Системе понятий в данную систему. Понятие «система

Существует множество понятий системы. Рассмотрим понятия, которые наиболее полно раскрывают ее существенные свойства (рис. 1).

Рис. 1. Понятие системы

«Система – это комплекс взаимодействующих компонентов».

«Система – это множество связанных действующих элементов».

«Система – это не просто совокупность единиц... а совокупность отношений между этими единицами».

И хотя понятие системы определяется по-разному, обычно все-таки имеется в виду, что система представляет собой определенное множество взаимосвязанных элементов, образующих устойчивое единство и целостность, обладающее интегральными свойствами и закономерностями.

Мы можем определить систему как нечто целое, абстрактное или реальное, состоящее из взаимозависимых частей.

Системой может являться любой объект живой и неживой природы, общества, процесс или совокупность процессов, научная теория и т. д., если в них определены элементы, образующие единство (целостность) со своими связями и взаимосвязями между ними, что создает в итоге совокупность свойств, присущих только данной системе и отличающих ее от других систем (свойство эмерджентности).

Система (от греч. SYSTEMA, означающего «целое, составленное из частей») представляет собой множество элементов, связей и взаимодействий между ними и внешней средой, образующих определенную целостность, единство и целенаправленность. Практически каждый объект может рассматриваться как система.

Система – это совокупность материальных и нематериальных объектов (элементов, подсистем), объединенных какими-либо связями (информационными, механическими и др.), предназначенных для достижения определенной цели и достигающих ее наилучшим образом. Система определяется как категория, т.е. ее раскрытие производится через выявление основных, присущих системе свойств. Для изучения системы необходимо ее упростить с удержанием основных свойств, т.е. построить модель системы.



Система может проявляться как целостный материальный объект, представляющий собой закономерно обусловленную совокупность функционально взаимодействующих элементов.

Важным средством характеристики системы являются ее свойства . Основные свойства системы проявляются через целостность, взаимодействие и взаимозависимость процессов преобразования вещества, энергии и информации, через ее функциональность, структуру, связи, внешнюю среду.

Свойство – это качество параметров объекта, т.е. внешние проявления того способа, с помощью которого получают знания об объекте. Свойства дают возможность описывать объекты системы. При этом они могут изменяться в результате функционирования системы . Свойства – это внешние проявления того процесса, с помощью которого получается знание об объекте, ведется за ним наблюдение. Свойства обеспечивают возможность описывать объекты системы количественно, выражая их в единицах, имеющих определенную размерность. Свойства объектов системы могут изменяться в результате ее действия.

Выделяют следующиеосновные свойства системы :

· Система есть совокупность элементов . При определенных условиях элементы могут рассматриваться как системы.

· Наличие существенных связей между элементами . Под существенными связями понимаются такие, которые закономерно, с необходимостью определяют интегративные свойства системы.

· Наличие определенной организации , что проявляется в снижении степени неопределенности системы по сравнению с энтропией системоформирующих факторов, определяющих возможность создания системы. К этим факторам относят число элементов системы, число существенных связей, которыми может обладать элемент.

· Наличие интегративных свойств , т.е. присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности. Их наличие показывает, что свойства системы, хотя и зависят от свойств элементов, но не определяются ими полностью. Система не сводится к простой совокупности элементов; декомпозируя систему на отдельные части, нельзя познать все свойства системы в целом.

· Эмерджентностъ несводимость свойств отдельных элементов и свойств системы в целом.

· Целостность – это общесистемное свойство, заключающееся в том, что изменение любого компонента системы оказывает воздействие на все другие ее компоненты и приводит к изменению системы в целом; и наоборот, любое изменение системы отзывается на всех компонентах системы.

· Делимость – возможна декомпозиция системы на подсистемы с целью упрощения анализа системы.

· Коммуникативность . Любая система функционирует в окружении среды, она испытывает на себе воздействия среды и, в свою очередь, оказывает влияние на среду. Взаимосвязь среды и системы можно считать одной из основных особенностей функционирования системы, внешней характеристикой системы, в значительной степени определяющей ее свойства.

· Системе присуще свойство развиваться , адаптироваться к новым условиям путем создания новых связей, элементов со своими локальными целями и средствами их достижения. Развитие – объясняет сложные термодинамические и информационные процессы в природе и обществе.

· Иерархичность . Под иерархией понимается последовательная декомпозиция исходной системы на ряд уровней с установлением отношения подчиненности нижележащих уровней вышележащим. Иерархичность системы состоит в том, что она может быть рассмотрена как элемент системы более высокого порядка, а каждый ее элемент, в свою очередь, является системой.

· Важным системным свойством является системная инерция, определяющая время, необходимое для перевода системы из одного состояния в другое при заданных параметрах управления.

· Многофункциональность – способность сложной системы к реализации некоторого множества функций на заданной структуре, которая проявляется в свойствах гибкости, адаптации и живучести.

· Гибкость – это свойство системы изменять цель функционирования в зависимости от условий функционирования или состояния подсистем.

· Адаптивность – способность системы изменять свою структуру и выбирать варианты поведения сообразно с новыми целями системы и под воздействием факторов внешней среды. Адаптивная система – такая, в которой происходит непрерывный процесс обучения или самоорганизации.

· Надежность это свойство системы реализовывать заданные функции в течение определенного периода времени с заданными параметрами качества.

· Безопасность способность системы не наносить недопустимые воздействия техническим объектам, персоналу, окружающей среде при своем функционировании.

· Уязвимость – способность получать повреждения при воздействии внешних и (или) внутренних факторов.

· Структурированность – поведение системы обусловлено поведением ее элементов и свойствами ее структуры.

· Динамичность – это способность функционировать во времени.

· Наличие обратной связи .

Любая система имеет цель и ограничения. Цель системы может быть описана целевой функцией U1 = F (х, у, t, ...), где U1 – экстремальное значение одного из показателей качества функционирования системы.

Поведение системы можно описать законом Y = F(x), отражающим изменения на входе и выходе системы. Это и определяет состояние системы.

Состояние системы – это мгновенная фотография, или срез системы, остановка ее развития. Его определяют либо через входные взаимодействия или выходные сигналы (результаты), либо через макропараметры, макросвойства системы. Это совокупность состояний ее n элементов и связей между ними. Задание конкретной системы сводится к заданию ее состояний, начиная с зарождения и кончая гибелью или переходом в другую систему. Реальная система не может находиться в любом состоянии. На ее состояние накладывают ограничения – некоторые внутренние и внешние факторы (например, человек не может жить 1000 лет). Возможные состояния реальной системы образуют в пространстве состояний системы некоторую подобласть Z СД (подпространство) – множество допустимых состояний системы.

Равновесие – способность системы в отсутствие внешних возмущающих воздействий или при постоянных воздействиях сохранять свое состояние сколь угодно долго.

Устойчивость – это способность системы возвращаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних или внутренних возмущающих воздействий. Эта способность присуща системам, когда отклонение не превышает некоторого установленного предела.

3. Понятие структуры системы .

Структура системы – совокупность элементов системы и связей между ними в виде множества.Структура системы означает строение, расположение, порядок и отражает определенные взаимосвязи, взаимоположение составных частей системы, т.е. ее устройства и не учитывает множества свойств (состояний) ее элементов.

Система может быть представлена простым перечислением элементов, однако чаще всего при исследовании объекта такого представления недостаточно, т.к. требуется выяснить, что представляет собой объект и что обеспечивает выполнение поставленных целей.


Рис. 2. Структура системы

Понятие элемента системы. По определению элемент – это составная часть сложного целого. В нашем понятии сложное целое – это система, которая представляет собой целостный комплекс взаимосвязанных элементов.

Элемент – часть системы, обладающая самостоятельностью по отношению ко всей системе и неделимая при данном способе выделения частей. Неделимость элемента рассматривается как нецелесообразность учета в пределах модели данной системы его внутреннего строения.

Сам элемент характеризуется только его внешними прояв­лениями в виде связей и взаимосвязей с остальными элемен­тами и внешней средой.

Понятие связи. Связь – совокупность зависимостей свойств одного элемента от свойств других элементов системы. Установить связь между двумя элементами – это значит выявить наличие зависимостей их свойств. Зависимость свойств элементов может иметь односторонний и двусторонний характер.

Взаимосвязи – совокупность двухсторонних зависимостей свойств одного элемента от свойств других элементов системы.

Взаимодействие – совокупность взаимосвязей и взаимоотношений между свойствами элементов, когда они приобретают характер взаимосодействия друг другу.

Понятие внешней среды. Система существует среди других материальных или нематериальных объектов, которые не вошли в систему и объединяются поняти­ем «внешняя среда» – объекты внешней среды. Вход характеризует воздействие внешней среды на систему, выход – воздействие системы на внешнюю среду.

По сути дела, очерчивание или выявление системы есть разделение некоторой области материального мира на две части, одна из которых рассматривается как система – объект анализа (синтеза), а другая – как внешняя среда.

Внешняя среда – набор существующих в пространстве и во времени объектов (систем), которые, как предполагается, оказывают действие на систему.

Внешняя среда – это совокупность естественных и искусственных систем, для которых данная система не является функциональной подсистемой.

Типы структур

Рассмотрим ряд типовых структур систем, использующихся при описании организационно-экономических, производственных и технических объектов.

Обычно понятие "структура" связывают с графическим отображением элементов и их связей. Однако структура может быть представлена и в матричной форме, форме теоретико-множественного описания, с помощью языка топологии, алгебры и других средств моделирования систем .

Линейная (последовательная) структура (рис. 8) характеризуется тем, что каждая вершина связана с двумя соседними При выходе из строя хотя бы одного элемента (связи) структура разрушается. Примером такой структуры является конвейер.

Кольцевая структура (рис. 9) отличается замкнутостью, любые два элемента обладают двумя направлениями связи. Это повышает скорость общения, делает структуру более живучей.

Сотовая структура (рис. 10) характеризуется наличием резервных связей, что повышает надежность (живучесть) функционирования структуры, но приводит к повышению ее стоимости.

Многосвязная структура (рис. 11) имеет структуру полного графа. Надежность функционирования максимальная, эффективность функционирования высокая за счет наличия кратчайших путей, стоимость - максимальная.

Звездная структура (рис. 12) имеет центральный узел, который выполняет роль центра, все остальные элементы системы являются подчиненными.

Графовая структура (рис. 13) используется обычно при описании производственно-технологических систем.

Сетевая структура (сеть) - разновидность графовой структуры, представляющая собой декомпозицию системы во времени.

Например, сетевая структура может отображать порядок действия технической системы (телефонная сеть, электрическая сеть и т. п.), этапы деятельности человека (при производстве продукции - сетевой график, при проектировании - сетевая модель, при планировании - сетевая модель, сетевой план и т. д.).

Иерархическая структура получила наиболее широкое распространение при проектировании систем управления, чем выше уровень иерархии, тем меньшим числом связей обладают его элементы. Все элементы кроме верхнего и нижнего уровней обладают как командными, так и подчиненными функциями управления.

Иерархические структуры представляют собой декомпозицию системы в пространстве. Все вершины (узлы) и связи (дуги, ребра) существуют в этих структурах одновременно (не разнесены во времени).

Иерархические структуры, в которых каждый элемент нижележащего уровня подчинен одному узлу (одной вершине) вышестоящего (и это справедливо для всех уровней иерархии), называют древовидными структурами (структурами типа "дерева"; структурами, на которых выполняются отношения древесного порядка, иерархическими структурами с сильными связями) (рис 14, а).

Структуры, в которых элемент нижележащего уровня может быть подчинен двум и более узлам (вершинам) вышестоящего уровня, называют иерархическими структурами со слабыми связями (рис 14, б).

В виде иерархических структур представляются конструкции сложных технических изделий и комплексов, структуры классификаторов и словарей, структуры целей и функций, производственные структуры, организационные структуры предприятий.

В общем случае термин иерархия шире, он означает соподчиненность, порядок подчинения низших по должности и чину лиц высшим, возник как наименование "служебной лестницы" в религии, широко применяется для характеристики взаимоотношений в аппарате управления государством, армией и т.д., затем концепция иерархии была распространена на любой согласованный по подчиненности порядок объектов.

Таким образом, в иерархических структурах важно лишь выделение уровней соподчиненности, а между уровнями и компонентами в пределах уровня могут быть любые взаимоотношения. В соответствии с этим существуют структуры, использующие иерархический принцип, но имеющие специфические особенности, и их целесообразно выделить особо.

Лекции по дисциплине «Математические основы теории систем» Лекция №2 стр. 4

ОПРЕДЕЛЕНИЕ ПОНЯТИЯ СИСТЕМА. РАЗВИТИЕ ОПРЕДЕЛЕНИЯ СИСТЕМЫ.

ЦЕЛЬ: Дать определение понятия « система», рассказать о развитии этого определения.

ОПРЕДЕЛЕНИЕ СИСТЕМЫ

СИСТЕМА есть совокупность элементов (подсистем). При определенных условиях элементы сами могут рассматриваться как системы, а исследуемая система – как элемент более сложной системы:

    связи между элементами в системе превосходят по силе связи этих элементов с элементами, не входящими в систему. Это свойство позволяет выделить систему из среды;

    для любой системы характерно существование интегративных качеств (свойство эмерджентности ), которые присущи системе в целом, но не свойственны ни одному ее элементу в отдельности: систему нельзя сводить к простой совокупности элементов;

    система всегда имеет цели, для которых она функционирует и существует.

Эмерджентность (англ. emergence - возникновение, появление нового) втеории систем - наличие у какой-либо системы особых свойств, не присущих её подсистемам и блокам, а также сумме элементов, не связанных особыми системообразующими связями; несводимость свойств системы к сумме свойств её компонентов; синоним - «системный эффект».

В биологии иэкологии понятие эмерджентности можно выразить так: одно дерево - не лес, скопление отдельных клеток - не организм. Например, свойства биологическоговида или биологическойпопуляции не представляют собой свойства отдельных особей, понятиярождаемость ,смертность , неприменимы к отдельной особи, но применимы к популяции или виду в целом.

В эволюционистике выражается как возникновение новых функциональных единиц системы, которые не сводятся к простым перестановкам уже имевшихся элементов.

В почвоведении : эмерджентным свойством почвы являетсяплодородие .

В классификации систем эмерджентность может являться основой их систематики как критериальный признак системы.

На протяжении относительно короткой истории становления теории систем и системного анализа представления о системах и закономерностях их построения, функционирования и развития неоднократно уточнялись и переосмысливались.

Термин система используют в тех случаях, когда хотят охарактеризовать исследуемый или проектируемый объект как нечто целое (единое), сложное, о котором невозможно сразу дать представление, показав его, изобразив графически или описав математическим выражением (формулой, уравнением и т. п.).

Существует несколько десятков определения этого понятия. Их анализ показывает, что определение понятия система изменялось не только по форме, но и по содержанию.

Рассмотрим основные и принципиальные изменения, которые происходили с определением системы по мере развития теории систем и использования этого понятия на практике.

В первых определениях в той или ИНОЙ форме говорилось о том, что система это элементы (части, компоненты) a i , и связи (отношения) r j между ними:

Где
,

(1.1)

В приведенных формализованных записях определения использованы различные способы теоретико-множественных представлений: в первых двух - используются различные способы задания множеств и не учитываются взаимоотношения между множествами элементов и связей; в третьем - отражен тот факт, что система это не простая совокупность элементов и связей того или иного вида, а включает только те элементы и связи, которые находятся в области пересечения (&) друг с другом (рис. 1.1).

Так Карл Людвиг фон Берталанфи определял систему как «комплекс взаимосвязанных компонентов» или как «совокупность элементов, находящихся в определенных отношениях друг с другом и со средой».

В большой Советской энциклопедии система определяется прямым переводом с греческого «Σύστημα», что означает «состав», т.е. составленное, соединенное из частей .

Карл Людвиг фон Берталанфи (англ. Ludwig von Bertalanffy ; 19 сентября 1901 , Вена - 12 июня 1972 , Нью-Йорк ) - австрийский биолог, постоянно проживавший в Канаде и США с 1949 года. Первооснователь обобщённой системной концепции под названием «Общая теория систем ». Постановщик системных задач - прежде всего, в сфере разработки математического аппарата описания типологически несходных систем. Исследователь изоморфизма законов в различных сегментах научного знания.

Сам фон Берталанфи описывает происхождение общей теории систем как результат конфликта между механицизмом и витализмом . Обе точки зрения были для него неприемлемы: первая - как тривиальная, вторая - как вообще антинаучная.

«В этих условиях я был вынужден стать защитником так называемой организмической точки зрения. Суть этой концепции можно выразить в одном предложении следующим образом: организмы суть организованные явления, и мы, биологи, должны проанализировать их в этом аспекте. ... Одним из результатов, полученных мною, оказалась так называемая теория открытых систем и состояний подвижного равновесия, которая, по существу, является расширением обычной физической химии, кинетики и термодинамики. Оказалось, однако, что я не смог остановиться на однажды избранном пути и был вынужден прийти к ещё большей генерализации, которую я назвал общей теорией систем. Эта идея относится к весьма давнему времени - я выдвинул её впервые в 1937 году на семинаре по философии, проходившем под руководством Чарлза Морриса в Чикагском университете. Но в то время теоретическое знание, как таковое, пользовалось плохой репутацией в биологии, и я опасался того, что математик Гаусс однажды называл «крикливостью, или Boeotians». Поэтому я спрятал свои наброски в ящик стола, и только после войны впервые появились мои публикации по этой теме.»

Отметим, что термины "элементы" - "компоненты", "связи" - "отношения" обычно используются (особенно в переводах определений) как синонимы. Однако, строго говоря, "компоненты" - понятие более общее, чем "элементы", может означать совокупность элементов; относительно понятий "связь" и "отношение" существуют разные точки зрения, что будет подробнее рассмотрено.

Если известно, что элементы принципиально неоднородны, то это можно сразу учесть в определении, выделив разные множества элементов
и
:

(1а)

В определении М.Месаровича, например, выделены множество X входных объектов (воздействующих на систему) и множество Y выходных результатов, а между ними обобщающее отношение пересечения, что можно отобразить либо как у автора определения:

,
(1.1б)

либо используя другие обозначения пересечения:

,
(1.1в)

Если какой-то вид отношений r l применяется только к элементам разных множеств и не используется внутри каждого из них, то это можно отразить следующим образом:

, (1.1г)

где
- элементы новой системы, образованные из исходных множествA иB (такого рода форма записи в математической лингвистике называется синтагмой).

Для уточнения элементов и связей в определения включают свойства . Так, в определении А.Холла свойства (атрибуты Q A дополняют понятие элемента (предмета):

S A , R>. (l.1д)

А.И.Уёмов, определяя систему через понятия "вещи" , "свойства" , "отношения" , предложил двойственные определения, в одном из которых свойства q i характеризуют элементы (вещи ) а i , а в другом - свойства q i характеризуют связи (отношения ) r j :

,

.

В работах А.И.Уёмова принята другая символика. В целях единообразия здесь использована обычная теоретико-множественная форма представления определений, которая несколько сужает трактовку этих определении в философской концепции А.И Уёмова, но облегчает интерпретацию их в практических приложениях. Двойственные определения (1.1е)используются при разработке одной из методик структуризации целей.

Затем в определениях системы появляется понятие цель . Вначале - в неявном виде: в определении Ф.Е.Темникова "система - организованное множество" (в котором цель появляется при раскрытии понятия организованное ); в философском словаре система - "совокупность элементов, находящихся в отношениях и связях между собой и образующих некоторое целостное единство” . Потом - в виде конечного результата, системообразующего критерия, функции (см. определения В.И.Вернадского, У.Р.Гибсона, П.К. Анохина, М.Г.Гаазе-Рапопорта), а позднее - и с явным упоминанием о цели.

Символически эту группу определений представим следующим образом:

. (1.2)

где Z - цель, совокупность или структура целей.

В некоторых определениях уточняются условия целеобразования - среда SR , интервал времени  , , т. е. период, в рамках которого будет существовать система и ее цели, что сделано, например, в определении В.Н.Сагатовского, которое также будет положено в основу одной из методик структуризации целей: система "конечное множество функциональных элементов и отношений между ними, выделенное из среды в соответствии с определенной целью в рамках определенного временного интервала" :

. (1.2а)

Далее, в определение системы начинают включать, наряду с элементами, связями и целями, наблюдателя N , т. е. лицо, представляющее объект или процесс в виде системы при их исследовании или принятии решения:

. (1.3)

На необходимость учета взаимодействия между изучаемой системой и исследователем указывал еще У.Р.Эшби. Но первое определение, в котором явно включен наблюдатель, дал Ю.И. Черняк: "Система есть отражение в сознании субъекта (исследователя, наблюдателя) свойств объектов и их отношений в решении задачи исследования, познания"

.(1.3а)

В последующих вариантах этого определения Ю.И. Черняк стал учитывать и язык наблюдателя L N , начиная с этого определения: "Система есть отображение на языке наблюдателя (исследователя, конструктора) объектов, отношений и их свойств в решении задачи исследования, познания"

.(1.3б)

В определениях системы бывает и большее число составляющих что связано с необходимостью дифференциации в конкретных условиях видов элементов, связей и т.д.

Сопоставляя эволюцию определения системы (элементы и связи , затем - цель , затем - наблюдатель ) и эволюцию использования категорий теории познания в исследовательской деятельности, можно обнаружить сходство: вначале модели (особенно формальные) базировались на учете только элементов и связей , взаимодействий между ними, затем - стало уделяться внимание цели , поиску методов ее формализованного представления (целевая функция, критерий функционирования и т. п.), а, начиная с 60-х гг. все большее внимание обращают на наблюдател я , лицо, осуществляющее моделирование или проводящее эксперимент (даже в физике), т. е. лицо, принимающее решение.

СЛОЖНАЯ И БОЛЬШАЯ СИСТЕМА

Одной из характерных тенденций развития общества в настоящее время является появление больших чрезвычайно сложных систем (крупные автоматизированные, технологические, энергетические, гидротехнические, информационные и другие комплексы). С другой стороны стремление познать мир обитания человечества как сложную многофункциональную систему стало реальностью сегодняшнего дня.

Все это привело к необходимости определить понятие сложной системы , разработать методические принципы ее исследования, управления и проектирования.

В настоящее время однозначного, четкого определения сложной системы нет. Известны различные подходы и предложены различные формальные признаки ее определения. Так, советский ученый Г.Н. Поворов предлагает относить к сложным системы имеющие 10 4 - 10 7 элементов; к ультросложным - системы, состоящие из 10 7 -10 30 элементов; и к суперсистемам – системы из 10 30 -10 200 элементов.

Такой подход имеет тот недостаток, что данное определение сложности является относительным, а не абсолютным.

Английский кибернетик С. Бир предлагает к сложным относить системы, описываемые на языке теоретико-вероятностных методов (мозг, экономика, форма и т.п.).

Определение:

Сложной системой называется система, в модели которой недостаточно информации для эффективного управления этой системой.

Таким образом, признаком простоты системы является достаточность информации для ее управления. Если же результат управления, полученный с помощью модели, будет неожиданным, то такую систему относят к сложной.

Для перевода системы в разряд простой необходимо получение недостающей информации о ней и включение ее в модель.

От сложных систем необходимо отличать большие системы .

Определение:

Система , для актуализации модели которой в целях управления недостает материальных ресурсов (машинного времени, емкости памяти, других материальных средств моделирования) называется большой .

К таким системам относятся экономические, организационно-управленческие, нейрофизиологические, биологические и т.п. системы.

Способом перевода больших систем в простые является создание новых более мощных средств вычислительной техники.

Определения системы

Существует по меньшей мере несколько десятков различных определений понятия «система», используемых в зависимости от контекста, области знаний и целей исследования. Основной фактор, влияющий на различие в определениях, состоит в том, что в использовании понятия «система» есть двойственность: с одной стороны оно используется для обозначения объективно существующих феноменов, а с другой стороны - как метод изучения и представления феноменов, то есть как субъективная модель реальности.

В связи с этой двойственностью авторы определений различают по меньшей мере два аспекта: как отличить системный объект от несистемного и как построить систему путём выделения её из окружающей среды. На основе первого подхода даётся дескриптивное (описательное) определение системы, на основе второго - конструктивное, иногда они сочетаются. Подходы к определению системы также предлагают делить на онтологический (соответствует дескриптивному), гносеологический и методологический (последние два соответствуют конструктивному).

Так, данное в преамбуле определение из БРЭС является типичным дескриптивным определением.

Примеры дескриптивных определений:

Примеры конструктивных определений:

Таким образом, главное отличие конструктивных определений состоит в наличии цели существования или изучения системы с точки зрения наблюдателя или исследователя , который при этом явно или неявно вводится в определение.

Свойства систем

Общие для всех систем

Классификации систем

Практически в каждом издании по теории систем и системному анализу обсуждается вопрос о классификации систем, при этом наибольшее разнообразие точек зрения наблюдается при классификации сложных систем . Большинство классификаций являются произвольными (эмпирическими), то есть их авторами просто перечисляются некоторые виды систем, существенные с точки зрения решаемых задач, а вопросы о принципах выбора признаков (оснований) деления систем и полноте классификации при этом даже не ставятся .

Классификации осуществляются по предметному или по категориальному принципу.

Предметный принцип классификации состоит в выделении основных видов конкретных систем, существующих в природе и обществе, с учётом вида отображаемого объекта (технические, биологические, экономические и т. п.) или с учётом вида научного направления, используемого для моделирования (математические, физические, химические и др.).

При категориальной классификации системы разделяются по общим характеристикам, присущим любым системам независимо от их материального воплощения . Наиболее часто рассматриваются следующие категориальные характеристики:

Одна из известных эмпирических классификаций предложена Ст. Биром . В её основе лежит сочетание степени детерминированности системы и уровня её сложности:

Системы Простые (состоящие из небольшого числа элементов) Сложные (достаточно разветвленные, но поддающиеся описанию) Очень сложные (не поддающиеся точному и подробному описанию)
Детерминированные Оконная задвижка
Проект механических мастерских
Компьютер
Автоматизация
Вероятностные Подбрасывание монеты
Движение медузы
Статистический контроль качества продукции
Хранение запасов
Условные рефлексы
Прибыль промышленного предприятия
Экономика
Мозг
Фирма

Несмотря на явную практическую ценность классификации Ст. Бира отмечаются и её недостатки. Во-первых, критерии выделения типов систем не определены однозначно. Например, выделяя сложные и очень сложные системы, автор не указывает, относительно каких именно средств и целей определяется возможность и невозможность точного и подробного описания. Во-вторых, не показывается, для решения каких именно задач оказывается необходимым и достаточным знание именно предложенных типов систем. Такие замечания в сущности характерны для всех произвольных классификаций .

Помимо произвольных (эмпирических) подходов к классификации существует и логико-теоретический подход, при котором признаки (основания) деления пытаются логически вывести из определения системы. В данном подходе множество выделяемых типов систем потенциально неограниченно, порождая вопрос о том, хотя каков объективный критерий для выделения из бесконечного множества возможностей наиболее подходящих типов систем .

В качестве примера логического подхода можно сослаться на предложение А. И. Уёмова на основе его определения системы, включающего «вещи», «свойства» и «отношения» строить классификации систем на основе «типов вещей» (элементов, из которых состоит система), «свойств» и «отношений», характеризующих системы различного вида .

Предлагаются и комбинированные (гибридные) подходы, которые призваны преодолеть недостатки обоих подходов (эмпирического и логического). В частности, В. Н. Сагатовский предложил следующий принцип классификации систем. Все системы делятся на разные типы в зависимости от характера их основных компонентов. При этом каждый из указанных компонентов оценивается с точки зрения определенного набора категориальных характеристик. В результате из полученной классификации выделяются те типы систем, знание которых наиболее важно с точки зрения определенной задачи .

Классификация систем В. Н. Сагатовского:

Категориальные характеристики Свойства Элементы Отношения
Моно
Поли
Статические
Динамические (функционирующие)
Открытые
Закрытые
Детерминированные
Вероятностные
Простые
Сложные

Закон необходимости разнообразия (закон Эшби)

При создании проблеморазрешающей системы необходимо, чтобы эта система имела большее разнообразие, чем разнообразие решаемой проблемы, или была способна создать такое разнообразие. Иначе говоря, система должна обладать возможностью изменять своё состояние в ответ на возможное возмущение; разнообразие возмущений требует соответствующего ему разнообразия возможных состояний. В противном случае такая система не сможет отвечать задачам управления, выдвигаемым внешней средой, и будет малоэффективной. Отсутствие или недостаточность разнообразия могут свидетельствовать о нарушении целостности подсистем, составляющих данную систему.

Примечания

  1. Система // Большой Российский энциклопедический словарь. - М.: БРЭ. - 2003, с. 1437
  2. В. К. Батоврин. Толковый словарь по системной и программной инженерии. - М.:ДМК Пресс. - 2012 г. - 280 с. ISBN 978-5-94074-818-2
  3. Агошкова Е.Б., Ахлибининский Б.В. Эволюция понятия системы // Вопросы философии. - 1998. - №7. С.170-179
  4. Берталанфи Л. фон. Общая теория систем – критический обзор //Исследования по общей теории систем: Сборник переводов / Общ. ред. и вст. ст. В. Н. Садовского и Э. Г. Юдина. – М.: Прогресс, 1969. С. 23–82.
  5. ГОСТ Р ИСО МЭК 15288-2005 Системная инженерия. Процессы жизненного цикла систем (аналог ISO/IEC 15288:2002 System engineering - System life cycle processes)
  6. Сагатовский В. Н. Основы систематизации всеобщих категорий. Томск. 1973

См. также

Литература

  • Берталанфи Л. фон. История и статус общей теории систем // Системные исследования. - М .: Наука , 1973.
  • Бир Ст. Кибернетика и управление производством = Cybernetics and Management. - 2. - М .: Наука , 1965.
  • Волкова В. Н., Денисов А. А. Теория систем: учебное пособие. - М .: Высшая школа, 2006. - 511 с. - ISBN 5-06-005550-7
  • Кориков А.М., Павлов С.Н. Теория систем и системный анализ: учеб. пособие. - 2. - Томск: Томс. гос. ун-т систем управления и радиоэлектроники, 2008. - 264 с. - ISBN 978-5-86889-478-7
  • Месарович М., Такахара И. Общая теория систем: математические основы. - М .: Мир , 1978. - 311 с.
  • Перегудов Ф. И., Тарасенко Ф. П. Введение в системный анализ. - М .: Высшая школа, 1989.
  • Уёмов А. И. Системный подход и общая теория систем. - М .: Мысль , 1978. - 272 с.
  • Черняк Ю. И. Системный анализ в управлении экономикой. - М .: Экономика , 1975. - 191 с.
  • Эшби У. Р. Введение в кибернетику. - 2. - М .: КомКнига, 2005. - 432 с. - ISBN 5-484-00031-9

Ссылки

  • Петров В. История разработки законов развития технических систем (2002).
  • Гринь А. В. Системные принципы организации объективной реальности / А. В. Гринь. - Москва: Московский государственный университет печати, 2000. - 300 с. - ISBN 5-8122-0200-1 . http://www.i-u.ru/biblio/archive/grin_sistemnie/02.aspx

Wikimedia Foundation . 2010 .

ОБЩАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ СИСТЕМ

Система: Определение и классификация

Понятие системы относится к числу основополагающих и используется в различных научных дисциплинах и сферах человеческой деятельности. Известные словосочетания «информационная система», «человеко-машинная система», «экономическая система», «биологическая система» и многие другие иллюстрируют распространенность этого термина в разных предметных областях.

В литературе существует множество определений того, что есть «система». Несмотря на различия формулировок, все они в той или иной мере опираются на исходный перевод греческого слова systema - целое, составленное из частей, соединенное. Будем использовать следующее достаточно общее определение.

Система - совокупность объектов, объединенных связями так, что они существуют (функционируют) как единое целое, приобретающее новые свойства, которые отсутствуют у этих объектов в отдельности.

Замечание о новых свойствах системы в данном определении является весьма важной особенностью системы, отличающей ее от простого набора несвязанных элементов. Наличие у системы новых свойств, которые не являются суммой свойств ее элементов называют эмерджентностью (например, работоспособность системы «коллектив» не сводится к сумме работоспособности ее элементов - членов этого коллектива).

Объекты в системах могут быть как материальными, так и абстрактными. В первом случае говорят о материальных (эмпирических) системах ; во втором - о системах абстрактных. К числу абстрактных систем можно отнести теории, формальные языки, математические модели, алгоритмы и др.

Системы. Принципы системности

Для выделения систем в окружающем мире можно использовать следующие принципы системности .

Принцип внешней целостности - обособленность системы от окружающей среды. Система взаимодействует с окружающей средой как единое целое, ее поведение определяется состоянием среды и состоянием всей системы, а не какой-то отдельной ее частью.

Обособление системы в окружающей среде имеет свою цель, т.е. система характеризуется назначением. Другими характеристиками системы в окружающем мире являются ее вход, выход и внутреннее состояние.

Входом абстрактной системы, например некоторой математической теории, является постановка задачи; выходом - результат решения этой задачи, а назначением будет класс задач, решаемых в рамках данной теории.

Принцип внутренней целостности - устойчивость связей между частями системы. Состояние самой системы зависит не только от состояния ее частей - элементов, но и от состояния связей между ними. Именно поэтому свойства системы не сводятся к простой сумме свойств ее элементов, в системе появляются те свойства, которые отсутствуют у элементов в отдельности.

Наличие устойчивых связей между элементами системы определяет ее функциональные возможности. Нарушение этих связей может привести к тому, что система не сможет выполнять назначенные ей функции.

Принцип иерархичности- в системе можно выделить подсистемы, определяя для каждой из них свой вход, выход, назначение. В свою очередь, сама система может рассматриваться как часть более крупной системы.

Дальнейшее разбиение подсистем на части приведет к тому уровню, на котором эти подсистемы называются элементами исходной системы. Теоретически систему можно разбивать на мелкие части, по-видимому, бесконечно. Однако практически это приведет к тому, что появятся элементы, связь которых с исходной системой, с ее функциями будет трудно уловима. Поэтому элементом системы считают такие ее более мелкие части, которые обладают некоторыми качествами, присущими самой системе.

Важным при исследовании, проектировании и разработке систем является понятие ее структуры. Структура системы - совокупность ее элементов и устойчивые связи между ними. Для отображения структуры системы наиболее часто используются графические нотации (языки), структурные схемы. При этом, как правило, представление структуры системы выполняется на нескольких уровнях детализации: сначала описываются связи системы с внешней средой; потом рисуется схема с выделением наиболее крупных подсистем, далее - для подсистем строятся свои схемы и т.д.

Подобная детализация является результатом последовательного структурного анализа системы. Метод структурного системного анализа является подмножеством методов системного анализа вообще и применяется, в частности, в инженерии программирования, при разработке и внедрении сложных информационных систем. Основной идеей структурного системного анализа является поэтапная детализация исследуемой (моделируемой) системы или процесса, которая начинается с общего обзора объекта исследования, а затем предполагает его последовательное уточнение.

В системном подходе к решению исследовательских, проектных, производственных и других теоретических и практических задач этап анализа вместе с этапом синтеза образуют методологическую концепцию решения. В исследовании (проектировании, разработке) систем на этапе анализа производится разбиение исходной (разрабатываемой) системы на части для ее упрощения и последовательного решения задачи. На этапе синтеза полученные результаты, отдельные подсистемы соединяются воедино путем установления связей между входами и выходами подсистем.

Важно отметить, что разбиение системы на части даст разные результаты в зависимости от того, кто и с какой целью выполняет это разбиение. Здесь мы говорим только о таких разбиениях, синтез после которых позволяет получить исходную или задуманную систему. К таким не относится, например, «анализ» системы «компьютер» с помощью молотка и зубила. Так, для специалиста, внедряющего на предприятии автоматизированную информационную систему, важными будут информационные связи между подразделениями предприятия; для специалиста отдела поставок - связи, отображающие движение материальных ресурсов на предприятии. В итоге можно получить различные варианты структурных схем системы, которые будут содержать различные связи между ее элементами, отражающие ту или иную точку зрения и цель исследования.

Представление системы , при котором главным является отображение и исследование ее связей с внешней средой, с внешними системами, называется представлением на макроуровне. Представление внутренней структуры системы есть представление на микроуровне.

Классифкация систем

Классификация систем предполагает разделение всего множества систем на различные группы - классы, обладающие общими признаками. В основу классификации систем могут быть положены различные признаки.

В самом общем случае можно выделить два больших класса систем: абстрактные (символические) и материальные (эмпирические).

По происхождению системы делят на естественные системы (созданные природой), искусственные, а также системы смешанного происхождения, в которых присутствуют как элементы природные, так и элементы, сделанные человеком. Системы, которые являются искусственными или смешанными, создаются человеком для достижения своих целей и потребностей.

Дадим краткие характеристики некоторых общих видов систем.


Техническая система представляет собой взаимосвязанный, взаимообусловленный комплекс материальных элементов, обеспечивающих решение некоторой задачи. К таким системам можно отнести автомобиль, здание, ЭВМ, систему радиосвязи и т.п. Человек не является элементом такой системы, а сама техническая система относится к классу искусственных.

Технологическая система - система правил, норм, определяющих последовательность операций в процессе производства.

Организационная система в общем виде представляет собой множество людей (коллективов), взаимосвязанных определенными отношениями в процессе некоторой деятельности, созданных и управляемых людьми. Известные сочетания «организационно-техническая, организационно-технологическая система» расширяют понимание организационной системы средствами и методами профессиональной деятельности членов организаций.

Другое название - организационно-экономическая система применяют для обозначения систем (организаций, предприятий), участвующих в экономических процессах создания, распределения, обмена материальных благ.

Экономическая система - система производительных сил и производственных отношений, складывающихся в процессе производства, потребления, распределения материальных благ. Более общая социально-экономическая системаотражает дополнительно социальные связи и элементы, включая отношения между людьми и коллективами, условия трудовой деятельности, отдыха и т.п. Организационно-экономические системы функционируют в области производства товаров и/или услуг, т.е. в составе некоторой экономической системы. Эти системы представляют наибольший интерес как объекты внедрения экономических информационных систем (ЭИС), являющихся компьютеризированными системами сбора, хранения, обработки и распространения экономической информации. Частным толкованием ЭИС являются системы, предназначенные для автоматизации задач управления предприятиями (организациями).

По степени сложности различают простые, сложные и очень сложные (большие) системы. Простые системы характеризуются малым числом внутренних связей и относительной легкостью математического описания. Характерным для них является наличие только двух возможных состояний работоспособности: при выходе из строя элементов система или полностью теряет работоспособность (возможность выполнять свое назначение), или продолжает выполнять заданные функции в полном объеме.

Сложные системы имеют разветвленную структуру, большое разнообразие элементов и связей и множество состояний работоспособности (больше двух). Эти системы поддаются математическому описанию, как правило, с помощью сложных математических зависимостей (детерминированных или вероятностных). К числу сложных систем относятся практически все современные технические системы (телевизор, станок, космический корабль и т.д.).

Современные организационно-экономические системы (крупные предприятия, холдинги, производственные, транспортные, энергетические компании) относятся к числу очень сложных (больших) систем. Характерными для таких систем являются следующие признаки:

сложность назначения и многообразие выполняемых функций;

большие размеры системы по числу элементов, их взаимосвязей, входов и выходов;

сложная иерархическая структура системы, позволяющая выделить в ней несколько уровней с достаточно самостоятельными элементами на каждом из уровней, с собственными целями элементов и особенностями функционирования;

наличие общей цели системы и, как следствие, централизованного управления, подчиненности между элементами разных уровней при их относительной автономности;

наличие в системе активно действующих элементов - людей и их коллективов с собственными целями (которые, вообще говоря, могут не совпадать с целями самой системы) и поведением;

многообразие видов взаимосвязей между элементами системы (материальные, информационные, энергетические связи) и системы с внешней средой.

В силу сложности назначения и процессов функционирования построение адекватных математических моделей, характеризующих зависимости выходных, входных и внутренних параметров для больших систем является невыполнимым.

По степени взаимодействия с внешней средой различают открытые системы и замкнутые системы . Замкнутой называют систему, любой элемент которой имеет связи только с элементами самой системы, т.е. замкнутая система не взаимодействует с внешней средой. Открытые системы взаимодействуют с внешней средой, обмениваясь веществом, энергией, информацией. Все реальные системы тесно или слабо связаны с внешней средой и являются открытыми.

По характеру поведения системы делят на детерминированные и недетерминированные. К детерминированным относятся те системы, в которых составные части взаимодействуют между собой точно определенным образом. Поведение и состояние такой системы может быть однозначно предсказано. В случае недетерминированных систем такого однозначного предсказания сделать нельзя.

Если поведение системы подчиняется вероятностным законам, то она называется вероятностной. В таком случае прогнозирование поведения системы выполняется с помощью вероятностных математических моделей. Можно сказать, что вероятностные модели являются определенной идеализацией, позволяющей описывать поведение недетерминированных систем. Практически отнесение системы к детерминированным или недетерминированным часто зависит от задач исследования и подробности рассмотрения системы.

Система (греческое systema - целое, составленное из частей, соединения) – совокупность взаимодействия элементов, объединенных единством целей и образующих определенную целостность; это целенаправленное множество взаимосвязанных элементов любой природы; это объект, который определяется множествами элементов, преобразований, правил образования последовательностей элементов; это объект, состоящий из элементов, свойства которых не сводятся к свойству самого объекта.

Основные свойства систем : 1. Организованная сложность системы характеризуется наличием взаимосвязи между элементами (существует три типа связи: функционально-необходимые, избыточные (резервные), сингерические (дающие увеличение эффекта системы за счет взаимодействия элементов)). 2. Декомпоризуемость. 3. Целостность системы - принципиальная несводимость свойств системы к сумме свойств составляющих ее элементов, и, в то же время, зависимость свойств каждого элемента от его места и функций внутри системы. 4. Ограниченность системы. Ограниченность системы связана с внешней средой. В понятие внешняя среда включают все системы элементов любой природы, оказывающие влияние на систему или находящиеся под ее воздействием. Возникает задача локализации системы (определения ее границ и существенных связей). Выделяют открытые и замкнутые системы. Открытые системы имеют связи с внешней средой, закрытые не имеют. 5. Структурность системы. Структурность - группирование элементов внутри системы по определенному правилу или принципу в подсистемы. Структура системы – совокупность связей между элементами системы, отражающих их взаимодействие. Разделяют связи двух типов: горизон­тальные и вертикальные. Внешние связи, направленные внутрь системы называют входами, из системы во внешнюю среду - выходами. Внутренние связи - связи между подсистемами. 6. Функциональная направленность системы, функции системы можно представить в виде набора некоторых преобразований, которые делятся на две группы.

Виды систем: 1. Простая система – это система, которая состоит из небольшого числа элементов, не имеющая разветвленной структуры (нельзя выделить иерархические уровни). 2. Сложная система – это система с разветвленной структурой и значительным количеством взаимосвязанных и взаимодействующих элементов (подсистем). Под сложной динамической системой следует понимать развивающиеся во времени и в пространстве целостные объекты, состоящие из большого числа элементов и связей и обладающие свойствами, которые отсутствуют у элементов и связей, их образующих. Структура системы – совокупность внутренних, устойчивых связей между элементами системы, определяющих ее основные свойства. Системы бывают: социальные, биологические, механические, химические, экологические, простые, сложные, вероятностные, детерминированные, стохастические. 3. Централизованная система – система, в которой некоторый элемент (подсистема) играет доминирующую роль. 4. Децентрализованная система – система, в которой нет доминирующей подсистемы. 5. Организационная система – система, которая представляет собой набор людей или коллективов людей. 6. Открытые системы – такие, в которых внутренние процессы существенно зависят от условий среды и сами оказывают на ее элементы значительное влияние. 7. Замкнутые (закрытые) системы – такие, в которых внутренние процессы слабо связаны с внешней средой. Функционирование закрытых систем определяется внутренней информацией. 8. Детерминированные системы – системы, в которой связи между элементами и событиями носят однозначный, предопределенный характер. 9. Вероятностная (стохастическая) система – такая система, в которой связи между элементами и событиями носят неоднозначный характер. Связи между элементами носят вероятностный характер и существуют в виде вероятностных закономерностей. 10. Детерминированные системы являются частным случаем вероятностных (Рв=1). 11. Динамичная система – система, характер которой непрерывно меняется. При этом переход в новое состояние не может совершаться мгновенно, а требует некоторого времени.

Этапы построения систем: постановка цели, декомпозиция цели на подцели, определение функций, обеспечивающих достижение цели, синтез структуры, обеспечивающий выполнение функций. Цели возникают, когда существует так называемая проблемная ситуация (проблемная ситуация – это ситуация, которую нельзя разрешить имеющимися средствами). Цель – состояние, к которому направлена тенденция движения объекта. Среда – совокупность всех систем, кроме той, которая реализует заданную цель. Ни одна система не является абсолютно замкнутой. Взаимодействие системы со средой реализуется через внешние связи. Элемент системы – часть системы, имеющая определенное функциональное значение. Связи могут быть входными и выходными. Они подразделяются на: информационные, ресурсные (управляющие).

Структура системы : представляет собой устойчивую упорядоченность элементов системы и их связей в пространстве и во времени. Структура может быть материальной и формальной. Формальная структура – совокупность функциональных элементов и их отношений, необходимых и достаточных для достижения системой заданных целей. Материальная структура – реальное наполнение формальной структуры.Типы структур систем: последовательный или цепочечный; иерархический; циклически замкнутая (типа кольцо); структура типа «колесо»; «звезда»; структура типа «решетка».

Сложная система характеризуется : единой целью функционирования; иерархической системой управления; большим количеством связей внутри системы; комплексным составом системы; устойчивостью к воздействию внешних и внутренних воздействующих факторов; наличием элементов саморегуляции; наличием подсистем.

Свойства сложных систем : 1. Многоуровневость (часть системы сама является системой. Вся система, в свою очередь, является частью более крупной системы); 2. Наличие внешней среды (всякая система ведет себя в зависимости от того, в какой внешней среде она находится. Нельзя механически распространять выводы, полученные о системе в одних внешних условиях, на ту же систему, находящуюся в других внешних условиях); 3. Динамичность (в системах нет ничего неизменного. Все константы и статические состояния - это только абстракции, справедливые в ограниченных пределах); 4. У человека, длительное время работавшего с какой-либо сложной системой, может сложиться уверенность, что те или иные "очевидные" изменения, если их внести в систему, приведут к тем или иным "очевидным" улучшениям. Когда же изменения реализуются, система отвечает совсем не так, как предполагалось. Это случается при попытках реформы управления большим предприятием, при реформировании государства и т.д. Причиной подобных ошибок является недостаток информации о системе как результат неосознанного механистического подхода. Методологический вывод по таким ситуациям состоит в том, что сложные системы не меняются за один круг, нужно совершить много кругов, на каждом из которых в систему вносятся небольшие изменения, и выполняются исследования их результатов с обязательными попытками выявления и анализа новых типов связей, проявляющихся в системе; 5. Устойчивость и старение (устойчивость системы - это ее способность компенсировать внешние или внутренние воздействия, направленные на разрушение или быстрое изменение системы. Старение - это ухудшение эффективности и постепенное разрушение системы за длительный период времени. 6. Целостность (система имеет целостность, которая есть самостоятельная новая сущность. Эта сущность само организуется, влияет на части системы и на связи между ними, заменяет их для сохранения себя как целостности, ориентируется во внешней среде и т.д.); 7. Полиструктурность - это наличие у одной и той же системы большого количества структур. Рассматривая систему с разных точек зрения, мы будем выявлять в ней разные структуры. Полиструктурность систем можно рассматривать как их многоаспектность. Функциональный аспект отражает поведение системы и ее частей только с точки зрения того, что они делают, какую исполняют функцию. При этом не принимаются во внимание вопросы о том, как они это делают и что они из себя представляют физически. Важно только лишь, чтобы из функций отдельных частей складывалась функция системы в целом. Конструкторский аспект охватывает только вопросы физической компоновки системы. Здесь важна форма составных частей, их материал, их размещение и стыковка в пространстве, внешний вид системы. Технологический аспект отражает то, как исполняются функции частями системы.