последовательности иерархически.

Все наши вспоминания хранятся в синаптических связях между нейронами. Если учесть, что неокортекс содержит огромнейшее количество информации, но в каждый конкретный момент времени мы можем вспомнить лишь малую ее толику, то можно предположить, что любое воспоминание обеспечивается лишь ограниченным количеством нейронов и синаптических связей между ними.

Когда вы начинаете вспоминать об интерьере своего дома, то сначала активизируется один набор нейронов, потом он приводит в действие следующий набор и так далее. Объем памяти неокортекса невероятно вместителен. Тем не менее в каждый конкретный момент времени мы можем погрузиться лишь в несколько воспоминаний, вызываемых лишь как последовательность ассоциаций.

Второе ключевое свойство человеческой памяти – ее автоассоциативная природа. Так, заметив, что из-за шторы выглядывают ботинки вашего сына, вы автоматически представите его в полный рост. Привычку некоторых людей «читать мысли» собеседника и заканчивать чужие высказывания считают дурным тоном. Но наш мозг поступает подобным образом постоянно. Подобная склонность заниматься постоянным додумыванием фактов редко осознается человеком, однако она является фундаментальной характеристикой памяти. В любой момент времени часть может активизировать целое – в этом состоит суть автоассоциативных воспоминаний.

Третья особенность памяти неокортекса – формированию инвариантных представлений. Память компьютера устроена так, чтобы сохранять информацию в максимально неизменном виде. Память неокортекса действует иначе. Мозг не запоминает с абсолютной точностью все увиденное, услышанное или почувствованное. Так происходит потому, что мозг запоминает важные взаимосвязи внешнего мира, а не привязывается к отдельным его элементам. Например, лицо вашего друга сохраняется в памяти в инвариантной форме, независимо от угла видения. Вспоминания сохраняются в форме, охватывающей существенные связи между элементами целого, а не преходящие детали.

Три рассмотренные особенности памяти неокортекса необходимы для прогнозирования будущего на основе воспоминаний о прошлом.

Глава 5. Новые рамки понимания интеллекта

Наш мозг использует сохраненные воспоминания для того, чтобы постоянно осуществлять прогноз относительно всего, что мы видим, слышим, чувствуем. Подавляющее большинство прогнозов продуцируются неосознанно. Прогностическая функция настолько органична для мозга, что наше восприятие мира не основывается исключительно на сигналах, которые мы непрерывно получаем от органов чувств. На самом деле восприятие действительности является комбинацией наших ощущений и прогнозов, составляемых мозгом на основе воспоминаний.

Прогнозирование, по моему мнению, – это не просто одна из функций коры головного мозга. Это первичная функция неокортекса и основа интеллекта. Ваше восприятие и понимание мира самым непосредственным образом связано с прогнозированием. В вашем мозге хранится модель мира, которая подвергается постоянному сопоставлению с реальностью. Обратите внимание, что наши тесты на определение коэффициента интеллекта (IQ) по своей сути являются прогностическими задачами. Даже наука основана на прогнозировании. Мы расширяем свои знания о мире путем формулирования гипотез и их проверки.

В мозге рептилии отсутствует неокортекс. Согласно эволюционной теории, появление в головном мозге коры знаменует переход к умению прогнозировать. Однако наши моторные способности и умение планировать намного превосходят способности наших ближайших животных сородичей. Как удается коре головного мозга, изначально предназначавшейся для составления сенсорных прогнозов, генерировать сложные модели поведения, присущие лишь человеку? Откуда могли появится эти модели столь неожиданно? Есть два возможных ответа

Первый: алгоритм функционирования коры головного мозга чрезвычайно мощный и гибкий. Путем незначительных изменений способа соединения, что присуще только человеку, она может создавать новые сложные модели поведения. Второй: поведение и прогноз являются двумя сторонами одной и той же медали. Кора головного мозга действительно может предвидеть будущее, но ее сенсорные прогнозы будут отличаться точностью лишь при учете текущих моделей поведения.

В процессе эволюции кора головного мозга (особенно ее передняя часть) у людей увеличилась. По сравнению с другими приматами и ранними гоминидами у нас непропорционально большой лоб, основное назначение которого – служить вместилищем для очень большой передней части коры головного мозга. Способность человека осуществлять сложнейшие движения связана с тем, что моторная зона коры головного мозга у homo sapience имеет намного больше связей с мышцами тела, чем у других млекопитающих. Поведение большинства животных генерирует «старый» мозг. А у человека передняя часть неокортекса узурпировала бо льшую часть моторного контроля.

Кора головного мозга в первую очередь развивалась с целью запоминания мира. Животные с достаточно большой корой головного мозга воспринимают мир ничуть не хуже нас с вами. Однако то, что делает человека уникальным, – это доминирующая роль коры головного мозга в формировании поведения. Именно по этой причине у людей существует система речи, именно поэтому создаются замысловатые инструменты.

Вот мы и подошли к тому, чтобы нарисовать полную картину. Природа создала рептилий со сложными органами чувств и сложными, но относительно устойчивыми моделями поведения. Потом она сделала открытие: если дополнить их мозг системой памяти, к которой подключить поток сенсорной информации, животное сможет запоминать свой прошлый опыт. Когда животное попадает в такую же или подобную ситуацию, происходит вызов воспоминания из памяти, а это ведет к прогнозированию того, что, вероятнее всего, должно случится. Таким образом, разум и понимание начались с системы памяти, которая посылала прогнозы в поток сенсорного восприятия. Эти прогнозы являются сущностью понимания. Знать что-либо означает, что вы можете составлять об этом предположение.

Кора головного мозга развивалась в двух направлениях. Во-первых, она увеличилась, и, соответственно, научилась хранить более сложные воспоминания. Она могла запоминать больше информации и составлять прогнозы на основе более сложных связей. Во-вторых, кора начала взаимодействовать с моторной системой «старого» мозга. Чтобы спрогнозировать, что будет дальше, ей нужно учитывать текущие действия. В результате управление большей частью моторного поведения человека перешло к неокортексу. Уже не ограничиваясь составлением прогнозов на основе поведения, диктуемого «старым» мозгом, неокортекс человека управляет его поведением для удовлетворения своих ожиданий. Кора головного мозга человека особенно велика, поэтому обладает большой запоминающей способностью. Она постоянно составляет прогнозы того, что вы почувствуете, услышите, увидите, причем вы этого не осознаете.

Прогнозы – это наши мысли, а в сочетании с сенсорными входными потоками информации – наше восприятие. Я назвал такое видение мозга запоминающе-прогностическими рамками интеллекта. Если бы «Китайская комната» включала подобную систему памяти, которая могла бы прогнозировать, какой иероглиф появится следующим, мы с полной уверенностью могли бы сказать, что она поняла китайский и поняла рассказ. Теперь нам понятна ошибка Алана Тьюринга. Прогнозирование, а не поведение является свидетельством наличия разума.

Глава 6. Как работает кора головного мозга

Инвариантные представления. Рис. 2 представляет первые четыре зрительные зоны, вовлеченные в распознание объектов окружающего мира. Биологи обозначают эти зоны V1, V2, V4 и IT. Входной визуальный сигнал показан стрелкой под зоной V1. Зрительная информация с сетчатки ваших глаз передается к V1. Этот входной поток информации можно представить, как непрерывно изменяющиеся последовательности сигналов.

Рис. 2. Первые четыре зоны в распознавании объектов

Нервные клетки зоны V1 ничего не знают о лицах, автомобилях, книгах или других объектах, постоянно встречающихся на вашем пути. Все, что они знают, – это крошечная, как укол булавки, часть всего мира перед вашими газами. А вот если мы введем электрод в верхнюю зону IT, то обнаружим нечто совершенно невероятное. Мы увидим, что некоторые клетки указанной зоны возбуждаются и остаются активными, когда в поле зрения человека появляются целые

объекты. Например, мы можем найти клетку, энергично реагирующую каждый раз, когда в поле зрения появляется лицо. Она не включается-выключается при каждой последующей саккаде, как это делают клетки зоны V1. Рецептивное поле такой клетки покрывает бо льшую часть зрительного пространства, и она возбуждается всякий раз, когда человек видит лица.

По мере продвижения от сетчатки до зоны IT изменчивые, пространственно специфические, ориентированные на распознание мелких деталей нейроны сменяются нейронами высших зон – пространственно неспецифическими, постоянно активными и способными распознавать целые объекты. Описать данную схему несложно. Проходим быстренько четыре стадии, и вот вам лицо. Но ни одна компьютерная программа, ни одна математическая формула не в состоянии обеспечить решение подобной задачи с той же надежностью и универсальностью, как это делает человеческий мозг.

Мозг постоянно продуцирует полисенсорные прогнозы. Я отгибаю скрепку на ручке и ожидаю, что, стоит мне отпустить пальцы, прозвучит характерный щелчок, вызванный ударом скрепки по корпусу ручки. Не услышав этого щелчка, я бы очень удивился. Мой мозг точно прогнозирует, когда я услышу звук и каким именно он будет. Для того чтобы такой прогноз осуществился, информация пересекает по иерархии все соматосенсорные зоны коры головного мозга и по обратной связи поступает назад по иерархии и слуховой зон (рис. 3).

Рис. 3. Потоки информационных сигналов передвигаются вверх по иерархически организованным сенсорным зонам, а затем возвращаются к низшим зонам. Таким образом формируется объединенный сенсорный опыт и осуществляется прогностическая функция

Я просто поражаюсь, насколько интегрированными являются все наши перцепционные прогнозы. Хотя они могут казаться простыми, даже тривиальными, надо помнить, насколько они всеобъемлющи. Они могут формироваться только на основе мощных скоординированных потоков информации, непрерывно циркулирующих в двух противоположных направлениях по иерархии зон коры головного мозга.

Почему кора головного мозга устроена иерархически? Одна из наиболее важных концепций данной книги состоит в том, что иерархическая структура коры головного мозга хранит модель иерархического строения внешнего мира.

Строение зон коры головного мозга. На рис. 4 приведено схематическое строение зоны коры головного мозга. Каждое мгновение нашей жизни каждая зона коры головного мозга сравнивает набор ожидаемых колонок, возбужденных сверху, с набором колонок, которые уже были возбуждены снизу. Там, где эти два набора пересекаются, создается наше восприятие. Если бы поступали совершенные сигналы снизу и у нас были бы совершенные прогнозы, тогда набор возбужденных колонок всегда совпадал бы с набором ожидаемых колонок. Но очень часто этого не происходит. Метод сочетания частичного прогноза и частичного входного сигнала позволяет определиться с неоднозначным входным сигналом, он позволяет заполнить пробелы в информации и остановить выбор на одном из альтернативных вариантов.

Рис. 4. Слои и колонки в зоне коры головного мозга

Именно так мы определяемся, изображено на картинке два лица или ваза. Именно так мы разветвляем моторный поток на написание или произнесение вслух Геттисбергской речи.

Как происходит процесс обучения. Правило «обучения Хебба»: когда два нейрона активизируются одновременно, синаптические связи между ними усиливаются. Основными составляющими обучения являются формирование классификаций и создание последовательностей. Основой формирования последовательностей является группирование паттернов, которые относятся к одному и тому же объекту. Один из способов – группировать сигналы, следующие друг за другом. Когда ребенок держит в руке игрушку и медленно ее переворачивает, его мозг может с уверенностью считать, что непрерывно изменяющееся изображение на сетчатке все равно принадлежит одному и тому же объекту, а значит, изменяющийся набор сигналов можно сгруппировать вместе.

В первые годы вашей жизни «записи» о мире формируются в высших зонах коры головного мозга. Однако по мере вашего дальнейшего обучения они перемещаются во все более низкие зоны иерархии коры головного мозга. Когда простые репрезентации передвигаются вниз, высшие зоны коры головного мозга получают возможность учить новые, более сложные, сигналы. Согласно моей теории, именно таков путь становления эксперта.

Опытный менеджер может сразу распознать недостатки и преимущества структуры организации, в то время как начинающий просто не понимает пока этих вещей. Они получают один и тот же входной сигнал, но модель новичка не настолько совершенна, как модель опытного менеджера.

Гиппокамп – вершина всех вершин. Три большие структуры мозга лежат под оболочкой коры головного мозга и связаны с ней. Это базальные ганглии, мозжечок и гиппокамп (рис. 5). Все три структуры возникли раньше, чем кора головного мозга. В очень грубом приближении мы можем утверждать, что базальные ганглии были примитивной двигательной системой, мозжечок изучал точные временные соотношения событий, а гиппокамп сохранял в памяти конкретные события и места. В определенной степени кора головного мозга присвоила себе функции, изначально принадлежавшие им. Например, человек, родившийся без мозжечка, будет страдать от недостатков координации и вынужден будет прилагать более сознательные усилия при передвижении, но в остальном он будет вполне нормальным.

Рис. 5. Базальные ганглии, мозжечок и гиппокамп

Но вот гиппокамп – другого поля ягода. Это одна из наиболее изученных зон мозга, потому что она является обязательной для формирования новых запоминаний. Если вы потеряете обе половины гиппокампа (как и многие другие составляющие нервной системы, он присутствует и в левом, и в правом полушариях головного мозга), вы утратите способность запоминать новую информацию.

Классический подход к гиппокампу следующий: здесь формируется память о новых событиях, а затем, через дни, недели, месяцы, эта новая информация перемещается в кору головного мозга. В отличие от коры головного мозга структура гиппокампа гетерогенная, он состоит из нескольких специализированных отделов. Гиппокамп быстро запоминает любые полученные сигналы. Это его уникальная роль, с которой он отлично справляется.

Положение гиппокампа на вершине корковой иерархии оптимально для запоминания новых сигналов. У него также наилучшее положение для того, чтобы вызывать эти запоминания и передавать их на хранение в иерархию коры головного мозга. Правда, последний процесс – весьма небыстрый. Вы можете моментально запомнить свежее событие в гиппокампе, но, для того чтобы сохранить его в коре головного мозга навсегда, вам нужно повторять полученный опыт снова и снова, в реальности или мысленно.

У вашей коры головного мозга существует еще один основной способ передачи информации от одной зоны к другой вверх по иерархии. Этот альтернативный путь начинается с клеток слоя 5, проецирующихся в таламус а затем из таламуса – в следующую корковую зону. Любые две зоны коры головного мозга, непосредственно связанные друг с другом в иерархии, связаны еще и косвенно – через таламус (о том, что эмоциональная реакция быстрее рациональной, см. ).

Если бы я показал лицо со странной меткой на носу, то вы почти наверняка опознали бы именно лицо. Затем ваши низшие уровни зрительного восприятия заметили бы: что-то не так. Выявленная ошибка вызывает активизацию дорожки повышенного внимания. Подробности будут передаваться альтернативным путем, пропуская группирование, которое происходит в нормальных условиях. Ваше внимание остановится на метке. Теперь вы видите не только лицо, но и метку. Если она выглядит достаточно необычно, то может полностью завладеть вашим вниманием.

Глава 7. Сознание и творчество

Разумен ли одноклеточный организм? Если под «разумом» понимать человеческий интеллект, то ответ будет отрицательным. Однако, если учесть, что это одноклеточное находится в самом дальнем конце континуума видов, использующих прогнозирование и память для оптимизации репродуктивных процессов, ответ будет положительным. Память и прогнозирование используются абсолютно всеми живыми существами. Разница в методах – от простых до самых изощренных.

В развития интеллекта можно выделить три этапа, причем на каждом из них использовалась память и прогнозирование. На первом этапе простейшие организмы использовали ДНК как средство запоминания и прогнозирования. Каждая отдельная особь не могла обучиться и приспособиться в течение своей жизни, она была способна лишь передать своим потомкам информацию о мире, полученную посредством ДНК от предков.

Второй этап начался, когда природа изобрела модифицируемые нервные системы, способные быстро усваивать сведения, получаемые из внешней среды, и сохранять их в памяти. На данном этапе отдельные особи могли усваивать структуру мира и адаптироваться к ней в рамках своей жизни. Но механизмы передачи приобретенных знаний, навыков и умений другим представителям своего вида, равно как и потомкам, отсутствовали (частично это было осуществимо путем непосредственного наблюдения). Именно на втором этапе у живых существ появилась (а со временем и увеличилась) кора головного мозга, но это было только начало.

Третьего и последнего этапа развития интеллекта достиг только человек. Этот этап ознаменовался значительным увеличением неокортекса и возникновением системы речи. Мы, люди, способны не только глубоко изучить структуру мира и наследие предков, но также посредством речи передать свои знания другим. Так осуществляется связь между поколениями.

Что такое творчество? Творчество можно определить, как способность прогнозирования на основе аналогий. Если творчество присуще мозгу любого человека, то как можно объяснить различия в степени выраженности творческих способностей? Модель «Память-предсказание» предлагает два возможных ответа. Первый опирается на природные задатки, а второй – на обстоятельства воспитания.

Особенности прогностического процесса, а значит, и наши дарования, базируются на нашем опыте. Опасность ложной аналогии существует всегда. История науки богата примерами разоблачения великолепных на первый взгляд аналогий. Так, например, известный астроном Иоганн Кеплер убедил себя в том, что орбиты шести известных на то время планет предопределяются Платоновыми многогранниками. Пусть заблуждение Кеплера послужит хорошим уроком для всех ученых.

Мозг – это орган, создающий модели и ставящий творческие прогнозы. Эти прогнозы и модели могут как прояснить истину, так и сбить с правильного пути познания мира. Причем, при отсутствии правильных корреляций человеческий мозг склонен к тому, чтобы принять ошибочные предположения. Псевдонаука, фанатизм, религиозность, нетерпимость очень часто имеют общий корень – ошибочные аналогии.

Что такое сознание? Я думаю, что считать сознание неким магическим «соусом», который прилагается к мозгу, в корне неверно. Но и в наше время многие люди продолжают верить, что сознание – это нечто особенное, то, что невозможно объяснить в редукционистских биологических терминах. Я считаю, что между присутствием у живого существа сознания и наличием у него неокортекса можно поставить знак равенства.

По моему мнению, сознание тождественно способности сохранять единицы информации в декларативном виде так, чтобы вы могли вызвать их из памяти по своему желанию и пересказать кому-то другому посредством устной или письменной речи.

Если вы спросите меня, где я был в прошлую субботу, я вам смогу рассказать об этом. Вот вам пример единицы информации, сохраненной в мозге в декларативном виде. С другой стороны, если вы спросите меня, как при езде на велосипеде удерживать его в состоянии равновесия, я порекомендую вам крепче держаться за руль и давить на педали, но не смогу предоставить более точных объяснений. Дело в том, что удержание равновесия на велосипеде обеспечивается нейронной деятельностью «старого» мозга, т.е. воспоминание об этом процессе не сохраняется в декларативной форме.

Воображение – это, по сути, вариант планирования, или реализации прогностической функции неокортекса, позволяющее судить о последствиях действий еще до их совершения.

Формирование модели мира во многом основано на обычаях, культуре и влиянии ближайшего окружения. Если ребенок вырос в доме, где его любят, где о нем проявляют заботу, с родителями, которые чутко относятся к его эмоциональным потребностям, он, становясь взрослым, как правило, прогнозирует, что мир – это дружественное и безопасное место. Дети, подвергавшиеся жестокому обращению со стороны одного или обоих родителей, склонны прогнозировать будущие события как опасные или жестокие и считать, что никому не стоит доверять (причем независимо от того, насколько хорошо с ними обращаются). Психология, в основном, обращается к последствиям раннего жизненного опыта, привязанностей и воспитания, поскольку именно в этот период мозг «закладывает фундамент» своей модели мира.

Ваша культура (и опыт, полученный в семье) прививает вам стереотипы, которые, к сожалению, являются неотъемлемой частью вашей жизни. В этой книге вполне можно заменить словосочетание инвариантная репрезентация (или инвариантное запоминание) на стереотип, при этом смысл мало изменится. Прогнозирование на основе аналогии – в значительной степени то же самое, что и оценка на основе стереотипа.

Способ, к которому мы должны прибегать для предотвращения ущерба, наносимого стереотипами, при воспитании своих детей, – это учить их распознавать ложные стереотипы, проявлять больше эмпатии и скептицизма. Нам нужно развивать эти навыки критического мышления в придачу к прививанию лучших качеств, нам известных. Скептицизм, являющийся основой научного метода, – единственный способ отличить факты от фикции.

Глава 8. Будущее разума

Нужно ли нам создавать разумные машины? Некоторые люди полагают, что быть разумным – то же самое, что и обладать человеческой ментальностью. Они опасаются, что разумные машины однажды взбунтуются против «порабощения», потому что гнет претит людям. Они боятся, что разумные машины попытаются захватить мир, потому что разумные люди, как показывает история, постоянно борются за власть. Все эти опасения базируются на ошибочной аналогии. Они основываются на объединении разума, т.е. алгоритма коры головного мозга, с эмоциональными устремлениями «старого» мозга, такими как страхи, стремление к обладанию, неприятие насилия. А ведь у разумных машин не будет подобных побуждений.

Саккады (от старинного французского слова, переводимого как «хлопок паруса») - быстрые, строго согласованные движения глаз, происходящие одновременно и в одном направлении, амплитуда которых не превышает 1 угловой град. Человек делает около трех саккад в секунду.

Геттисбергская речь Авраама Линкольна - одна из известнейших речей в истории Соединённых Штатов Америки. Президент произнёс её 19 ноября 1863 года при открытии Национального солдатского кладбища в Геттисберге, штат Пенсильвания. За четыре с половиной месяца до этого произошла решающая Битва при Геттисберге, закончившаяся победой армии Севера над конфедератами.

В книге Об интеллекте Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему «память-предсказание» как основу человеческого интеллекта.

Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума.

Хокинс предполагает, что идеи, сформулированные им в книге Об интеллекте, лягут в основу создания истинного искусственного интеллекта — не копирующего, а превосходящего человеческий разум. Кроме этого, книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.

Пролог

Эта книга и моя жизнь наполнены двумя моими увлечениями.

В течение 25 лет я был увлечен мобильными компьютерами. В мире высоких технологий Силиконовой Долины я известен как зачинатель двух проектов — Palm Computing и Handspring, и как разработчик множества наладонных компьютеров и сотовых телефонов, таких как PalmPilot и Treo.

Но у меня есть и другое увлечение, которое предшествует моему увлечению компьютерами - и оно мне кажется более важным. Я увлечен изучением мозга. Я хочу понять, как работает мозг, не только с философской точки зрения, не только в общих чертах, а более детально. Мое желание - не только понять, что такое интеллект и как работает мозг, но и как построить машины, которые будут работать так же. Я хочу построить действительно интеллектуальную машину.

Вопрос об интеллекте - последний великий территориальный рубеж науки. Большинство важных научных вопросов затрагивают очень маленькие или очень большие масштабы, или события, происходившие миллиарды лет назад. Но мозг есть у всех. Вы - это ваш мозг. Если вы хотите понять, почему вы чувствуете, как вы осознаете мир, почему вы делаете ошибки, почему вы способны к творчеству, почему вас вдохновляет музыка и живопись, и вообще, что такое быть человеком - тогда вам нужно будет понять, что такое мозг. К тому же, успешная теория интеллекта и функций мозга будет иметь огромное общественное значение, и не только помогать лечить болезни, связанные с мозгом. Мы будем способны построить действительно интеллектуальные машины, хотя они совершенно не обязательно должны быть похожи на роботов и компьютеры из фантастических произведений. Наоборот, интеллектуальные машины будут базироваться на совершенно новых принципах о природе интеллекта. Как таковые, они помогут нам расширить наши знания о мире, помогут нам изучить вселенную, сделать мир лучше. А попутно будет создана огромная индустрия.

К счастью, мы живем в то время, когда проблема понимания интеллекта может быть решена. Наше поколение имеет доступ к горам информации о мозге, собранным за сотни лет, и скорость, с которой мы получаем новые данные, увеличивается. Только в США в области нейронаук работают тысячи ученых. У нас пока нет продуктивных теорий о том, что такое интеллект, или как работает мозг в целом. Большинство нейробиологов не задумывается о целостных теориях мозга, потому что они с головой ушли в эксперименты по сбору дополнительной информации о функционировании подсистем мозга. И хотя легионы программистов пытаются изготовить компьютерный интеллект, их попытки безуспешны. Я уверен, что их попытки останутся безуспешными до тех пор, пока они будут продолжать игнорировать разницу между компьютером и мозгом.

Чем же таким является интеллект, чего такого нет в компьютере, но есть в мозгу? Почему шестилетний ребенок может аккуратно перепрыгнуть с камня на камень через ручей, тогда как самые продвинутые роботы нашего времени - неуклюжие зомби? Почему трехлетний ребенок без проблем осваивает язык, тогда как компьютеры не могут, несмотря на полвека усилий лучших программистов? Почему вы можете отличить кошку от собаки за долю секунды, тогда как суперкомпьютер не может совсем? Это великие тайны, ожидающие ответов. У нас есть множество ключей к их разгадке; чего нам не хватает - это чуть более глубокого понимания.

Вы можете удивиться, почему разработчик компьютеров пишет книгу о мозге. Или с другой стороны, если я увлекаюсь изучением устройства мозга, почему я не сделал карьеру в нейронауке или в области ИИ? Ответ: я пытался несколько раз, но я отверг те способы изучения, которыми пользовались другие до меня. Я верю, что лучший способ решить проблему - использовать более детальную биологию мозга как ограничение и как путеводитель, но продолжая думать об интеллекте как о вычислительной проблеме - где-то между биологией и компьютерами. Многие биологи склонны отвергать или игнорировать идею рассуждать о функциях мозга в вычислительных терминах, а компьютерщики часто не верят, что им нужно знать что-то из биологии. К тому же, мир науки меньше приемлет риск, чем мир бизнеса. В технологическом бизнесе человек, преследующий новую идею с обоснованным подходом, может продвинуть свою карьеру, не смотря на то, что идея может не достигнуть успешного завершения. Многие предприниматели достигли успеха только после более ранних безуспешных попыток. Но в академических кругах несколько лет, потраченных на преследование бесплодной идеи, могут начисто разрушить вашу карьеру. Таким образом, я увлечен двумя идеями в моей жизни, веря, что успех в индустрии должен помочь мне достигнуть успеха в понимании работы мозга. Мне нужны финансы, чтоб заниматься той наукой, какой хочу, мне нужно изучать, как повлиять на мир, как продать новые идеи, до которых я дошел, работая в Силиконовой Долине.

В августе 2002 я основал исследовательский центр, Институт Нейронаук в Редвуде (RNI), занимающийся теорией мозга. В мире есть множество центров, занимающихся нейроисследованиями, но ни один из них не занимается поисками общего теоретического понимания работы неокортекса - части человеческого мозга, ответственной за интеллект. Именно это мы изучаем в RNI. По многим статьям RNI является начинающей компанией. Мы преследуем мечты, которые некоторым людям кажутся недостижимыми, но мы счастливы быть группой замечательных людей, усилия которых начинают приносить плоды.

Намерения данной книги амбициозны. Она описывает всеобъемлющую теорию того, как работает мозг. В ней описывается, что такое интеллект и как он возникает в вашем мозгу. Представляемая мной теория не является полностью новой. Многие из отдельных идей, которые вы прочтете, уже существовали ранее в той или иной форме, но не согласованно друг с другом. Будьте готовы к этому. Говорят, что новые идеи — это чаще всего старые идеи, переупакованные и переинтерпретированные. Это определенно применимо к предложенной здесь теории, но упаковка и интерпретация могут создать существенное различие между кучей деталей и удовлетворительной теорией. Я надеюсь, что это произведет на вас впечатление, так же как и на других людей. Обычно я слышу такую реакцию: «Это впечатляет, я не мог и подумать об интеллекте таким образом, но после того, как вы мне это описали, я вижу, как это все укладывается вместе». С такими знаниями большинство людей начинают видеть самих себя немного по-другому. Вы начинаете наблюдать ваше собственное поведение, говоря: «я понимаю, что только что произошло в моей голове». Надеюсь, что когда вы прочтете эту книгу, у вас будет новое понимание того, почему вы думаете, что вы думаете и почему вы ведете себя именно так, а не иначе. Я также надеюсь, что некоторые читатели будут настроены на то, чтоб направить свою карьеру на построение интеллектуальных машин, основанных на принципах, изложенных на этих страницах.

Я часто ссылаюсь на эту теорию и на мой подход к изучению интеллекта как на «естественный интеллект», чтоб отличить его от «искусственного интеллекта». Специалисты в области ИИ пытаются запрограммировать компьютеры, чтоб они действовали как люди, не ответив сначала на вопрос, что такое интеллект и что означает понимание. Они оставляют в стороне наиболее важную часть в построении интеллектуальных машин - интеллект! «Естественный интеллект» указывает, что прежде чем построить интеллектуальные машины, мы должны сначала понять, как думает мозг, без чего-либо искусственного. Только потом мы можем спрашивать, как же нам построить интеллектуальные машины.

Книга начинается с рассмотрения того, почему предыдущие попытки в понимании интеллекта и построении интеллектуальных машин были безуспешными. Затем я введу и разовью коренную идею теории, которую я называю модель «память-предсказание». В главе 6 я детально покажу, как физический мозг воплощает модель «память-предсказание» - другими словами, как в действительности работает мозг. Затем мы обсудим социальные и другие следствия теории, которые для многих читателей может оказаться раздражающим разделом. Книга заканчивается обсуждением интеллектуальных машин - как мы можем их построить и на что будет похоже будущее.

"Если вдруг на смертном одре мне станет ясно, что я недостаточно вложился в теорию функционирования мозга, - это будет печально".

"Как только вы узнаете, как работает мозг, вы тут же сможете описать это с помощью математики, а дальше уже дело программистов перевести это на язык, понятный компьютеру".

Джефф Хоукинс (Jeff Hawkins), изобретатель PalmPilot и сооснователь Numenta. Несмотря на некоторую девальвацию самого понятия "искусственный интеллект", Хоукинс уверен, что ренессанс здесь неизбежен. При этом он не сомневается, что очередной этап в развитии искусственного интеллекта будет основываться на новом теоретическом уровне понимания оперативных возможностей нашего мозга.

Новая теория Джефа Хоукинса называется Иерархическая Временная Память, или Hierarchical Temporal Memory (HTM), и основана на принципах работы человеческого мозга. Разработка новой технологии искусственного интеллекта позволит в будущем решать такие сложные задачи, как распознавание образов, искусственный интеллект, робототехника и машинное обучение.

Джефф Хоукинс (Jeff Hawkins), автор карманного компьютера PalmPilot и сооснователь Numenta, родился в Лонг-Айленде (Long Island, New York) в 1957 году. В 1982 году он закончил Корнеллский технический университет и поступил на работу в Grid Systems, занимавшуюся лэптопами. Именно тогда у скромного инженера-электрика появилась "одна, но пламенная страсть" к науке о нейронах.

В те годы искусственный интеллект, который впервые привлек к себе внимание программистов в 1960-е годы, почувствовал первый спад интереса. К середине 1980-х годов охватившее разработчиков воодушевление уступило место разочарованию и от технологий с использованием принципов искусственного интеллекта стали постепенно отказываться.

В 1985 году Джефф, бросив все, то есть Grid Systems, поступил в Калифорнийский университет (Беркли). Через два года, когда Джеффа уже не ждали в Grid, он снова вернулся туда. Оплодотворенный открытиями в нейробиологии, Джефф решил использовать их в неживой чип-материи. Технология распознавания рукописного текста стала побочным результатом изысканий Хоукинса в теории нейросоединений.

"Будучи в Беркли в середине 80-х, когда нейронные сети вошли в моду, я узнал, что компания Nestor предлагает нейронно-сетевой анализатор рукописного текста "всего лишь" за миллион долларов. "Однако!" - сказал я себе. Используя некоторые математические выкладки, над которыми работал в то время, я создал классификатор паттернов (образцов). И запатентовал его. Только ради шутки я сделал на этой основе систему распознавания рукописного текста (графологический анализатор каракулей)".

В 1994 Джефф Хоукинс создал Graffiti - систему ввода текста, которая решала проблему рукописного распознавания. В тот же год Хоукинс обозначил некоторые основные черты карманного компьютера, который вскоре получит название PalmPilot. Кроме того, что в него будет встроена Graffiti, новый КПК должен: помещаться в карман рубашки; иметь возможность обмениваться данными с настольным компьютером; быть достаточно быстрым; быть доступным по цене.

Основанная Хоукинсом компания Palm Computing (впоследствии переименованная в PalmOne), начала поиск финансирования для воплощения своих идей в жизнь. Только в сентябре 1995 года US Robotics, увидев перспективность направления, купила Palm Computing. Первый PalmPilot появился на рынке в апреле 1996, а летом 1997 года 3Com Corporation приобрела US Robotics.

По доброй традиции, Джефф оставил свою "золотую жилу", компанию Palm, в 1998 году, чтобы искать новых приключений. Джефф Хоукинс, Донна Дубински (Donna Dubinsky) и Эд Коллигэн (Ed Colligan) - ядро команды, придумавшей PalmPilot в 1998 году, основали компанию Handspring. Первый продукт, основанный на платформе Palm - Visor, продолжил традиции PalmPilot. Несколькими годами позже, в одном из своих интервью Хоукинс сделает весьма смелые предсказания о ближайшем будущем персональных компьютеров. Он заявит, что компьютеры, возможно, и не исчезнут совсем, однако их роль будет менее заметна, так как обычным пользователям гораздо более привлекательными покажутся устройства, которые включаются моментально и не тратят время на загрузку. Компактным компьютерам и умным телефонам, по его мнению, будет суждено вытеснить или же существенно потеснить ПК.

В 2003 Хоукинс был избран членом Национальной Академии Проектирования (National Academy of Engineering) "за создание парадигмы наладонного компьютера и создания первого коммерчески успешного примера карманного компьютерного устройства".

Наряду со всеми успехами на ниве маленьких компьютеров Хоукинс не забывал о своих увлечениях искусственным интеллектом. Не оставляя своей должности в PalmOne, он становится членом научного совета директоров лаборатории Cold Spring Harbor - одного из ведущих в мире биологических исследовательских учреждений, а в 2002 году создает собственный некоммерческий институт - Redwood Neuroscience Institute, занимающийся изучением того, как работает человеческий мозг. (В июле 2005 институт переименован в The Redwood Center for Theoretical Neuroscience.)

Занимаясь исследованиями в области искусственного интеллекта, Хоукинс предложил считать, что главные функции мозга сосредоточены в области неокортекса (neocortex), и предположил, как эта область функционирует. На основе этих предположений он пришел к выводу, что для моделирования деятельности мозга можно применить некоторые уже существующие статистические методы (теорию байесовских сетей).

Ключевые места теории Хоукинса базируются на теории работы коры головного мозга, предложенной в конце 1970-х Верноном Маунткаслом (Vernon Mountcastle) - нейробиологом из университета Джона Хопкинса (Johns Hopkins University) в Балтиморе. Анатомические исследования обнаружили, что тип и размещение ячеек на любом небольшом участке коры головного мозга очень схожи, на основании чего Маунткасл предположил, что каждый участок коры выполняет схожие базисные функции. Что говорит о том, что область, отвечающая за визуальное распознавание, и область, отвечающая за распознавание речи, отличаются только типом информации, которую они получают, но не тем, что они делают с этой информацией. "В моем представлении, это один из наиболее фундаментальных прорывов в нейрологии", - говорит Хоукинс. "Что такое кора головного мозга или ее новообразования? Это, в сущности, большой пласт толщиной несколько миллиметров, состоящий из нейронов. Хотя в нем есть зоны, отвечающие за зрение, слух, осязание, это удивительно универсальная структура. Зрительные зоны почти идентичны слуховым. Такое сходство означает, что все сенсорные процессы основаны на одном механизме. Этого пока никто не замечает".

Свою новую теорию о функционировании человеческого мозга, искусственном интеллекте и возможности создания компьютеров нового поколения Джефф описал в книге с длинным названием "On Intelligence: How a New Understanding of the Brain Will Lead to the Creation of Truly Intelligent Machines " ("О разуме: как новое понимание устройства мозга приведет к созданию по-настоящему умных машин"), которая привлекла к нему внимание специалистов всего мира.

В On Intelligence Хоукинс рассуждает о том, что природа интеллекта базируется на первичной функции коры головного мозга - предсказании будущего на основании памяти, и о том, что случилось в прошлом. По мнению Хоукинса, мозг - не просто ящик с входными и выходными каналами. "Я думаю, что интеллект - это способность организма правильно предчувствовать входной сигнал. Интеллект измеряется степенью внутреннего предчувствования, а не степенью внешних проявлений. Когда вы, например, смотрите на меня, ваши глаза не только совершают хаотическое движение. Они следят за определенными вещами. Поскольку мозг предполагает, что перед вами человеческое лицо, то,"сканируя" его и встретив глаз, мозг ожидает встретить и другой глаз на соответствующем месте. В этот момент мозг ожидает нейронного импульса с определенным паттерном. Если же на месте второго глаза вы обнаружите на моем лице нос, мозг повторит сканирование подозрительного места".

"Итак, модель мозга - это... не традиционная база данных. Там есть механизм мгновенной оценки всех параметров. Возможно, что это механизм аутоассоциативных воспоминаний, которые срабатывают, предощущая все входные параметры. В сущности, интеллект это способность системы предугадывать паттерны входных сигналов. Чем больше сложных паттернов может предугадать ваш мозг в течение длительного времени, тем лучше ваше осознание окружающей среды и, соответственно, выше интеллект".

В книге Хоукинс убежденно доказывает, что кора головного мозга хорошо приспособлена для выполнения прогнозов и описывает, как цепи нейронов, находящиеся в коре, образуют иерархическую структуру, в которой высшие уровни постоянно посылают информацию назад к нижним уровням, что позволяет сравнивать поступающую последовательность образов (например, строку устных слов) с последовательностями из предыдущего опыта. К примеру, чтобы на основании последовательности "Восемьдесят семь лет" предсказать, что следующая последовательность будет "тому назад".

Numenta simulation program распознает объекты, даже когда они не явно выражены.

Эта пространственная и временная структура прогнозирования, основанная на предыдущей памяти, по мнению Хоукинса, позволяет мозгу легко делать определенные задания, которые ставят компьютер в тупик. "Нет машины в мире, которой вы можете показать изображение чего-либо и получить ответ, что это собака, кошка или горилла", - пишет Хоукинс, но человек может делать это за доли секунды.

Кроме прочего, в книге рассказывается о вычислительном устройстве, созданном на базе оригинальной гипотезы о том, как устроен и действует человеческий мозг. Многим читателям наверняка с детства знакома подобная головоломка: найти в заполняющей всю площадь бумажного листа густой путанице непрерывных линий контуры неизвестных растений, животных или каких-то неодушевленных предметов. Аналогичную задачу решает компьютер с принципиально новыми программами, позволяющими ему самостоятельно вычленять из такого клубка рисунок собаки или кошки. Конечно, разгадывание головоломок - всего лишь показательный пример того, на что будет способна будущая технология.

До сих пор некоторые теоретики нейрологии ворчат, что книга Хоукинса - просто повторение идей других ученых и что его модель не является достаточно конкретной, чтобы предложить эксперименты, проверяющие ее. Однако истина в том, что Джефф Хоукинс связал вместе различные существующие концепции в интересную теорию. "Его идеи обеспечивают внушающий доверие концептуальный каркас для много других типов данных", - говорит Мриганка Суа (Mriganka Sur) - нейробиолог из MIT, занимающийся корой головного мозга. "Он соединил все в единую большую картину, которую исследователи мозга часто упускают из вида".

Соучредители Numenta: Джефф Хоукинс (слева), Дилип Джордж (в центре) и Донна Дабински.

В 2005 году Хоукинс вместе с Донной Дабински (Donna Dubinsky), президентом компьютерной компании PalmOne, и закончившим Стэнфордский университет Дилипом Джорджем (Dileep George), еще студентом помогавшим Джеффу перевести его изыскания в практическую плоскость, основали в Калифорнии компанию Numenta.

Название Numenta происходит от латинского слова mentis ("разум"). Новая компания сосредоточила усилия на разработке систем искусственного интеллекта, базирующихся на памяти нового типа, работающей аналогично клеткам коры головного мозга.

Первый продукт компании называется Hierarchical Temporal Memory (HTM), что можно перевести как "иерархическая временная память", и основывается на теоретических изысканиях Хоукинса. Слово "иерархическая" в названии отражает способ объединения модулей памяти, а "временная" - принцип работы, когда каждый модуль служит для временного хранения информации. Целью Numenta является воплощение теории в практику. По ожиданиям разработчиков, память нового типа поможет решить сложные задачи искусственного интеллекта, которые пока не поддаются традиционным технологиям. В качестве примеров можно привести компьютерное зрение и понимание естественной речи.

Высоко оценивая перспективы проекта, основатели компании подчеркивают его долгосрочный характер и не рассчитывают на скорый результат. Для получения первых коммерческих продуктов понадобится, по меньшей мере, несколько лет.

Компания Numenta скорее разработчик технической платформы для практических приложений, нежели разработчик самих приложений. Компания создает масштабный программный продукт, который будет служить инструментом для решения сложных практических задач. В настоящее время ведется проектирование программного инструментария, который позволит адаптировать архитектуру HTM к требованиям конкретных задач. Предполагается, что в ходе работы вокруг технологии HTM сформируется сообщество разработчиков. С этой целью Numenta предлагает бесплатные лицензии на использование своего программного продукта. Цель этой акции - расширить круг исследователей и получить соответствующую помощь в развитии новой технологии.

"Джефф делает интересную работу, и он вполне может внести существенные новации в математическое программирование, независимо от того, какое значение будут иметь его специфические алгоритмы, - сказал Гэри Брэдски, нейролог, который руководит исследовательской группой в компании Intel Corporation. - Как показала его деятельность на двух последних постах, он обладает для этого совсем неплохой интуицией".

Сам Хоукинс говорит: "Моя цель в Numenta - реализовать теорию на практике. У нас есть возможность строить интеллектуальные системы памяти, чтобы решить трудные проблемы в информатике и искусственном интеллекте, как например, машинное зрение, понимание речи и робототехника, для которых никакие другие известные решения не подходят".

Джефф Хокинс (англ. Jeff Hawkins ; 1 июня ) - основатель Palm Computing (изобретатель Palm Pilot) и Handspring (изобретатель Treo). После этих двух крайне успешных проектов он оставил работу и ушёл в нейрологию. В 2002 году основал Redwood Center for Theoretical Neuroscience (бывший Redwood Neuroscience Institute ) и опубликовал книгу «Об интеллекте », в которой описал свою теорию работы мозга на основе модели «память-предсказание». В 2003 году избран членом Национальной академии наук «for the creation of the hand-held computing paradigm and the creation of the first commercially successful example of a hand-held computing device» (за создание парадигмы Handheld PC и первую её коммерчески успешную реализацию).

Биография

Книги

  • Джефф Хокинс в соавторстве с Сандрой Блейксли (2005). On intelligence , Times Books, Henry Holt and Co. ISBN 0-8050-7456-2

Напишите отзыв о статье "Хокинс, Джефф"

Ссылки

Отрывок, характеризующий Хокинс, Джефф

– Пожалу… – начал Долохов, но не мог сразу выговорить… – пожалуйте, договорил он с усилием. Пьер, едва удерживая рыдания, побежал к Долохову, и хотел уже перейти пространство, отделяющее барьеры, как Долохов крикнул: – к барьеру! – и Пьер, поняв в чем дело, остановился у своей сабли. Только 10 шагов разделяло их. Долохов опустился головой к снегу, жадно укусил снег, опять поднял голову, поправился, подобрал ноги и сел, отыскивая прочный центр тяжести. Он глотал холодный снег и сосал его; губы его дрожали, но всё улыбаясь; глаза блестели усилием и злобой последних собранных сил. Он поднял пистолет и стал целиться.
– Боком, закройтесь пистолетом, – проговорил Несвицкий.
– 3ак"ойтесь! – не выдержав, крикнул даже Денисов своему противнику.
Пьер с кроткой улыбкой сожаления и раскаяния, беспомощно расставив ноги и руки, прямо своей широкой грудью стоял перед Долоховым и грустно смотрел на него. Денисов, Ростов и Несвицкий зажмурились. В одно и то же время они услыхали выстрел и злой крик Долохова.
– Мимо! – крикнул Долохов и бессильно лег на снег лицом книзу. Пьер схватился за голову и, повернувшись назад, пошел в лес, шагая целиком по снегу и вслух приговаривая непонятные слова:
– Глупо… глупо! Смерть… ложь… – твердил он морщась. Несвицкий остановил его и повез домой.
Ростов с Денисовым повезли раненого Долохова.